## Alzheimer's Disease "non-amyloidogenic" p3 peptide revisited: a case for Amyloid-α

Ariel J. Kuhn<sup>[a]</sup>, Benjamin S. Abrams<sup>[b]</sup>, Stella Knowlton<sup>[a]</sup>, Jevgenij A. Raskatov<sup>[a]\*</sup>

[a] Dept. of Chemistry and Biochemistry, University of California Santa Cruz, CA 95064, United States
[b] Dept. of Biomolecular Engineering, Life Sciences Microscopy Center, University of California Santa Cruz, CA 95064, United States

# **SUPPORTING INFORMATION**

### **Table of Contents**

| General Experimental Procedures                                                                                                                                                                                                    | 3  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| <b>Figure S1.</b> Histogram revealing number of annual publications on A $\beta$ from 1955 until February 2020, according to PubMed.                                                                                               | 4  |
| Table S1. Literature analysis of conflicting findings characterizing the p3 peptide                                                                                                                                                | 5  |
| <b>Figure S2.</b> Mass spectrometry and analytical HPLC characterization of a representative synthetic batch of $p3_{17-40}$ .                                                                                                     | 6  |
| <b>Figure S3.</b> Mass spectrometry and analytical HPLC characterization of a representative synthetic batch of $A\beta_{1-40}$ .                                                                                                  | 6  |
| <b>Figure S4.</b> Mass spectrometry and analytical HPLC characterization of a representative synthetic batch of $p3_{F19Y}$ .                                                                                                      | 7  |
| <b>Figure S5.</b> Mass spectrometry and analytical HPLC characterization of a representative synthetic batch of $p3_{F20Y}$ .                                                                                                      | 7  |
| <b>Figure S6.</b> Mass spectrometry and analytical HPLC characterization of a representative synthetic batch of TAMRA-labelled $A\beta_{1-40}$ .                                                                                   | 8  |
| <b>Figure S7.</b> Mass spectrometry and analytical HPLC characterization of a representative synthetic batch of TAMRA-labelled $p3_{17-40}$ .                                                                                      | 8  |
| Figure S8. TEM images of A $\beta_{1-40}$ prepared quiescently or under agitation.                                                                                                                                                 | 9  |
| <b>Figure S9.</b> TEM images of p3 <sub>17-40</sub> prepared quiescently or under agitation as well as TEM images of TAMRA-labelled-p3 <sub>17-40</sub> prepared quiescently or under agitation.                                   | 10 |
| <b>Figure S10.</b> ThT – monitored aggregation kinetics of A $\beta$ seeded with p3 fibrils.                                                                                                                                       | 11 |
| Figure S11. TEM images of kinetically trapped, intermediate oligomers of A $\beta_{1-40}$ and p $3_{17-40}$ .                                                                                                                      | 12 |
| Figure S12. SH-SY5Y Cellular Viability of Oligomeric p3 and A $\beta$                                                                                                                                                              | 12 |
| <b>Figure S13.</b> Sequences of p3 singly substituted peptides and SDS-PAGE gel of photo-<br>induced crosslinked samples of A $\beta$ , p3, p3 <sub>F19Y</sub> , and p3 <sub>F20Y</sub> with non-crosslinked controls<br>included. | 13 |
| <b>Figure S14.</b> ThT- monitored aggregation kinetics and biological activity of A $\beta_{1-40}$ , p $3_{17-40}$ ,                                                                                                               | 13 |

Page #

 $p3_{F19Y}$ , and  $p3_{F20Y}$ .

