Supporting information for

Comparison of Heated Electrospray Ionization and Nanoelectrospray Ionization Sources Coupled to Ultra-High-Resolution Mass Spectrometry for Analysis of Highly Complex Atmospheric Aerosol Samples

I. Kourtchev^{1*}, P. Szeto¹, I. O'Connor², O. A. M. Popoola¹, W. Maenhaut³, J. Wenger² and M. Kalberer^{1,4*}.

¹Department of Chemistry, University of Cambridge, Lensfield road, Cambridge, CB2 1EW, UK.

²School of Chemistry and Environmental Research Institute, College Road, University College Cork, Cork, Ireland.

³Department of Chemistry, Ghent University, Krijgslaan 281, S12, 9000 Ghent, Belgium.

⁴Department of Environmental Sciences, University of Basel, Klingelbergstrasse 27, 4056 Basel, Switzerland.

* Corresponding authors

Emails: i.kourtchev@cantab.net (I.K.) and markus.kalberer@unibas.ch (M.K.)

Table of content:

Table S-1: Atmospheric aerosol filter sample collection periods and corresponding Organic Carbon (OC) concentration on the collected filters.

Figure S-1. KMD overlaid plot (for CHO, CHON, CHOS the combined subgroups) from a sample analysed using the HESI source at 350 °C and 200 °C.

Figure S-2. Top panel: VK plots for CHO containing molecular formulae obtained from the HESI and nano-ESI analyses of the aerosol sample subjected to SPE and methanol extraction. Bottom panel: VK plots for CHO containing molecular formulae obtained from the sample extracted with methanol and SPE.

Sample ID	Sample (stort)	collection	Sample (and)	collection	OC µg/cm ²	OC unc*
	(start)	1	(end)			µg/cm ²
	Date	Time	Date	Time		
	DD-	nn:mm	DD-	nn:mm		
	MMM-YY		MMM-			
			YY			
UCCIK_07 ¹	20-Jul-14	19:00	21-Jul-14	06:59	2.54	0.33
UCCIK_08 ¹	21-Jul-14	07:00	21-Jul-14	18:59	2.57	0.33
UCCIK_09 ¹	21-Jul-14	19:00	22-Jul-14	06:59	3.48	0.37
UCCIK_10 ¹	22-Jul-14	07:00	22-Jul-14	18:59	3.33	0.37
UCCIK_11 ¹	23-Jul-14	07:00	23-Jul-14	18:59	5.19	0.46
UCCIK_13 ²	23-Jul-14	23:00	24-Jul-14	02:59	4.48	0.42
UCCIK_14 ²	24-Jul-14	03:00	24-Jul-14	06:59	2.20	0.31
UCCIK_16 ²	24-Jul-14	11:00	24-Jul-14	14:59	4.49	0.42
UCCIK_17 ²	24-Jul-14	15:00	24-Jul-14	18:59	6.42	0.52
UCCIK_18 ²	24-Jul-14	19:00	24-Jul-14	22:59	4.01	0.40
UCCIK_19 ²	24-Jul-14	23:00	25-Jul-14	02:59	4.84	0.44
UCCIK_20 ²	25-Jul-14	03:00	25-Jul-14	06:59	3.63	0.38
UCCIK_21 ¹	25-Jul-14	07:00	25-Jul-14	10:59	3.57	0.38
UCCIK_22 ¹	25-Jul-14	11:00	25-Jul-14	14:59	5.53	0.48
UCCIK_23 ¹	25-Jul-14	15:00	25-Jul-14	18:59	5.18	0.46
UCCIK_24 ¹	25-Jul-14	19:00	25-Jul-14	22:59	5.02	0.45
UCCIK_25 ¹	25-Jul-14	23:00	26-Jul-14	02:59	4.96	0.45
UCCIK_26 ²	26-Jul-14	03:00	26-Jul-14	06:59	3.47	0.37
UCCIK_27 ²	26-Jul-14	07:00	26-Jul-14	10:59	2.14	0.31
UCCIK_28 ²	26-Jul-14	11:00	26-Jul-14	14:59	2.4	0.32
UCCIK_29 ²	26-Jul-14	15:00	26-Jul-14	18:59	2.88	0.34
UCCIK_FB1 ^{1,2}	28-Jul-14	11:00	28-Jul-14	11:02	0.17	0.21
UCCIK_FB2 ^{1,2}	28-Jul-14	11:03	28-Jul-14	11:05	0.12	0.21
UCCIK_FB3 ^{1,2}	28-Jul-14	11:06	28-Jul-14	11:08	0.24	0.21

Table S-1. Atmospheric aerosol filter sample collection periods and corresponding Organic Carbon (OC) concentration on the collected filters.

* UNC is an associated uncertainty (1 standard deviation). UCCIK_FB01- UCCIK_FB03 are procedural blank samples.

¹Samples used for SPE and methanol extraction experiments

²Samples used for salt spiking experiments

Figure S-1. KMD overlaid plot (for CHO, CHON, CHOS the combined subgroups) from a sample analysed using the HESI source at 350 °C (red crosses) and 200 °C (black circles).

Figure S-2. Top panel: VK plots for CHO containing molecular formulae obtained from the HESI (plot a) and nano-ESI (plot b) analyses of the aerosol sample subjected to SPE (blue circles) and methanol (red crosses) extraction. Bottom panel: VK plots for CHO containing molecular formulae obtained from the sample extracted with methanol (plot c) and SPE (plot d). The red crosses in plots c and d correspond to data obtained from HESI and black squares correspond to data obtained from nano-ESI source.