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● Experimental Details 

 

General Information. All reactions were carried out with exclusion of air using 

Schlenk-tube techniques or in a drybox. Pentane and toluene were obtained oxygen- and 

water-free from an MBraun solvent purification apparatus, while methanol was dried 

and distilled under argon prior to use. 1H, 13C{1H}, 31P{1H}, 2H, and 19F NMR spectra 

were recorded on Bruker 300 ARX, Bruker Avance 300 MHz, or Bruker Avance 400 

MHz instruments. Chemical shifts (expressed in ppm) are referenced to residual solvent 

peaks (1H, 13C{1H}), external 85% H3PO4 (
31P{1H}), or CFCl3 (

19F). Coupling constants 

J and N (N = JP-H + JP’-H for 1H and N = JP-C + JP’-C for 13C{1H}) are given in hertz. 

Attenuated total reflection infrared spectra (ATR-IR) of solid samples were run on a 

PerkinElmer Spectrum 100 FT-IR spectrometer. Elemental analyses were carried out in 

a PerkinElmer 2400 CHNS/O analyzer. High-resolution electrospray mass spectra were 

acquired using a MicroTOF-Q hybrid quadrupole time-of-flight spectrometer (Bruker 

Daltonics, Bremen, Germany). OsH6(P
iPr3)2,

1 OsH2Cl2(P
iPr3)2,

1 IrH5(P
iPr3)2,

2 

IrCl2H(PiPr3)2,
2 6-phenyl-2,2’-bipyridine,3 6-methyl-2,2’-bipyridine,4 3-methyl-1-(6-

phenylpyridin-2-yl)-1H-benzymidazolium iodide,5 and 3-methyl-1-(6-phenylpyridin-2-

yl)-1H-imidazolium iodide5 were prepared as reported previously. 

 

Reaction of 3-methyl-1-(6-phenylpyridin-2-yl)-1H-benzymidazolium Iodide with 

Silver Tetrafluoroborate: Anion Exchange. A solution of 3-methyl-1-(6-

phenylpyridin-2-yl)-1H-benzymidazolium iodide (600 mg, 145 mmol) in MeCN: 

MeOH (15:15 mL) was treated with AgBF4 (342 mg, 170 mmol). The resulting mixture 

was stirred in the dark for 10 min, obtaining a colorless solution and a white-yellow 

solid. The solution was filter through Celite, and it was concentrated to approx. 0.5 mL 

Addition of acetone affords a white solid. Yield: 480 mg (89 %). 1H NMR (300.13 

MHz, CD2Cl2, 298 K): δ 10.0 (s, 1H, NCHN), 8.58 (m, 1H, CH Ar), 8.18 (t, 3JH-H= 7.9, 

1H, CH Ar), 8.12 (m, 2H, CH Ar), 8.02 (d, 3JH-H = 7.5, 1H, CH Ar), 7.94 (d, 3JH-H = 7.9, 

1H, CH Ar), 7.84 (m, 1H, CH Ar), 7.80 (m, 2H, CH Ar), 7.54 (m, 3H, CH Ar) 4.34 (s, 

3H, CH3). 
13C{1H} (75.48 MHz, CD2Cl2, 298 K): δ 158.2, 147.6 (both s, C Ar), 144.94 

(s, NCHN, inferred from the HSQC spectrum), 141.9 (s, CH Ar), 137.6, 132.9 (both s, 

C Ar), 130,7 (s, CH Ar), 130.6 (s, C Ar), 129.5, 128.8, 128.4, 127.4, 121.9, 116.9, 

115.2, 113.3 (all s, CH ar), 34.4 (s, CH3). 
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Reaction of 3-Methyl-1-(6-phenylpyridin-2-yl)-1H-imidazolium Iodide with Silver 

Tetrafluoroborate: Anion Exchange. A solution of 3-methyl-1-(6-phenylpyridin-2-

yl)-1H-imidazolium iodide (600 mg, 165 mmol) in MeCN:MeOH (15:15 mL) was 

treated with AgBF4 (389 mg, 198 mmol). The resulting mixture was stirred in the dark 

for 10 min, obtaining a colorless solution and a white-yellow solid. The solution was 

filter through Celite, and it was concentrated to approx. 0.5 mL addition of acetone 

affords a white solid. Yield: 485 mg (91%). 1H NMR (300.13 MHz, DMSO-d6, 298K): 

δ 10.14 (s, 1H, NCHN), 8.60 (br, 1H, CH Im), 8.26 (m, 3H, CH Ar), 8.20 (m, 1H, CH 