#### **General Experimental Procedures**

**Peptide Preparation.** Purification of A $\beta$ 40 was done as previously published.<sup>2</sup> For p3, solid, lyophilized peptide was dissolved in 8:2 0.1% NH<sub>4</sub>OH H<sub>2</sub>O/acetonitrile and purified using PLRP-S columns (8 µm, 300 Å) under basic conditions. All peptide purities range from 95-99%. The concentration of p3 was determined by the absorbance of the peptide backbone at 205 nm via Nanodrop ( $\epsilon$  = 83,370 M<sup>-1</sup> cm<sup>-1</sup>) using the protein parameter calculator (<u>http://nickanthis.com/tools/a205.html</u>).<sup>3</sup> The concentration of A $\beta$ 40 was determined at 280 nm ( $\epsilon$  = 1490 M<sup>-1</sup> cm<sup>-1</sup>).

**Microscopy.** Samples were imaged on a JEOL 1230 microscope at University of California Santa Cruz or a Tecnai-12 microscope at University of California Berkeley.

**Oligomer Image Analysis.** The TEM images of oligomers were converted to 8-bit and the following filters were applied: 1) process  $\rightarrow$  filters  $\rightarrow$  median  $\rightarrow$  radius = 4. 2) Image  $\rightarrow$  Adjust  $\rightarrow$  Auto Local Threshold  $\rightarrow$  method = Phansalkar; radius = 15. 3) Process  $\rightarrow$  Noise  $\rightarrow$  Despeckle. 4) Process  $\rightarrow$  Binary  $\rightarrow$  Fill holes. 5) Process  $\rightarrow$  Binary  $\rightarrow$  Watershed. 6) Analyze  $\rightarrow$  Set Measurements  $\rightarrow$  Select Area, Limit to Threshold, Decimal places = 2. 7) Analyze  $\rightarrow$  Analyze Particles  $\rightarrow$  Set Size = 120 - infinity, Circularity = 0.35-1  $\rightarrow$  Add to Manager. The area values were then converted to diameters and displayed as a histogram.

**ThT Assay.** ThT (Acros Organics, 2390-54-7) was dissolved in 10 mL of PBS buffer containing 0.02% (w/v) NaN<sub>3</sub> and filtered through a 0.22 µm filter. The concentration was determined by Nanodrop at 412 nm ( $\epsilon$  = 36000M<sup>-1</sup>cm<sup>-1</sup>). Lyophilized samples of peptide were prepared as described above at 20 µM, with 20 µM ThT in PBS. 200 µL of sample was added to each well, in triplicate, of a black, clear bottom 96-well plate. Absorbance readings were measured ever 5 min with 5 s of shaking before reading and 295 s of shaking between readings at 37 °C with a Biotek synergy HTX fluorescence plate reader ( $\lambda_{ex}$  = 444 nm  $\lambda_{em}$  = 485 nm).

**TAMRA Quenching Assay.** Lyophilized TAMRA-A $\beta$ 40 and TAMRA-p3 were each dissolved in 20 mM NaOH, and sonicated for 30 s. The samples were diluted in PBS and the corresponding concentrations were determined by Nanodrop ( $\epsilon = 99000 \text{ M}^{-1} \text{ cm}^{-1}$ ) at 555 nm. Readings were collected on a plate reader as described above ( $\lambda_{ex} = 550 \text{ nm} \lambda_{em} = 580 \text{ nm}$ ).

**Peptide structure images.** Coordinates of peptide structures were downloaded from the pdb database (2M4J, 4NTR, 6CG4, and 3MOQ) and rendered using the freely available VMD software. Centroid-to-centroid distances were calculated using the ChemCraft program package.

**Cellular viability.** Lyophilized peptides were dissolved in 15  $\mu$ L of 20 mM NaOH and the solutions were diluted to a final concentration of 50  $\mu$ M with culture media. The samples were then incubated at 4 °C for 6 hours (consistent with method employed in Fig. 3 and S11, per published method by Ahmed *et. al.*<sup>5</sup>) The culture media intended for the vehicle cells as well as the blank samples was also incubated at 4 °C for 6 hours to account for any effects induced by low temperature. Human neuroblastoma SH-SY5Y cells were cultured in 1:1 DMEM: F12 K media supplemented with 10% fetal bovine serum and 1% penicillin-streptomycin. Cells were incubated at 37 °C with 5% CO<sub>2</sub>. SH-SY5Y cells were plated in a 96-well plate at a density of 50,000 cells/well (100  $\mu$ L total volume/well) and allowed to adhere for 24 h before dosing. After dosing, SH-SY5Y cells were incubated for 72 h at 37 °C. Then, 10  $\mu$ L aliquots of WST-1 (Roche) were added to each well and incubated for 4 h. Then, absorbance was measured at  $\lambda = 490$ nm. Each bar represents an average of four replicates, normalized against the vehicle (cells and media only).



