ELECTRONIC SUPPLEMENTARY INFORMATION

Cation-Directed Synthetic Strategy Using 4f Tungstoantimonates as Nonlacunary Precursors for the Generation of 3d–4f Clusters

Elias Tanuhadi[†], Emir Al-Sayed[†], Ghenadie Novitchi[⊥], Alexander Roller[‡], Gerald Giester[§], and Annette Rompel^{*, †}

*correspondence to <u>annette.rompel@univie.ac.at</u>

⁺ Universität Wien, Fakultät für Chemie, Institut für Biophysikalische Chemie, 1090 Wien, Austria www.bpc.univie.ac.at.

‡ Universität Wien, Fakultät für Chemie, Zentrum für Röntgenstrukturanalyse, 1090 Wien, Austria

§ Universität Wien, Fakultät für Geowissenschaften, Geographie und Astronomie, Institut für Mineralogie und Kristallographie, 1090 Wien, Austria

⊥ Laboratoire National des Champs Magnetiques Intenses, CNRS, 25 rue des Martyrs, 38042 Grenoble Cedex 9, France.

General Information
Experimental Procedure
Synthesis of non-lacunary 4f-precursors
Synthesis of Na ₂₁ [(Tb(H ₂ O)(OH) ₂ (CH ₃ COO)) ₃ (WO ₄)(SbW ₉ O ₃₃) ₃] • 62 H ₂ O (NaTbSbW₉) :
Synthesis of Na ₂₁ [(Dy(H ₂ O)(OH) ₂ (CH ₃ COO)) ₃ (WO ₄)(SbW ₉ O ₃₃) ₃] • 116 H ₂ O (NaDySbW₉)
Synthesis of Na ₂₁ [(Ho(H ₂ O)(OH) ₂ (CH ₃ COO)) ₃ (WO ₄)(SbW ₉ O ₃₃) ₃] • 72 H ₂ O (NaHoSbW₉) :4
Synthesis of Na ₂₁ [(Er(H ₂ O)(OH) ₂ (CH ₃ COO)) ₃ (WO ₄)(SbW ₉ O ₃₃) ₃] • 87 H ₂ O (NaErSbW₉) :
Synthesis of 3d-4f compounds using non-lacunary 4f-precursors
Synthesis of K ₅ Na ₁₂ H ₃ [Ni(H ₂ O)Tb ₃ (H ₂ O) ₅ (W ₃ O ₁₁)(SbW ₉ O ₃₃) ₃] • 94 H ₂ O (KNiTbSbW₉):
Synthesis of K ₅ Na ₁₂ H ₃ [Ni(H ₂ O)Dy ₃ (H ₂ O) ₅ (W ₃ O ₁₁)(SbW ₉ O ₃₃) ₃] • 110 H ₂ O (KNiDySbW ₉)
Synthesis of K ₅ Na ₁₂ H ₃ [Ni(H ₂ O)Ho ₃ (H ₂ O) ₅ (W ₃ O ₁₁)(SbW ₉ O ₃₃) ₃] • 81 H ₂ O (KNiHoSbW₉) !
Synthesis of K ₅ Na ₁₂ H ₃ [Ni(H ₂ O)Er ₃ (H ₂ O) ₅ (W ₃ O ₁₁)(SbW ₉ O ₃₃) ₃] • 63 H ₂ O (KNiErSbW ₉)
Synthesis of K ₅ Na ₁₂ H ₃ [Co(H ₂ O)Tb ₃ (H ₂ O) ₅ (W ₃ O ₁₁)(SbW ₉ O ₃₃) ₃] • 63 H ₂ O (KCoTbSbW ₉)
Synthesis of $K_5Na_{12}H_3[Co(H_2O)Dy_3(H_2O)_5(W_3O_{11})(SbW_9O_{33})_3] \bullet 57 H_2O(KCoDySbW_9)$.
Synthesis of $K_5Na_{12}H_3[Co(H_2O)Ho_3(H_2O)_5(W_3O_{11})(SbW_9O_{33})_3] \bullet 55 H_2O (KCoHoSbW_9).$
Synthesis of K ₅ Na ₁₂ H ₃ [Co(H ₂ O)Er ₃ (H ₂ O) ₅ (W ₃ O ₁₁)(SbW ₉ O ₃₃) ₃] • 64 H ₂ O (KCoErSbW₉) (
Synthesis of K ₅ Na ₁₂ H ₃ [Co(H ₂ O)Y ₃ (H ₂ O) ₅ (W ₃ O ₁₁)(SbW ₉ O ₃₃) ₃] • 46 H ₂ O (KCoYSbW ₉)
IR-spectra
Thermogravimetric Analysis
Single-Crystal X-ray Diffraction (SXRD)
Powder X-ray Diffraction (PXRD)
UV/Vis Spectroscopy
Magnetism
References

Content

General Information

All reagents and chemicals were of high-purity grade and were used as purchased without further purification. Na₉[B- α -SbW₉O₃₃] and Na₁₆(NH₄)[{Y(α -SbW₉O_{31}(OH)_2)(CH₃COO)(H₂O)}₃(WO₄)] • 48H₂O were prepared according to literature procedures.^{1, 2}

Attenuated total reflection Fourier-transform Infrared Spectroscopy: All spectra were recorded on a Bruker Tensor 27 IR Spectrometer equipped with a single-reflection diamond-ATR unit. Frequencies are given in cm^{-1} , intensities denoted as w = weak, m = medium, s = strong.