Ar), 7.97 (br, 1H, CH Im), 7.93 (m, 2H, CH Ar), 7.55 (m, 3H, CH Ar), 4.01 (s, 3H, 

CH3).
 13C{1H} (75.48 MHz, DMSO-d6, 298 K): δ 155.7, 146,1 (both s, C Ar), 141,6 (s, 

CH, Ar), 136.4 (s, C Ar), 135.5 (s, NCHN), 130,2, 128,9, 126.9 (all s, CH Ar), 124.8 (s, 

CH Im), 120.9 (s, CH Ar), 119.0 (s, CH Im), 112.2 (s, CH Ar), 36.3 (s, CH3). 

 

● Structural Analysis of Complexes 2, 3, 5, 6, and 7.  

X-ray data were collected for the complexes on a Bruker Smart APEX or Bruker 

Smart APEX DUO CCD diffractometers equipped with a normal focus, and 2.4 kW 

sealed tube source (Mo radiation, λ = 0.71073 Å). Data were collected over the 

complete sphere covering 0.3o in w. Data were corrected for absorption by using a 

multiscan method applied with the SADABS program.6 The structures were solved by 

Patterson or direct methods and refined by full-matrix least squares on F2 with 

SHELXL2016,7 including isotropic and subsequently anisotropic displacement 

parameters. The hydrogen atoms were observed in the last Fourier Maps or calculated, 

and refined freely or using a restricted riding model. The hydrides were refined with a 

fixed distance Os-H. 

For 2, the osmium atom is located on a binary symmetry axis which divides the 

asymmetric C,N-bipyridine coordinated ligand into two moieties related by symmetry. 

Because of that, there is a positional disorder between the 2/6 and 2’/6’ locations of 

nitrogen/carbon atoms of the C,N-coordinated bipyridine ligand refined with occupancy 

of 50% each with the aid of the EXYZ and EADP options of SHELXL. For 3-6 the 

disordered groups were refined with different moieties, complementary occupancy 

factors, restrained geometries, and isotropic displacement factors. 
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Crystal data for 2 (CCDC 1987592): C28H52N2OsP2, MW 668.85, orange, irregular block 

(0.143 x 0.100 x 0.046 mm3), orthorhombic, space group Pbcn, a: 8.5429(5) Å, b: 

18.7702(12) Å, c: 17.9964(11) Å, V = 2885.8(3) Å3, Z = 4, Z’ = 0.5, Dcalc: 1.540 g cm-3, 

F(000): 1360, T = 100(2) K, μ = 4.548 mm-1. 48084 measured reflections (2: 3-57o, ω 

scans 0.3o), 3642 unique (Rint = 0.0366); min./max. transm. factors 0.670/0.862. Final 

agreement factors were R1 = 0.0189 (2955 observed reflections, I > 2σ(I)) and wR2 = 

0.0464; data/restraints/parameters 3642/2/160; GoF = 1.021. Largest peak and hole: 

1.285 (close to osmium atoms) and -0.668 e/ Å3. 

 

Crystal data for 3 (CCDC 1987590): C34H56N2OsP2, MW 744.94, orange, irregular block 

(0.142 x 0.127 x 0.055 mm3), triclinic, space group P-1, a: 8.9477(5) Å, b: 12.8386(7) 

Å, c: 15.3127(9) Å, α: 83.7190(10)°, β: 74.8350(10)°, γ: 79.0300(10)°, V = 

1663.48(16)Å3, Z = 2, Z’ = 1, Dcalc: 1.487 g cm-3, F(000): 760, T = 100(2) K, μ = 3.954 

mm-1. 15961 measured reflections (2: 3-51o, ω scans 0.3o), 7735 unique (Rint = 

0.0209); min./max. transm. factors 0.640/0.862. Final agreement factors were R1 = 

0.0276 (6990 observed reflections, I > 2σ(I)) and wR2 = 0.0659; 

data/restraints/parameters 7735/27/370; GoF = 1.061. Largest peak and hole 1.402 

(close to osmium atoms) and -1.827 e/ Å3. 