Figure S1. Histogram revealing number of annual publications on A $\beta$  from 1955 until February 2020, according to PubMed.

#### Table S1. Literature analysis of conflicting findings characterizing the p3 peptide

| CATEGORY                                                        | QUESTION                                        | EVIDENCE TO SUPPORT                                                                                                                                                                                                                                                                                                                                                                                       | EVIDENCE TO CONTRADICT                                                                                                                                                        | AMBIGUOUS<br>EVIDENCE                                                                                                                                                                                                     |
|-----------------------------------------------------------------|-------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ISOLATION<br>FROM AD<br>PATIENTS                                | From brains?                                    | <ol> <li>p3 identified as major constituent<br/>of Down syndrome cerebellar<br/>preamyloid plaques<sup>6</sup></li> <li>major component of diffuse<br/>amyloid plaques<sup>7</sup></li> </ol>                                                                                                                                                                                                             | 1. No p3 isolated from sporadic<br>AD brains <sup>8</sup>                                                                                                                     | <ol> <li>p3 minor</li> <li>component of AD</li> <li>plaques<sup>9</sup></li> <li>p3 found in</li> <li>diffuse plaques and</li> <li>dystrophic neurites,</li> <li>but not in plaque</li> <li>cores<sup>10</sup></li> </ol> |
|                                                                 | From<br>cerebrospinal<br>fluid (CSF)?           | 1. p3 levels in CSF correlates with mild cognitive impairment <sup>11</sup>                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                               |                                                                                                                                                                                                                           |
| AGGREGATION<br>PROPENSITY                                       | Fibrilization<br>possible?                      | <ol> <li>p3 formed irregular fibers<sup>12</sup></li> <li>fibril formation<sup>13</sup></li> <li>short fragments dissimilar to Aβ<sup>14</sup></li> </ol>                                                                                                                                                                                                                                                 | <ol> <li>p3 formed intricate, dense<br/>lattices, unlike Aβ<sup>15</sup></li> <li>amorphous aggregates<sup>6</sup></li> <li>Small, granular particles<sup>16</sup></li> </ol> | 1. Few p3 fibrils formed that were in dense networks shorter and narrower than $A\beta^{17}$                                                                                                                              |
|                                                                 | Theoretical<br>simulations of<br>fibrils        | 1. MD simulation of p3 fibrils <sup>18</sup>                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                               |                                                                                                                                                                                                                           |
|                                                                 | ThT binding?                                    | 1. ThT positive <sup>14,17</sup>                                                                                                                                                                                                                                                                                                                                                                          | 1. ThT negative <sup>15</sup>                                                                                                                                                 | 1. Very little ThT<br>binding <sup>6,12</sup>                                                                                                                                                                             |
|                                                                 | Oligomerization                                 |                                                                                                                                                                                                                                                                                                                                                                                                           | 1. Unable to trap oligomers <sup>19</sup>                                                                                                                                     | 0                                                                                                                                                                                                                         |
|                                                                 | Theoretical<br>simulation of<br>oligomerization | <ol> <li>Molecular model of Aβ<sub>18-41</sub><br/>oligomers<sup>20</sup></li> <li>MD simulations of theorized<br/>trimers and paranuclei<sup>21</sup></li> <li>MD simulations of theorized U-<br/>and S-shaped intermediates<sup>22,23</sup></li> </ol>                                                                                                                                                  | 1. Simulations of p3 oligomers<br>unstable <sup>19</sup>                                                                                                                      |                                                                                                                                                                                                                           |
| TOXICITY                                                        | To cellular<br>models?                          | <ol> <li>fresh and aged p3 found to be<br/>toxic to rat hippocampal neurons<sup>17</sup></li> <li>aged p3 toxic to SH-SY5Y cells<sup>24</sup></li> <li>toxicity to SH-SY5Y and IMR-32<br/>cells<sup>25</sup></li> <li>p3 formed ion channels in cells,<br/>disrupting Ca<sup>2+</sup> regulation, causing<br/>neuronal death<sup>26</sup></li> <li>p3 activated JNK and caspase-8<sup>25</sup></li> </ol> |                                                                                                                                                                               |                                                                                                                                                                                                                           |
| LONG-TERM<br>POTENTIATION<br>(LTP)                              | Affected by p3?                                 |                                                                                                                                                                                                                                                                                                                                                                                                           | 1. p3 found to not inhibit rat<br>hippocampal LTP (11.5nM) <sup>27</sup>                                                                                                      |                                                                                                                                                                                                                           |
| PRO-<br>INFLAMMATORY<br>CYTOKINE AND<br>CHEMOKINE<br>PRODUCTION | Affected by p3?                                 | 1. p3 stimulated production of IL-1α,<br>IL-1β, IL-6, TNFα, MCP-1 <sup>28</sup>                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                               |                                                                                                                                                                                                                           |



