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1. Raman spectra of monolayer hBN in the E2g band frequency region at various 

temperatures 

 
Figure SI-1. Raman spectra of monolayer hBN in the E2g band frequency region for various 

temperatures. 

 

2. Thermal Expansion Coefficients of Si, SiO2 and hBN 

In Figure SI-2 the experimentally determined temperature dependence of the thermal expansion 

coefficients of bulk Si and SiO2 is presented. Also, the calculated by means of the finite element 

method (FEM) TEC of a 90 nm thick SiO2 in contact (on the top) with a bulk silicon (micrometer 

thickness), is shown in the temperature range 100–400 K. Furthermore, in Figure SI-3 the TEC 
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from available experimental and theoretical works in the literature concerning 1-3 L and bulk hBN 

is presented. As it is evident, the temperature dependence of TEC for 1-3 L and bulk hBN is quite 

similar in the investigated temperature range (183–473 K).  

For the temperature range examined herein, 183 K < T < 473 K, 1–3 L and bulk hBN exhibit 

small thermal expansion coefficient variations and the TEC maintains a negative value throughout. 

In the same temperature region silicon and Si/SiO2 (90 nm) exhibit a positive TEC and stronger 

temperature dependence. 

 
Figure SI-2. Experimental thermal expansion coefficients of crystalline Si (solid black line) and 

SiO2 (dotted red line), in a wide temperature range. Data taken from Refs. 1-3. The solid red line 

depicts the calculated thermal expansion coefficient of a 90 nm thick SiO2 in contact with a 

micrometer thickness bulk silicon, in the temperature range 100–400 K. 
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Figure SI-3. Thermal expansion coefficient of hBN for various thicknesses. Data taken from Refs. 

4-7. The black point is the estimated TEC of 1L hBN at room temperature.  

 

  

  

Figure SI-4. Extracted intrinsic temperature dependence 
2g

( )i

E mT  of the E2g phonon mode of 

freestanding monolayer hBN for the: (a), (c) examined ladder-like sample and (b), (d) an isolated 
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1L sample, derived as 
2g 2g

( ) ( )exp S

E ET T   . In (a), (c) the theoretical TEC from ref 7 while for 

(b), (d) the experimental TEC from ref 4, 5 for bulk hBN is used.  

 
Figure SI-5. Thermal induced strain by TEC mismatch between monolayer hBN and the Si/SiO2 

(90 nm) substrate (εS, red line) and intrinsic strain (εi) of monolayer hBN (black line). 

 

3. Finite Element Modeling 

A 3D finite element model was developed to simulate the effect of temperature on the expansion 

of a Si/SiO2 substrate, using the commercial code ANSYS 8. Three-dimensional volume elements 

having 20 nodes and three degrees of freedom per node were utilized for both Si and SiO2. 

Different mesh sizing was used in order to have computational accuracy and time efficiency. 

Additionally, in order to solve numerical issues in nano-FE modeling such, as incremental time 

steps, a scaled dimensional unit was used. The final element size and mesh was the result of 

compromise between computing time and accuracy. 

Specifically, a mesh with 3nm element size was used in the volume of SiO2 and the around 

volume of contact between Si and SiO2, as shown in Figure SI-6(a). For the rest of the structure, 

a coarser mesh was used with resize ratio 10, along to the thickness direction of Si volume, as 
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shown in Figure SI-6(b). The model comprises over than 550.000 nodes and 130.000 elements. 

The model is constrained in all directions at the bottom nodes, as shown in Figure SI-6(c). 

  

                  
Figure SI-6. (a) Mesh of the volume of SiO2 and the volume around contact between Si and SiO2, 

(b) all model and (c) Constraint of the model. 

 

A thermo-mechanical analysis was conducted using temperature dependent material properties. 

The temperature dependent material properties were inserted in the F.E code in a table form. The 

solution is generated in two basic steps. First a thermal analysis is performed and the results 

(temperature distribution) were input to the mechanical analysis in conjunction with the 

mechanical properties variation with temperature and the boundary conditions. An appropriate 

time-stepping scheme was used for analysis to achieve fast convergence of the solution and 
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reasonable accuracy. The mechanical analysis was performed using, a thermo-elasto-plastic 

material formulation employing the von Mises yield criterion 9, 10. 