 

Crystal data for 5 (CCDC 1987594): C36H58N2OsP2, 1.5(C6H6), MW 888.14, orange, 

irregular block (0.231 x 0.210 x 0.118 mm3), monoclinic, space group P21/n, a: 

11.2086(10) Å, b: 20.6449(18) Å, c: 18.1317(15) Å, β: 99.7910(10)°, V = 4134.6(6) Å3, 

Z = 4, Z’ = 1, Dcalc: 1.427 g cm-3, F(000): 1828, T = 100(2) K, μ = 3.194 mm-1. 76754 

measured reflections (2: 3-57o, ω scans 0.3o), 11379 unique (Rint = 0.0294); min./max. 

transm. factors 0.762/0.862. Final agreement factors were R1 = 0.0198 (10195 observed 

reflections, I > 2σ(I)) and wR2 = 0.0485; data/restraints/parameters 11379/4/ 448; GoF 

= 1.024. Largest peak and hole 0.939 (close to osmium atoms) and -0.564 e/ Å3. 

 

Crystal data for 6 (CCDC 1987591): C37H59N3OsP2, MW 798.01, colorless, irregular 

block (0.143 x 0.098 x 0.093 mm3), triclinic, space group P-1, a: 12.7290(6) Å, b: 

15.5400(8) Å, c: 18.4985(9) Å, α: 81.3860(10)°, β: 81.4380(10)°, γ: 82.3890(10)°, V = 

3554.8(3) Å3, Z = 4, Z’ = 2, Dcalc: 1.491 g cm-3, F(000): 1632, T = 100(2) K, μ = 3.707 

mm-1. 56695 measured reflections (2: 3-57o, ω scans 0.3o), 17036 unique (Rint = 



S5	
 

0.0456); min./max. transm. factors 0.735/0.862. Final agreement factors were R1 = 

0.0307 (13143 observed reflections, I > 2σ(I)) and wR2 = 0.0738; 

data/restraints/parameters 17036/16/ 818; GoF = 0.951. Largest peak and hole 1.560 

(close to osmium atoms) and -1.025e/ Å3. 

 

Crystal data for 7 (CCDC 1987593): C33H56BF4N3OsP2, MW 833.75, yellow, irregular 

block (0.178 x 0.152 x 0.104 mm3), monoclinic, space group P21/n, a: 11.1123(10) Å, 

b: 14.7336(14) Å, c: 22.192(2) Å, β: 102.3770(10)°, V = 3548.9(6) Å3, Z = 4, Z’ = 1, 

Dcalc: 1.560 g cm-3, F(000): 1688, T = 100(2) K, μ = 3.731 mm-1. 47193 measured 

reflections (2: 3-57o, ω scans 0.3o), 9635 unique (Rint = 0.0372); min./max. transm. 

factors 0.712/0.862. Final agreement factors were R1 = 0.0228 (8135 observed 

reflections, I > 2σ(I)) and wR2 = 0.0493; data/restraints/parameters 9635/2/ 422; GoF = 

1.028. Largest peak and hole 1.028 (close to osmium atoms) and -0.416 e/ Å3. 
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● NMR spectra 

Figure S1. 1H NMR spectrum (300.13 MHz CD2Cl2, 298 K) of 3-methyl-1-(6-phenylpyridin-2-yl)-1H-benzymidazolium tetrafluoroborate. 
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Figure S2. 19F{1H}-NMR spectrum (376.49 MHz CD2Cl2, 298 K) of 3-methyl-1-(6-phenylpyridin-2-yl)-1H-benzymidazolium tetrafluoroborate.  



S8	
 

Figure S3. 13C{1H}-apt NMR spectrum (75.48 MHz CD2Cl2, 298 K) of 3-methyl-1-(6-phenylpyridin-2-yl)-1H-benzymidazolium 

tetrafluoroborate. 
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Figure S4. 1H NMR spectrum (300.13 MHz, DMSO-d6, 298 K) of 3-methyl-1-(6-phenylpyridin-2-yl)-1H-Imidazolium tetrafluoroborate. 
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Figure S5. 19F{1H} NMR spectrum (376.49 MHz DMSO-d6, 298 K) of 3-methyl-1-(6-phenylpyridin-2-yl)-1H-Imidazolium tetrafluoroborate. 
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Figure S6. 13C{1H}-apt NMR spectrum (75.48 MHz, DMSO-d6, 298 K) of 3-methyl-1-(6-phenylpyridin-2-yl)-1H-Imidazolium tetrafluoroborate 
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Figure S7. 1H NMR spectrum (300.13 MHz, toluene-d8, 298 K) of compound 2.  
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Figure S8. High field region of the 1H NMR spectra (300.13 MHz, toluene-d8) of compound 2 as a function of the temperature. 

