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Abstract

In this Supplementary Material, we present all the details of Computational Method

regarding Density Functional Theory (DFT), ab-initio molecular dynamics and Monte

Carlo simulations.
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Computational Method

DFT Calculations

Total energy and structure optimization calculations have been carried out within Density

Functional Theory (DFT) using the plane-wave basis set and projector augmented wave

(PAW) potentials1 as implemented in VASP package.2,3 The exchange-correlation potentials

are represented by the Generalized Gradient Approximation (GGA) with the Perdew-Burke-

Ernzerhof (PBE)4 exchange-correlation functional including van der Waals (vdW) correction

in DFT-D2 level.5 Kinetic energy cutoff for plane-wave basis set is taken as 550 eV. Brillouin

zone integration is performed by a 12×12×1 k-point grid. The convergence criterion of self-

consistent field total energy calculations is taken to be 10−6 eV. The partial occupancies

are determined using the Gaussian scheme with the smearing width of 0.01 eV. We consider

SOC effect and also use PBE+U method to reveal the magnetic ground state.

In the calculations of the magnetic ground state we use PBE including Hubbard U cor-

rection for on-site Coulomb interaction,6 i.e. PBE+U, which is necessary for atoms including

4f orbitals,7–9 with interaction parameters of U= 6.7 eV and J=0.7 eV. The average cohe-

sive energy (per atom) of Gd2B2 is calculated by using the expression, Ec= (2EGd + 2EB -

EGd2B2)/4, where EGd2B2 is the optimized total energy per unit cell. The total energies of

free B and Gd atoms, EGd and EB, respectively are calculated in the same unit cell.

Phonon dispersion spectra are computed using force constants of the supercell within the

framework of DFT perturbation theory as implemented in the VASP code combined with

PHONOPY package10 using an improved energy convergence criterion as 10−8 eV. Phonon

calculation have been performed using a 3×3×1 supercell and 4×4×1 grid for k-point. All

MD calculations have been performed using a 2×2×1 supercell and 5×5×1 k-point grid. A

Nosé thermostat was used, and Newton’s equation of motion were integrated through the

Verlet algorithm with time steps of 2 fs.

In the analysis of bonding through the charge density isosurfaces, the difference charge

S2



density ∆ρ is calculated by subtracting the atomic charge densities, i.e. ρB and ρGd situated

at the corresponding atomic site, from the total charge density, ρT . The spin density, ρS is

calculated from the difference of charge densities of occupied spin-up and spin down states.

Monte Carlo Simulations

Monte Carlo simulation method has repeatedly proven its reliability. Very recently, elec-

tronic and magnetic properties of monolayer and bulk α−RuCl3 have been investigated by

means of first-principles and Monte-Carlo simulations. It is a known fact that α−RuCl3 is

in antiferromagnetic phase at the relatively lower temperature regions ranging from 6.5K to

15.6K.11,12 Monte-Carlo simulation results strongly support this fact with a critical temper-

ature 10.21K. Moreover, in Ref. 13, dynamic phase transition properties of a ferromagnetic

thin film system under the influence of both bias and time-dependent magnetic fields have

been used by benefiting from the Metropolis algorithm with local spin update. The numeri-

cal data given in Ref. 13 well qualitatively reproduce the previously published experimental

findings14 where time dependent magnetic behavior of a uniaxial cobalt films is studied in

the neighborhood of dynamic phase transition point. The numerical tools used in the papers

mentioned above are the same with the method we consider in the present paper. These

works also suggest that Monte-Carlo simulation method with local spin-update scheme is

a good candidate to model the real magnetic systems and to understand the underlying

physics by properly adjusting the system parameters.