 For the investigation square specimens were simulated with 4 μm length and 3μm thicknesses 

for Si and 60, 80, 90, 300 nm thicknesses for SiO2. An example of the results from the F.E. model 

and the specimen size that was used for the analysis is presented following. Specifically, Figure 

SI-7 show the distribution of the Displacement (Figure SI-7(a)) and the Total Mechanical and 

Thermal Strain (Figure SI-7(b)) for specimen of 3μm thicknesses Si and 60 nm thicknesses SiO2 

and the distribution of the Displacement (Figure SI-7(c)) and the Total Mechanical and Thermal 

Strain (Figure SI-7(d)) for specimen of 4μm thicknesses Si and 300 nm thicknesses SiO2, in case 

of thermal load of 240 oC. 

The Mechanical Strain ε is expressed as the ratio of total deformation to the initial dimension of 

the material body in which the forces are being applied. In the F.E analysis the mechanical strain 

is computed as the change in length ΔL per unit of the initial distance of two nodes of the element 

and is defined as: 

                                                             
f in

in in

L LL

L L



                                                                               (3.1) 

where ε is the mechanical strain, Lin is the initial distance of two nodes of the element and Lf is the 

final distance.  

Respectively, the Thermal Strain εth is defined as: 

                                                             
f in

th

in in

L LL

L L



                                                                           (3.2) 

where Lin is the distance of two nodes of the element before the change of temperature and Lf is 

after the change of temperature. 
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Figure SI-7. Example of Displacement and Total Thermal and Mechanical Strain distribution. 

 

The Thermal Expansion αL is related to temperature change by a coefficient of linear thermal 

expansion due to change distance of two nodes of the element per degree of temperature change, 

namely: 

                                                        
1

L

in

L
a

L T





  or  

1
L

in

L
a

L T





                                                           (3.3) 

where f inT T T   , with Tin the initial temperature and Tf the final temperature. 

Finally, the Thermal Expansion is a linear coefficient of a material relating the rate at which 

strain changes with respect to a unit change in temperature and can be estimated by: 

                                                                    th La T                                                                                      (3.4) 
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In case of a construction with more than one material, the strain is the combination of the thermal 

strain of all materials and the mechanical strain due to the forces between the contact areas of 

materials. 

4. Interference effects on the Raman spectrum of hBN 

 
Figure SI-8. The geometry of the system. 

 

The total Raman signal from the hBN crystal is 

                                                        
2

0
( ) ( )

d

Raman exc sc
z

I E z E z dz


                                                      (4.1) 

where ( )excE z , ( )scE z  are the electric field amplitude, at depth z from the upper surface of the hBN 

crystal, of the exciting and scattered radiation, respectively, and d is the hBN crystal’s thickness. 

The contribution of the nth layer to the total Raman signal, ( )I n , is 

                                               
1

1
1

( 1)
( ) ( ) ( )

L

L

nd

Lnn d
I n f z dz f z d


   , 1,2,3,...n                               (4.2) 

where, 
2

( ) ( ) ( )exc scf z E z E z , d1L is the thickness of single layer hBN (0.333 nm) and ( )
n

f z  is 

the mean value of ( )f z  in the integration interval. Since this interval is very small compared to 
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the wavelength of the radiation used, 31 10Ld



 , the integrand ( ( ))f z  can be sufficiently 

approximated up to first order in z. Consequently, the average value is 1

1
( ) ( )

2
Ln

f z f n d
 

  
 

. 

Finally, 

                                                     1

1
(n) ( )

2
LI f n d

 
  

 
                                                       (4.3) 

 
Figure SI-9. Calculation of the total electric field of (a) the exciting radiation and (b) the scattered 

radiation inside a slab. 

 

The calculation of ( )excE z  can be realized by considering the geometry shown in Figure SI-9. 