293 K 

283 K 

273 K 

263 K 

253 K 

243 K 

233 K 

223 K 

213 K 

203 K 

193 K 

183 K 



S14	
 

Figure S9. .31P{1H} NMR spectrum (121.49 MHz, toluene-d8, 298 K) of compound 2. 
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Figure S10.  13C{1H}-apt NMR spectrum (75.48 MHz, toluene-d8, 298 K) of compound 2. 



S16	
 

Figure S11. 1H NMR spectrum (300.13 MHz, C6D6, 298 K) of compound 3. 
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 Figure S12. High field region of the 1H NMR spectra (400 MHz, toluene-d8) of compound 3 as a function of the temperature. 
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Figure S13. 31P{1H} NMR spectrum (121.49 MHz, C6D6, 298 K) of compound 3. 
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Figure S14. 13C{1H}-apt NMR spectrum (75.48 MHz, C6D6, 298 K) of compound 3.
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Figure S15. 1H NMR spectrum (300.13 MHz, C6D6, 298 K) of compound 4.  
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Figure S16. High field region of the 1H NMR spectra (300.13 MHz, toluene-d8) of compound 4 as a function of the temperature. 
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Figure S17. 31P{1H} NMR spectrum (121.49 MHz, toluene-d8, 298 K) of compound 4. 
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Figure S18. 13C{1H}-apt NMR spectrum(75.48 MHz, toluene-d8, 298 K) of compound 4.
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Figure S19. 1H NMR spectrum (300.13 MHz, C6D6, 298 K) of compound 5. 
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Figure S20. 31P{1H} NMR spectrum (121.49 MHz, C6D6, 298 K) of compound 5. 
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 Figure S21. 13C{1H}-apt NMR spectrum (75.48 MHz, C6D6, 298 K) of compound 5.   
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Figure S22. 1H NMR spectrum (400 MHz, toluene-d8, 298 K) of compound 6.  
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Figure S23. High field region of the 1H NMR spectra (400 MHz, toluene-d8) of compound 6 as a function of the temperature. 
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Figure S24. 31P{1H} NMR spectrum (121.49 MHz, C6D6, 298 K) of compound 6. 



S30	
 

Figure S25. 13C{1H}-apt NMR spectrum (75. 48 MHz, C6D6, 298 K) of compound 6. 
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Figure S26. 1H NMR spectrum (300.13 MHz, CD2Cl2, 298 K) of compound 7. 
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Figure S27. 1H NMR 1D-NOE (400.13 MHz, CD2Cl2, 298 K) spectrum of compound 7 obtained by selective excitation of the signal at 4.00 ppm 

(mixing time d8 = 0.364 s). 
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Figure S28. 31P{1H} NMR spectrum (121.49 MHz, CD2Cl2, 298 K) of compound 7. 
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Figure S29. 19F{1H} NMR spectrum (376.49 MHz, CD2Cl2, 298 K) of compound 7. 
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Figure S30. 13C{1H}-apt NMR spectrum (75.48 MHz, CD2Cl2, 298 K) of compound 7.
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Figure S31. 1H NMR spectrum (300.13 MHz C6D6, 298 K) of compound 9.  
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Figure S32. 31P{1H} NMR spectrum (121.49 MHz C6D6, 298 K) of compound 9.  
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Figure S33. 13C{1H}-apt NMR spectrum (75.48 MHz C6D6, 298 K) of compound 9.
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Figure S34. 1H NMR spectrum (300.13 MHz, C6D6, 298 K) of compound 10. 
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Figure S35. 31P{1H} NMR spectrum (121.49 MHz, C6D6, 298 K) of compound 10. 
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Figure S36. 13C{1H}-apt NMR spectrum (75.48 MHz, C6D6, 298 K) of compound 10.
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Figure S37. 1H NMR spectrum (300.13 MHz, C6D6, 298 K) of compound 11. 
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Figure S38. 31P{1H} NMR spectrum (121.49 MHz, C6D6, 298 K) of compound 11. 
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Figure S39. 13C{1H}-apt NMR spectrum (75.48 MHz, C6D6, 298 K) of compound 11.
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Figure S40. 1H NMR spectrum (300.13 MHz, CD2Cl2, 298 K) of compound 12.
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Figure S41. 31P{1H} NMR spectrum (121.49 MHz, CD2Cl2, 298 K) of compound 12. 
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Figure S42. 19F{1H} NMR spectrum (376.49 MHz, CD2Cl2, 298 K) of compound 12. 
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Figure S43. 13C{1H}-apt NMR spectrum (75.48 MHz, CD2Cl2, 298 K) of compound 12.
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● Deuteration Experiments 

Figure S44. 1H NMR spectrum (300.13 MHz, C6D6, 298 K) of compound 1-d. A delay (d1) of 5 seconds was used in order to assure the correct 
integration of the resonances. 
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Figure S45. 2H NMR (61.42 MHz, C6H6, 298 K) of compound 1-d.    
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Figure S46. 31P{1H} NMR spectrum (121.49 MHz, C6D6, 298 K) of compound 1-d.  
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Figure S47. 1H NMR spectrum (300.13 MHz, C6D6, 298 K) of compound 2-d. A delay (d1) of 5 seconds was used in order to assure the correct 
integration of the resonances. 