Figure S2. Mass spectrometry and analytical HPLC characterization of a representative synthetic batch of p317-40.



Figure S3. Mass spectrometry and analytical HPLC characterization of a representative synthetic batch of Aβ<sub>1-40</sub>.



35

30 35

% Area

0.664

0.709

96.176

2.451

Figure S4. Mass spectrometry and analytical HPLC characterization of a representative synthetic batch of p3<sub>F19</sub>



Figure S5. Mass spectrometry and analytical HPLC characterization of a representative synthetic batch of  $p_{3F20Y}$ .



Figure S6. Mass spectrometry and analytical HPLC characterization of a representative synthetic batch of TAMRA-labelled Ag1-40.



35

Figure S7. Mass spectrometry and analytical HPLC characterization of a representative synthetic batch of TAMRA-labelled p317-40.



**Figure S8.** TEM images of Aβ<sub>1-40</sub> prepared A) quiescently (20 μM, 37 °C for 7 days) acquired at the University of California Santa Cruz Microscopy Center (JOEL 1230 Microscope), B) quiescently (20 μM, 37 °C for 7 days) acquired at the University of California Berkeley Electron Microscope Laboratory (Tecnai-12 Microscope), C) under agitation (20 μM, 37 °C for 24 hours with continuous shaking) acquired at the University of California Santa Cruz Microscopy Center (JOEL 1230 Microscope).



**Figure S9.** TEM images of p3<sub>17-40</sub> prepared A) quiescently (20 µM, 37 °C for 7 days), B) quiescently (40 µM, 37 C for 7 days), C) under agitation (20 µM, 37 °C for 24 hours with shaking every 5 minutes), D) TAMRA-labeled-p3<sub>17-40</sub> under agitation (20 µM, 37 °C for 24 hours with continuous shaking). A-D were acquired at the University of California Santa Cruz Microscopy Center (JOEL 1230 Microscope).



Figure S10. ThT- monitored aggregation kinetics of  $A\beta_{1-40}$  alone, and amyloid beta with p3 fibrils added (at 5 or 20% of total concentration). p3 fibrils were formed at 37 °C under continuous shaking for 24 h, followed by centrifugation and washing x3.

## Oligomers



**Figure S11.** TEM images of kinetically trapped, intermediate oligomers of A)  $A\beta_{1-40}$  (20  $\mu$ M, 4 °C for 6 hours) and B)  $p3_{17-40}$  (20  $\mu$ M, 4 °C for 6 hours). These images were used to quantify the size distributions of spherical oligomers shown in Fig. 3C. Both A-B were acquired at the University of California Berkeley Electron Microscope Laboratory (Tecnai-12 Microscope).