A thin slab of a material (hBN in our case) separates two semispaces of different materials. Each 

material is indexed from 0 (air) to 2 (SiO2/Si). A beam of light is incident on the 0-1 interface and 

is partially transmitted inside the slab. The transmitted beam propagates across the slab’s thickness 

until it strikes the 1-2 interface where reflection occurs. This reflected beam travels upwards until 

it reaches the 1-0 interface. The reflections occurring in the slab result in an infinite number of 

downwards and upwards propagating beams. The total electric field amplitude ( )excE z is calculated 

by summing the amplitudes of all the multiply reflected beams. The refractive index of the 

materials involved are ( )in  , 1,2,3i    and the thickness of slab 1 is d1. Considering that the 

Fresnel reflection and transmission coefficients for the electric field amplitude at the interface 
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between i-j mediums (propagating from i to j) are 
i j

i j

i j

n n
r

n n





 and 

2 i
i j

i j

n
t

n n



, respectively, 

( )excE z  is  

                                                  0 1

01 12 1

( ) ( )
( )

1 exp( 2 )
exc

E z E z
E z

r r i




  
                                                                   (4.4) 

where, 
1 1

1

2

exc

n d


  , 0 01

2
( ) t exp i

exc

i n
E z z





 
  

 
 and 1 01 01

2
t r exp( 2i exp i

exc

i n
E z





 
    

 
. In this 

case, exc  is the exciting radiation wavelength. Also, the refractive indexes of the materials 

depend on the wavelength and the corresponding values must be used. It must be noted that 12r  

in equation (7.4) is the effective reflection coefficient effr  of the hBN-SiO2-Si stack. This can be 

calculated by using again the multiple beam interference concepts 11. After performing the 

summation of the amplitudes effr  is found equal to 

                                                12

exp( 2 )

1 exp( 2 )

ab bc b
eff

ab bc b

r r i
r r

r r i

  
 

  
                                                (4.5) 

where the a, b, c indices refer to the hBN, SiO2, and Si. The phase factor now is
2 b b

b

exc

n d


  . 

Similarly, the amplitude ( )scE z  can be calculated based on the scheme shown in Figure SI-9(b). 

Interestingly, the results are obtained by changing 01 10t t  in equation (7.4), in addition to using 

the proper wavelength and refractive indices. For very thick BN crystals the Raman signal intensity 

at depth 𝑧 can be calculated by considering only the absorption of the incident and scattered 

radiation. As such, the contribution to the total Raman signal from scattering at depth z , ( )I z , is 

                                      ( ) exp exp exp
exc sc

z z z
I z

L 

     
         

    

                                     (4.6) 
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The reduced scattering length L  is connected to the penetration depths at excitation (514.5 nm) 

and scattering (553.4 nm) wavelengths, exc  and sc  respectively, by the formula 

                                                          
1 1 1

exc scL  
                                                                (4.7) 

According to the data used for the refractive index of BN 12, we find that the refractive indexes 

are (1.582–0.22j) and (1.592–0.21j) at 514.5 nm and 553.4 nm, respectively, corresponding to 

penetration depths 186.1 nm and 209.3 nm, respectively. As such 𝐿 is calculated equal to 98.5 nm. 

Fitting an exponential decay function to the calculated Raman signal vs depth curve in Figure SI-

10(f) in the manuscript it is indeed found that the decay constant is 98.5 nm. Since the graphs in 

Figure SI-10(f) were calculated by considering interference effects explicitly, the correctness of 

the model presented here is verified. 

 

5. Calculated depth dependent Raman Intensities for hBN of various thicknesses 

In Figure SI-10(a)-(f), the calculated Raman intensity as a function of depth from the air/hBN 

interface is presented (black lines) for hBN crystals of various thicknesses. In the theoretical 

analysis, regarding the interference effect on Raman response of 2D materials (see section 4) 

normal incidence of the incident beam is considered, which is a common practice in relevant 

works, since this approximation captures the experimental results sufficiently well 13. For small 

thicknesses (1 and 11 layers) the intensity is uniform throughout the crystal as shown in Figure 

SI-10(a) and (b). For thicker crystals, the intensity distributions are non-trivial. In Figure SI-10(c) 

it is evident that for a 120-layer thick BN crystal, the bottom half of the crystal (close to the 

BN/SiO2 interface) contributes more to Raman signal than the upper half. For 400 layers (Figure 

SI-10(d)), only the top and bottom quarters of the crystal contribute to the Raman signal with the 
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middle part’s contribution being almost zero. For 1400 layers, the intensity distribution approaches 

that of an exponential decay with slightly visible undulations (Figure SI-10(e)). The expected 

exponential decay law is fully recovered only for very thick crystals (a few thousand layers) as can 

be seen in Figure SI-10(f).  

