Wafer-Scale 2D MoS₂ Layers Integrated on Cellulose Substrates Towards Environmentally-Friendly Transient Electronic Devices

Changhyeon Yoo¹, Md Golam Kaium¹, Luis Hurtado¹, Hao Li^{1,2}, Sushant Rassay¹, Jinwoo Ma³, Tae-Jun Ko¹, Sang Sub Han^{1,3}, Mashiyat Sumaiya Shawkat^{1,4}, Kyu Hwan Oh³, Hee-Suk Chung⁵, Yeonwoong Jung^{1,2,4,*}

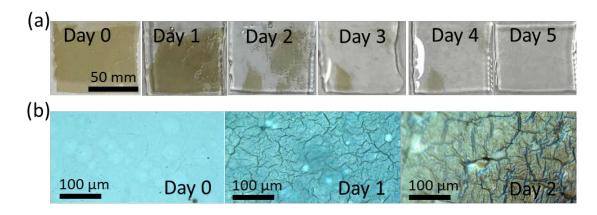
¹NanoScience Technology Center, University of Central Florida, Orlando, Florida 32826, USA

²Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida 32816, USA

³Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, South Korea

200000 110100

⁴Department of Electrical and Computer Engineering, University of Central Florida, Orlando, Florida 32816, USA


⁵Analytical Research Division, Korea Basic Science Institute, Jeonju 54907, South Korea

Corresponding Author

*Email: <u>Yeonwoong.Jung@ucf.edu</u>

Author Contribution

C. Y. and M. G. K. equally contributed to the work.

Figure S1. Biodegradable dissolution of 2D MoS_2 layers on a TOCN substrate using the PBS solution. (a) Optical images revealing the time-lapsed dissolution of 2D MoS_2 layers integrated on a TOCN substrate. (b) Enlarged views of the disintegrating 2D MoS_2 layers corresponding to (a).

Figure S2. BSB solution contains NaHCO₃, O_2 , and H_2O . Likely reactions due to the presence of strong reducing agents such as Na are¹⁻⁴

$$xNa + MoS_2 \rightarrow Na_xMoS_2 \tag{1}$$

$$Na_{x}MoS_{2} + {}_{y}Na^{+} \rightarrow Na_{2}S + Mo$$
⁽²⁾

$$MoS_2 + 9/2O_2 + 3H_2O \rightarrow MoO_4^{2-} + 2SO_4^{2-} + 6H^+$$
 (3)

Na⁺ ions in BSB solution lead to the distortion of 2D MoS₂ layer lattices and the formation of Na₂S (Equation 1 and 2), which will be accelerated by addining more Na⁺ ions (Equation 2).¹⁻⁴ Eventually, MoS₂ is anticiapted to be oxidized to dissolvable MoO₄²⁻ (Equation 3).¹⁻⁴ PBS solution contains disodium hydrogen phosphate (Na₂HPO₄), sodium chloride (NaCl), potassium chloride (KCl), potassium dihydrogen phosphate (KH₂PO₄), O₂, and H₂O. In PBS solution, similar reactions are likely to occur by replacing Na with K in the above equation 1.^{1, 2}

Figure S3. Progressive dissolutions of 2D MoS₂ layers integrated on; (a) a paper substrate, and (b) a paper substrate with Au electrode contacts.

For the dissolution of the Au electrodes/2D MoS_2 layers in (b), a buffer solution mixture of vinegar (CH₃COOH) and bleach (NaClO) in a respective volume ratio of 25:1 was prepared.

Proposed reaction: NaClO + CH₃COOH + Au + MoS₂ \rightarrow NaAuCl₄ + Na₂MoO₄ + Na₂SO₄ + NaC₂H₃O₂ + H₂O + O₂ at 75 °C.

Supporting Information References

1. Chen, X.; Park, Y. J.; Kang, M.; Kang, S.-K.; Koo, J.; Shinde, S. M.; Shin, J.; Jeon, S.; Park, G.; Yan, Y.; MacEwan, M. R.; Ray, W. Z.; Lee, K.-M.; Rogers, J. A.; Ahn, J.-H., CVD-Grown Monolayer MoS_2 in Bioabsorbable Electronics and Biosensors. *Nat. Commun.* **2018**, *9* (1), 1690.

2. Chen, X.; Shinde, S.; Dhakal, K.; Lee, S.; Kim, H.; Lee, Z.; Ahn, J.-H., Degradation Behaviors and Mechanisms of MoS₂ Crystals Relevant to Bioabsorbable Electronics. *NPG Asia Mater.* **2018**, 1.

3. Wang, X.; Shen, X.; Wang, Z.; Yu, R.; Chen, L., Atomic-Scale Clarification of Structural Transition of MoS₂ upon Sodium Intercalation. *ACS Nano* **2014**, *8* (11), 11394-11400.

4. Zhang, L.; Tang, Y.; Wang, Y.; Duan, Y.; Xie, D.; Wu, C.; Cui, L.; Li, Y.; Ning, X.; Shan, Z., In Situ TEM Observing Structural Transitions of MoS₂ upon Sodium Insertion and Extraction. *RSC Adv.* **2016**, *6* (98), 96035-96038.