Figure S12. Cellular viability in SH-SY5Y cell lines following treatment with 50  $\mu$ M oligomeric A $\beta_{1-40}$  or p $3_{17-40}$ . Each sample, including controls, was incubated at 4 °C for 6 hours (consistent with method employed in Fig. 3 and S11, per published method by Ahmed *et. al.*<sup>5</sup>)



Figure S13. A) Sequence of p3 and 2 additional p3 peptides with Phe $\rightarrow$  Tyr (F $\rightarrow$  Y) substitutions at either the F19 or F20 position. B) SDS-PAGE gel of photo-induced crosslinked samples of A $\beta$ , p3, p3<sub>F19Y</sub>, and p3<sub>F20Y</sub>. "No XL" denotes samples were not exposed to light.



Figure S14. ThT- monitored aggregation kinetics of  $A\beta_{1-40}$ ,  $p3_{17-40}$ ,  $p3_{F19Y}$ , and  $p3_{F20Y}$  (20  $\mu$ M, 37 °C, with continuous shaking).

#### References

- (1) Warner, C. J. A.; Dutta, S.; Foley, A. R.; Raskatov, J. A. Introduction of D-Glutamate at a Critical Residue of Aβ42 Stabilizes a Pre-Fibrillary Aggregate with Enhanced Toxicity. Chem A Eur J 2016, 22 (34), 11967–11970.
- (2) AU Warner, C. J. A.; AU Dutta, S.; AU Foley, A. R.; AU Raskatov, J. A. A Tailored HPLC Purification Protocol That Yields High-Purity Amyloid Beta 42 and Amyloid Beta 40 Peptides, Capable of Oligomer Formation. *JoVE* **2017**, No. 121, e55482. https://doi.org/doi:10.3791/55482.
- (3) Anthis, N. J.; Clore, G. M. Sequence-Specific Determination of Protein and Peptide Concentrations by Absorbance at 205 Nm. *Protein Sci* 2013, 22 (6), 851–858. https://doi.org/10.1002/pro.2253.
- (4) Nakka, P. P.; Li, K.; Forciniti, D. Effect of Differences in the Primary Structure of the A-Chain on the Aggregation of Insulin Fragments. ACS OMEGA 2018, 3, 9636–9647. https://doi.org/10.1021/acsomega.8b00500.
- (5) Ahmed, M.; Davis, J.; Aucoin, D.; Sato, T.; Ahuja, S.; Aimoto, S.; Elliott, J. I.; Van Nostrand, W. E.; Smith, S. O. Structural Conversion of Neurotoxic Amyloid-Beta(1-42) Oligomers to Fibrils. *Nat Struct Mol Biol* 2010, 17 (5), 561–567. https://doi.org/10.1038/nsmb.1799.
- (6) Lalowski, M.; Golabek, A.; Lemere, C. A.; Selkoe, D. J.; Wisniewski, H. M.; Beavis, R. C.; Frangione, B.; Wisniewski, T. The "Nonamyloidogenic" P3 Fragment (Amyloid Beta 17-42) Is a Major Constituent of Down's Syndrome Cerebellar Preamyloid. J Biol Chem 1996, 271 (52), 33623–33631. https://doi.org/10.1074/jbc.271.52.33623.
- (7) Gowing, E.; Roher, A. E.; Woods, A. S.; Cotter, R. J.; Chaney, M.; Little, S. P.; Ball, M. J. Chemical Characterization of Abeta 17-42 Peptide, a Component of Diffuse Amyloid Deposits of Alzheimer Disease. J Biol Chem 1994, 269 (15), 10987–10990.