 
Figure SI-10. Calculated Raman intensities (black solid lines) and cumulative Raman intensities 

(red dash lines) as functions of depth inside the hBN crystal for thicknesses of :(a) 0.35 layer 

(1L), (b) 3.85nm (11L), (c) 42nm (120L), (d) 140nm (400L), (e) 470 nm (1400L) and (e) bulk 

(8000 layers). The depth is measured from the air/hBN interface. 
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     It is noted that for very thick BN crystals, the Raman signal follows an exponential decay 

exp
z

I
L

 
  

 
 with a scattering length L = 98.5 nm. This value is extracted using the optical 

constants of hBN found in Ref. 12. According to the data presented in Refs. 14 and 15 the scattering 

length is roughly 250 nm for 2.41 eV excitation energy. Moreover, the cumulative Raman intensity 

for the aforementioned cases are presented (red dash lines) in Figure SI-10(a)-(f). From these 

plots we can conclude that for the 120 (400) layers the 50% of the collected Raman scattering 

intensity comes from 40% (35%) of the total slab thickness with reference the hBN/SiO2 interface. 

These observations point out that interference effects can have a significant impact on the Raman 

spectrum of hBN even for crystals much thicker than the Raman penetration depth. 

 

6. Estimation of interlayer strain transfer efficiency factor and intrinsic temperature shift 

of the E2g mode of freestanding 11L hBN 

It was reported 16, 17 that the rate of change of the E2g band position with applied strain is linearly 

related to the Young modulus, E, namely, 2g

exp

E
E









. Gong et al. 18 developed a model to 

evaluate the strain transfer efficiency between the adjacent layers of multilayer graphene based on 

past analysis of Zalamea et al. 19 for multiwall carbon nanotubes. The degree of strain transfer 

efficiency is described by the parameter k. The measured value of the slope for the 11L is related 

to the slope for monolayer, the number of layers, N and the k parameter via the equation (6.1) 

                                              
 

2g

2g

exp,1

exp,11

( 1)

L

EL

E

N k N


 




 

  
                                                     (6.1) 
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It should be stressed that for k=0 equation (4.1) gives 

2g

2g

exp,1

exp,11

L

EL

E

N


 




 


 which is equal 

to the statement that 

1
11

L
L E

E
N

  18. Also, for k=1 (perfect strain transfer) the slopes for 11L and 

1L are the same. From reference 20 the E2g mode Grüneisen parameter, 
2 gE , for the 1L and the 

multilayer (10L) are about 1.8 and 1, respectively. Since the E2g mode frequency position of the 

monolayer and 11L layer crystal are similar, equation (6.1) gives  

                                                       

2g

2

2g2

1

1

1111

g

g

L

EL

E

LL

EE
















                                                               (6.2) 

From (6.1), (6.2) and for N=11 a strain transfer efficiency factor k of 0.92 can be obtained. 

Furthermore, we can easily calculate a mean 
S

T



 for the 11L, considering that the first layer 

adhered to the substrate experience strain εS due to the TEC mismatch. Then, the second layer 

experience strain k·εS, the third k2·εS and a geometric sequence is formed up to the 11th layer. 

Consequently, we can write  

                                    

11 , 1 , 11 1 ,1 1
0.682

11 1

L S L S L Sk

T T k T

     
   

   
                                         (6.3) 

Therefore, by this crude model we can extract the intrinsic temperature shift of the E2g mode of 

freestanding 11L hBN by subtracting the experimental value (-0.0318 cm–1/K) from the TEC 

mismatch with the substrate (
1 ,0.682 L S T    ) which is -0.0155 cm–1/K. 
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7. Temperature dependence of the FWHM of the E2g mode for hBN of various thicknesses  

 