1,4- dioxane 
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Figure S48. 2H NMR spectrum (61.42 MHz, C6H6, 298 K) of compound 2-d.   
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Figure S49. 1H NMR spectrum (300.13 MHz, C6D6, 298 K) of compound 3-d. A delay (d1) of 5 seconds was used in order to assure the correct 
integration of the resonances. 

1,4- dioxane 
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Figure S50. 2H NMR spectrum (61.42 MHz, C6H6, 298 K) of compound 3-d.  
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Figure S51. 1H NMR spectrum (300.13 MHz, C6D6, 298 K) of compound 5-d. A delay (d1) of 5 seconds was used in order to assure the correct 
integration of the resonances. 

1,4- dioxane 
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Figure S52. 2H NMR spectrum (61.42 MHz, C6H6, 298 K) of compound 5-d.  
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Figure S53. 1H NMR spectrum (300.13 MHz, C6D6, 298 K) of compound 6-d. A delay (d1) of 5 seconds was used in order to assure the correct 
integration of the resonances. 

1,4- dioxane 
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Figure S54. 2H NMR spectrum (61.42 MHz, C6H6, 298 K) of compound 6-d.  
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Figure S55. 1H NMR spectrum (300.13 MHz, CD2Cl2, 298 K) of compound 7-d. A delay (d1) of 5 seconds was used in order to assure the 

correct integration of the resonances. 

1,4- dioxane 
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Figure S56. 2H NMR spectrum (61.42 MHz, CH2Cl2, 298 K) of compound 7-d.  
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Figure S57. 1H NMR spectrum (300.13 MHz, C6D6, 298 K) of compound 8-d. A delay (d1) of 5 seconds was used in order to assure the correct 

integration of the resonances.  
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Figure S58. 2H NMR spectrum (61.42 MHz, C6H6, 298 K) of compound 8-d. 
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Figure S59. 31P{1H} NMR spectrum (121.49 Hz, C6D6, 298 K) of compound 8-d. 
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Figure S60. 1H NMR spectrum (300.13 MHz, C6D6, 298K) of compound 10-d. A delay (d1) of 5 seconds was used in order to assure the correct 

integration of the resonances. 
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Figure S61. 2H NMR spectrum (61.42 MHz, C6H6, 298 K) of compound 10-d.        



S67	
 

 

● References 

(1) Aracama, M.; Esteruelas, M. A.; Lahoz, F. J.; Lopez, J. A.; Meyer, U.; A. Oro, L.; 

Werner, H. Synthesis, Reactivity, Molecular Structure, and Catalytic Activity of the 

Novel Dichlorodihydridoosmium(IV) Complexes OsH2Cl2(PR3)2 (PR3 = PiPr3, 

PMetBu2). Inorg. Chem. 1991, 30, 288-293. 

(2) Werner, H.; Schulz, M.; Esteruelas, M. A.; Oro, L. A. IrCl2H(PiPr3)2 as Catalyst 

Precursor for the Reduction of Unsaturated Substrates. J. Organomet. Chem. 1993, 445, 

261-265. 

(3) Kauffmann, T.; König, J.; Woltermann, A. Nucleophile Alkylierung un Arylierung 

des 2,2’-Bipyridyils. Chem. Ber. 1976, 109, 3964-3868. 

(4) Serrano, E.; Martin, R. Nickel-Catalyzed Reductive Amidation of Unactivated Alkyl 

Bromides. Angew. Chem. Int. Ed. 2016, 55, 11207-11211. 

(5) Li, J.; Wang, Z.; Turner, E. Tridentate platinum(II) complexes. US patent 9,203,039 

B2, 2015. 

(6) Blessing, R. H. Acta Crystallogr. 1995, A51, 33. SADABS: Area-detector 

absorption correction; Bruker- AXS, Madison, WI, 1996. 

(7) SHELXL-2016/6. Sheldrick, G. M. Acta Cryst. 2008, A64, 112-122. 

 

 


