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STOCHASTIC DIFFUSION OPERATOR FOR POISSON AND GAUSSIAN 

PROCESS AND PARAMETERS FOR THE SYSTEM HAMILTONIAN 

For Poisson bath the stochastic diffusion operator   can be expressed as 2 2  matrix as follows, 
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with the eigenvalues 0  and b . 

However, for Gaussian-Markov process the stochastic diffusion operator is a Fokker-Planck 

operator and provided as follows 
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Table S1: Site energies and electronic coupling energies of first three subunits of FMO 

complex are given in cm
-1

.

Site 

number 

1 2 3 

1 12410 -87.7 5.5 

2 -87.7 12530 30.8 

3 5.5 30.8 12210 

For the dimer system we consider first two sites from the above table. 

COUPLED EQUATION OF MOTION 

The coupled equation of motion for same bath case can be given as follows 
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Here, subscript denotes the eigen states of bath. The interaction between system-bath occurs via 

the Vd and Vod. The Kronecker delta correspond to the transition from equilibrium bath states to 

excited bath states and vice versa. 

The Eq. (S3) can be obtained after expansion of reduced density matrix in terms of eigen state of 

the bath followed by the eigen value of the bath states. 
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The diagonal fluctuation ( )dV t  and off-diagonal fluctuation ( )odV t of the time dependent 

Hamiltonian (Eq. 5 and 6) have the following matrix elements in the eigen-functions of the 

stochastic diffusion operator   as follows 

 i a j ab V t b V , where i j  and   0i a ib V t b  . (S4) 

ib  is the eigen state of the stochastic diffusion operator. 

SOLUTION OF COUPLED EQUATION OF MOTION 

One can write the coupled equation of motion as follows 

   t tX AX (S5) 

where,  tX is a 81 matrix for correlated bath model whereas it is a 321 for uncorrelated bath

model.  tX  is the first derivatives, and A is an 88 matrix for correlated bath model and 3232

matrix for uncorrelated bath. 

Laplace transform of (S4) will provide the following equation 

( ) (0) ( )s s s X X AX  (S5) 

where, X (0) is the initial condition i.e. initially excitation is placed on site 1. 

From (A5) one can get all the functions in Laplace domains as follows 
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where, I is an identity matrix. Now, using 0s   limit followed by inverse Laplace transform of 

the resulting function, we obtain Eq. (15) to Eq. (19). 

CONSTANTS OF EQUILIBRIUM POPULATIONS AND COHERENCES 

FOR THE UNCORRELATED BATH MODEL 

We provide all the constants presents in the equation equilibrium and population and coherence 

for uncorrelated bath model as follows 
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and 

 Here, all the constants show the coupling and competition between off-diagonal coupling J, 

fluctuation strength Vd and rate of fluctuation bd in establishing equilibrium population 

distribution. 

RELATION BETWEEN COHERENCE IN SITE BASIS AND EXCITONIC 

POPULATION 

The site basis and excitionic basis have the following relation 
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where, i and j are the site basis and ek and el are the excitionic basis. , , , {1,2,3,........ }i j k l n . In 

the long time limit the off-diagonal element in the excitionic basis disappears to establish the 

equilibrium distribution with respect to the diagonal elements.  Hence, in the long time limit one 

can write Eq. (S17) as follows 
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For n chromophoric system, coherence in site basis can be written as 
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Similarly there will be n-1 equations i.e. total n equations. From the above equation it is clear 

that all the off diagonal elements in the site basis are connected with the diagonal elements in the 

excitionic basis via n coupled algebraic equations. 
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