- (8) Näsund, J.; Schierhorn, A.; Hellman, U.; Lannfelt, L.; Roses, a D.; Tjernberg, L. O.; Silberring, J.; Gandy, S. E.; Winblad, B.; Greengard, P. Relative Abundance of Alzheimer A Beta Amyloid Peptide Variants in Alzheimer Disease and Normal Aging. *Proc Natl Acad Sci USA* **1994**, *91* (18), 8378–8382. https://doi.org/10.1073/pnas.91.18.8378.
- (9) Saido, T. C.; Yamao-Harigaya, W.; Iwatsubo, T.; Kawashima, S. Amino- and Carboxyl-Terminal Heterogeneity of β-Amyloid Peptides Deposited in Human Brain. Neurosci Lett 1996, 215 (3), 173–176. https://doi.org/10.1016/S0304-3940(96)12970-0.
- (10) Higgins, L. S.; Murphy, G. M.; Forno, L. S.; Catalano, R.; Cordell, B. P3 Beta-Amyloid Peptide Has a Unique and Potentially Pathogenic Immunohistochemical Profile in Alzheimer's Disease Brain. Am J Pathol 1996, 149 (2), 585–596.
- (11) Abraham, J. D.; Prome, S.; Salvetat, N.; Rubrecht, L.; Cobo, S.; du Paty, E.; Galea, P.; Mathieu-Dupas, E.; Ranaldi, S.; Caillava, C.; Cremer, G. A.; Rieunuer, F.; Robert, P.; Molina, F.; Laune, D.; Checler, F.; Fareh, J. Cerebrospinal Aβ 11-x and 17-x Levels as Indicators of Mild Cognitive Impairment and Patients' Stratification in Alzheimer's Disease. *Transl Psychiatry* 2013, *3* (e281), 1–8. https://doi.org/10.1038/tp.2013.58.
- (12) Shi, J. M.; Zhang, L.; Liu, E. Q. Dissecting the Behaviour of β-Amyloid Peptide Variants during Oligomerization and Fibrillation. J Pept Sci 2017, 23 (11), 810–817. https://doi.org/10.1002/psc.3028.
- (13) Milton, N. G. N.; Harris, J. R. Polymorphism of Amyloid-β Fibrils and Its Effects on Human Erythrocyte Catalase Binding. *Micron* 2009, 40 (8), 800–810. https://doi.org/10.1016/j.micron.2009.07.006.
- (14) Vandersteen, A.; Hubin, E.; Sarroukh, R.; De Baets, G.; Schymkowitz, J.; Rousseau, F.; Subramaniam, V.; Raussens, V.; Wenschuh, H.; Wildemann, D.; Broersen, K. A Comparative Analysis of the Aggregation Behavior of Amyloid-β Peptide Variants. *FEBS Lett* **2012**, 586 (23), 4088–4093. https://doi.org/10.1016/j.febslet.2012.10.022.
- (15) Naslund, J.; Jensen, M.; Tjernberg, L. O.; Thyberg, J.; Terenius, L.; Nordstedt, C. The Metabolic Pathway Generating P3, an Aβ Peptide Fragment, Is Probably Non-Amyloidogenic. *Biochem Biophys Res Commun* **1994**, 204 (2), 780–787. https://doi.org/10.1006/bbrc.1994.2527.
- (16) Schmechel, A.; Zentgraf, H.; Scheuermann, S.; Fritz, G.; Reed, J.; Beyreuther, K.; Bayer, T. A.; Multhaup, G. Alzheimer β-Amyloid Homodimers Facilitate Aβ Fibrillization and the Generation of Conformational Antibodies\*. *J Biol Chem* 2003, 278 (37), 35317–35324. https://doi.org/10.1074/jbc.M303547200.
- (17) Pike, C. J.; Overman, M. J.; Cotman, C. W. Amino-Terminal Deletions Enhance Aggregation of β-Amyloid Peptides in Vitro. J Biol Chem 1995, 270 (41), 23895–23899.