Figure SI-11. Temperature dependence of the full width at half maximum (
2 gE ) of the E2g mode 

for hBN of various thicknesses. 
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Table SI-1. Temperature dependence of FWHM of the E2g phonon mode for different sampling 

points positioning on regions with various thicknesses ranging from monolayer to bulk boron 

nitride. The data are fitted by
2gE o T     , where Γο is the FWHM of the E2g phonon mode at 

0 K and χ is the slope of the dependence FWHM vs T. 

Region 

Thickness 

(nm) 

Number of 

layers 

o  

(cm–1) 

T< 305 K 

χ 

(cm–1/K) 

T> 305 K 

Bulk hBN 

466.5 1400 6.5(1) 0.0052(4) 

137.9 400 6.4(3) 0.0050(7) 

41.9 120 6.3(2) 0.0059(4) 

FL-hBN 3.9 11 6.9(1) 0.0053(4) 

1L-hBN 
0.4 1 6.5(3) 0.0065(5) 

6.9(5)* 0.0067(4)** 

* T<350K, ** T>350K (isolated individual monolayer sample) 

 

8. Anharmonic effects on the temperature dependence of the E2g mode of bulk hBN 

Using the analysis presented in Balkanski et al. 21-23 the temperature dependence of the E2g 

frequency position and full width at half maximum of bulk hBN (1400L) in the examined range 

(203 K < T < 850 K) is analyzed considering three-phonon and four-phonon interactions. The 

(T)  and (T)  of the Raman active E2g mode can be fitted with the following expressions: 

                               
2

2 3 3
( ) 1 1

1 1 ( 1)x y y
T A B

e e e


  
            

                                   (8.1) 

                               
2

2 3 3
( ) 1 1

1 1 ( 1)x y y
T C D

e e e


  
           

                                     (8.2) 



 19 

where 𝑥 =  


2𝑘𝑇
, 𝑦 =  


3𝑘𝑇

 and the coefficients A (C) and B (D) are constants, representing the 

contributions of three-phonon and four-phonon processes to the frequency shift (FWHM), 

respectively. The fitting of both the frequency shift and FWHM of the E2g phonon mode with 

temperature using the equations (8.1) and (8.2) is given by the solid red curve in Figures SI-12(a), 

(b). The agreement between the calculated curve and the experimental data is excellent and the 

best values of the fitting parameters are –10.4 cm-1, –1.49 cm–1 for A and B (equation (8.1)) and 

3.27 cm-1, 0.42 cm–1 for C and D (equation (8.2)). The dashed curve corresponds to the theoretical 

fitting accounting only for three-phonon processes. 

  
Figure SI-12. Temperature dependence of the E2g: (a) Raman peak frequency and (b) FWHM, (

2 gE ) (empty circles). The solid (dashed) lines depict the contribution of both three-phonon and 

four-phonon (three-phonon only) decay processes. 

 

9. k-space velocity autocorrelation function via molecular dynamics 

The used code implements a method that makes use of atomic trajectories and velocities to form 

the k-space velocity autocorrelation function (kVACS) and compute frequencies of vibrational 

modes at finite temperatures 24. To acquire the phonon frequencies ω that correspond to a given 
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wavevector k we consider the velocity distribution in reciprocal space that is obtained by the spatial 

Fourier transform 

                                                 
( )

( ) ji tp p

k j

j

v t v t e
 


k R

                                                    (9.1) 

where j sums over unit cells (once for each particular atom of the crystal basis,  j tR  are the 

position vectors of the corresponding atoms) and p is a component (x, y, or z) in a Cartesian 

coordinate system (i.e.  p

jv t  is the p-component of the velocity of the atom j at position  j tR . 

The power spectral density (PSD) is given by the spectral decomposition of the k-space velocity 

autocorrelation function (kVACF)  p

kZ t , namely 

                                                

*

*

(0) ( )
( )

(0) (0)

p p

k kp

k p p

k k

p

v v t
Z t

v v
 






                                                      (9.2) 

where averages are obtained over different initial times during the simulation. Once the PSD is 

calculated via the temporal Fourier transform of the kVACF, the phonon frequencies 

corresponding to the wavevector k are obtained by identifying the peaks in the PSD. 
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