Supporting materials

Spraying preparation of eco-friendly superhydrophobic coatings with ultra-low water adhesion for effective anti-corrosion and anti-pollution

Yizhou Shen^{†,*}, Zhengwei Wu[†], Jie Tao^{†,*}, Zhenfeng Jia[†], Haifeng Chen[‡], Senyun

Liu[§], Jiawei Jiang[†], Zhen Wang[†]

[†] College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P.R. China

[‡] School of Engineering, Huzhou University, Huzhou Centre Hospital, Huzhou 313000, P. R. China

[§] key Laboratory of Icing and Anti/De-icing, China Aerodynamics Research and Development Center, Mianyang 621000, P. R. China

* Corresponding author: Assoc. Prof. Yizhou Shen and Prof. Jie Tao
E-mail: shenyizhou@nuaa.edu.cn and taojie@nuaa.edu.cn;
Fax/Tel: +86 25 5211 2911.

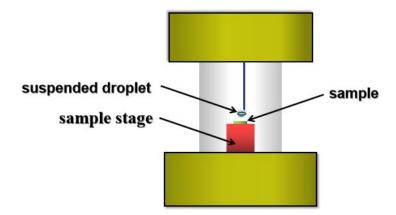
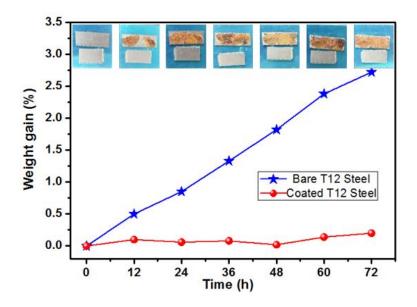



Figure S1. The schematic diagram of water adhesion test system.

Figure S2. Mass addition of coated and uncoated T12 steel as a function of time under the condition of immersing in 3.5% NaCl solution.

Video Caption

Video 1: The moving process of impact droplets on the bio-based superhydrophobic coatings.

Video 2: The self-cleaning dynamic process on the superhydrophobic coatings.