- (18) Zheng, J.; Jang, H.; Ma, B.; Tsai, C.-J.; Nussinov, R. Modeling the Alzheimer Aβ17-42 Fibril Architecture: Tight Intermolecular Sheet-Sheet Association and Intramolecular Hydrated Cavities. *Biophys J* 2007, *93* (9), 3046–3057. https://doi.org/10.1529/biophysj.107.110700.
- (19) Dulin, F.; Léveillé, F.; Ortega, J. B.; Mornon, J. P.; Buisson, A.; Callebaut, I.; Colloc'h, N. P3 Peptide, a Truncated Form of Aβ Devoid of Synaptotoxic Effect, Does Not Assemble into Soluble Oligomers. *FEBS Lett* **2008**, *582* (13), 1865–1870. https://doi.org/10.1016/j.febslet.2008.05.002.
- (20) Streltsov, V. A.; Varghese, J. N.; Masters, C. L.; Nuttall, S. D. Crystal Structure of the Amyloid-β P3 Fragment Provides a Model for Oligomer Formation in Alzheimer's Disease. J Neurosci 2011, 31 (4), 1419–1426. https://doi.org/10.1523/JNEUROSCI.4259-10.2011.
- (21) Cheon, M.; Kang, M.; Chang, I. Polymorphism of Fibrillar Structures Depending on the Size of Assembled Aβ17-42 Peptides. Sci Rep 2016, 6 (November), 38196. https://doi.org/10.1038/srep38196.
- (22) Cheon, M.; Hall, C. K.; Chang, I. Structural Conversion of Aβ17–42 Peptides from Disordered Oligomers to U-Shape Protofilaments via Multiple Kinetic Pathways. PLoS Comput Biol 2015, 11 (5), 1–23. https://doi.org/10.1371/journal.pcbi.1004258.
- (23) Miller, Y.; Ma, B.; Nussinov, R. Polymorphism of Alzheimer's Aβ17-42 (P3) Oligomers: The Importance of the Turn Location and Its Conformation. Biophys J 2009, 97 (4), 1168–1177. https://doi.org/10.1016/j.bpj.2009.05.042.
- (24) Liu, R.; McAllister, C.; Lyubchenko, Y.; Sierks, M. R. Residues 17-20 and 30-35 of β-Amyloid Play Critical Roles in Aggregation. *J Neurosci Res* 2004, 75 (2), 162–171. https://doi.org/10.1002/jnr.10859.
- (25) Wei, W.; Norton, D. D.; Wang, X.; Kusiak, J. W. Aβ 17-42 in Alzheimer's Disease Activates JNK and Caspase-8 Leading to Neuronal Apoptosis. Brain 2002, 125, 2036–2043. https://doi.org/10.1093/brain/awf205.
- (26) Jang, H.; Arce, F. T.; Ramachandran, S.; Capone, R.; Azimova, R.; Kagan, B. L.; Nussinov, R.; Lal, R. Truncated β-Amyloid Peptide Channels Provide an Alternative Mechanism for Alzheimer's Disease and Down Syndrome. Proc Natl Acad Sci 2010, 107 (14), 6538–6543. https://doi.org/10.1073/pnas.0914251107.
- (27) Walsh, D. M.; Klyubin, I.; Fadeeva, J. V.; Cullen, W. K.; Anwyl, R.; Wolfe, M. S.; Rowan, M. J.; Selkoe, D. J. Naturally Secreted Oligomers of Amyloid-β Protein Potently Inhibit Hippocampal Long-Term Potentiation in Vivo. *Nature* 2002, *416* (6880), 535–539. https://doi.org/10.1038/416535a.
- (28) Szczepanik, A. M.; Rampe, D.; Ringheim, G. E. Amyloid-Beta Peptide Fragments P3 and P4 Induce pro-Inflammatory Cytokine and Chemokine Production in Vitro and in Vivo. *J Neurochem* **2001**, 77 (1), 304–317. https://doi.org/10.1046/j.1471-4159.2001.00240.x.