We investigate magnetic features of Gd2B2 monolayer under both biaxial compressive

and tensile strains for selected directions. The spin Hamiltonian of system can be described

by the following J1 − J2 − J3 classical Heisenberg Hamiltonian:

Htotal = Hex +Hanisotropy (1)

here, Hex and Hanisotropy terms refer to the energy contributions to the system originating
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from the spin-spin interactions between neighbor spins up to third nearest neighbor and

single-ion anisotropy, respectively:

Hex = −J1
∑
⟨ij⟩

Si · Sj − J2
∑
⟨ik⟩

Si · Sk − J3
∑
⟨il⟩

Si · Sl (2)

Hanisotropy = kx
∑
i

(Sx
i )

2 + ky
∑
i

(Sy
i )

2 + kz
∑
i

(Sz
i )

2 (3)

where Si denotes the classical spin (with a magnitude S = |Si| = 7/2 for each Gd atom)

located on the ith position of the lattice. J1, J2 and J3 correspond to the spin-spin inter-

actions between nearest, second- and third-nearest spin pairs in the system. First, second

and third summations in Eq. (2) are over the first, second and third nearest neighbor spin

pairs, respectively. kx, ky and kz terms given in Eq. (3) denote the magnetic anisotropy

coefficients.

By mapping the DFT energies related to the different magnetic configurations denoted

as EFM , EAFM−1, EAFM−2, EAFM−3, which are displayed in Fig. 3, the numerical values of

the exchange interactions J1, J2, J3 can be calculated by solving equation system

EFM = E0 − 2S2 (J1 + J2 + J3)

EAFM−1 = E0 − 2S2 (J1 − J2 − J3)

EAFM−2 = E0 − 2S2 (−J1 − J2 + J3)

EAFM−3 = E0 − 2S2 (−J1 + J2 − J3) ,

(4)

where E0 is the energy contribution that does not include magnetic interactions. On the

other hand, the numerical values of the anisotropy coefficients (in Eq. 3) are calculated by

making use of the magnetic anisotropy energies supported by the DFT data, which is given

in Table 1. The calculated values of the exchange interactions can be found in Table S1.

We perform Monte Carlo simulation with local spin update Metropolis algorithm15,16

to elucidate the magnetic properties of the Gd2B2 monolayer on a L × L square lattice.
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Table S1: Exchange interaction values (in units of meV ) under compressive and tensile
strains for selected directions.

Strain (%) J1 J2 J3
-8 4.724 0.995 1.642
-6 4.428 0.901 1.509
-4 4.348 0.872 1.471
-2 4.420 0.907 1.396
0 4.452 0.997 1.367
2 4.379 1.086 1.306
4 4.210 1.058 1.170
6 4.025 0.969 0.981
8 2.006 2.575 -1.059

Here L is the linear size of the lattice, and it is fixed as L = 128 throughout this work.

Periodic boundary conditions are imposed in all directions. We implemented 112 different

initial realizations to obtain thermodynamic observable with high accuracy. For each initial

configuration, the simulation starts at the relatively high temperature region corresponding

to the paramagnetic phase, and then the temperature is gradually decreased until it reaches

to the lower temperature regions. For each temperature steps, the first 2× 104 Monte Carlo

step per site (MCSS) have been discarded for the thermalization process and the numerical

data have been collected over the next 8 × 104 MCSS for the thermodynamic quantities of

interest. Our test calculations indicate that this amount of transient steps are found to be

sufficient for the thermalization process for each applied controllable strain values. During

the simulation, the following thermodynamic quantities of interest have been measured:

• Instantaneous magnetization components of the total magnetization

mα(t) =
1

N

N∑
i

gµBS
α
i , (5)

here N(= L×L) is the total number of spin in the system, g is the Lande-g factor and

µB is the Bohr magneton. Using Eq. (5), we can obtain the thermal average of the

magnitude of the total magnetization according to the following definition:
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⟨MT ⟩ =

⟨√ ∑
α=x,y,z

mα(t)2

⟩
. (6)

• In order to determine the phase transition point, we use thermal variations of specific

heat;

C(T ) = N
(
⟨E2⟩ − ⟨E⟩2

)
/kBT

2, (7)

and magnetic susceptibility;

χ(T ) = N
(
⟨M2

T ⟩ − ⟨MT ⟩2
)
/kBT, (8)

here kB and T denote the Boltzmann constant and temperature, respectively.
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