UV–Vis spectroscopy: UV–Vis spectra were collected on a Shimadzu UV 1800 spectrophotometer.

Elemental analysis: Elemental analysis was performed with an iCAP 6500 series inductively coupled plasma-optical emission spectrometry (ICP-OES) spectrometer (Thermo Scientific, USA). The ICP-OES was equipped with a standard sample introduction system consisting of a concentric nebulizer and a cyclonic spray chamber. Transportation of sample solutions was performed by the peristaltic pump of the iCAP 6500 coupled to an ASX-520 auto sampler (Cetac, USA). Per element two sensitive and non-interfered emission lines were used, the first line for measurement and the second line for quality control.

Powder X-ray diffraction (PXRD) was performed on a Bruker D8 ADVANCE diffractometer, Cu K α radiation, λ = 1.54056 Å, LYNXEYE silicon strip detector and SolX energy dispersive detector, variable slit aperture with 12 mm, 8° ≤ 2 θ ≤ 50°.

Single crystal X-ray diffraction (SXRD): The X-ray data of **NaLnSbW**₉ were measured on a Bruker X8 Apex2 diffractometer equipped with multilayer monochromators, Mo K/ α (λ =0.71073Å) INCOATEC micro focus sealed tubes and Oxford cooling system. Data collection of **KLnTMSbW**₉ was performed on a Bruker D8 VENTURE equipped with a multilayer monochromator, Mo K α Incoatec Microfocus sealed tube, and Kryoflex cooling device (Ln = Tb^{III}, Dy^{III}, Ho^{III}, Er^{III}; TM = Co^{II}, Ni^{II}). The structures were solved by direct methods and refined by full-matrix least-squares. Non hydrogen atoms were refined with anisotropic displacement parameters. The following software was used for the structuresolving procedure: frame integration, Bruker SAINT software package using a narrow-frame algorithm (absorption correction)³, SADABS⁴, SHELXS-2013⁵ (structure solution), SHELXL-2013⁶ (refinement), OLEX2⁷ (structure solution, refinement, molecular diagrams and graphical user-interface), and SHELXLE⁸ (molecular diagrams and graphical user interface). CCDC-codes are provided in **Table S4**. Experimental data can be found in **Tables S5-S28**.

Magnetic Studies: Dc magnetic susceptibility data (2-300K) were collected on powdered samples using a SQUID magnetometer (Quantum Design MPMS-XL), applying a magnetic field of 0.1 T. All data were corrected for the contribution of the sample holder and the diamagnetism of the samples estimated from Pascal's constants.^{9, 10} The field dependence of the magnetization (up to 5 T) was measured between 2.0 and 5.0 K. ac magnetic susceptibility was measured between 2 and 7 K with an oscillating field magnitude of Hac = 3.0 Oe and frequency ranging between 1 and 1488Hz in presence of a dc field up to Hdc = 4000 Oe. The relaxation times were extracted from simultaneous fit of χ 'ac and χ "ac using generalized Debye model.¹¹ Fitting of the variable parameters and estimation of errors was

performed with lsq curve fit solver in MATLAB, jacobian matrix was used to generate 95% confidence intervals on the fitted parameters.

Experimental Procedure

Synthesis of non-lacunary 4f-precursors

Synthesis of Na₂₁[(Tb(H₂O)(OH)₂(CH₃COO))₃(WO₄)(SbW₉O₃₃)₃] • 62 H₂O (NaTbSbW₉):

 $Na_9[SbW_9O_{33}]$ •19.5 H₂O (0.602 g, 0.213 mmol) was dissolved in a mixture of 10 mL NaOAC [2M] pH 5.5 and 5 mL H₂O. Tb(NO₃)₃•5H₂O (0.087 g, 0.201 mmol) was added to the stirred solution and the resulting reaction mixture was heated to 80°C and stirred for 2 h giving a colorless solution. Slow evaporation of the resulting reaction mixture at 18°C gave colorless block shaped crystals over a period of 2 weeks. Yield: 1.4 g, 74 % based on Tb. Elem. Anal. calcd (found) for Na₂₁Tb₃Sb₃W₂₈O₁₇₄H₁₃₇ (Na₂₁[(Tb(H₂O)(OH)₂(CH₃COO))₃(WO₄)(SbW₉O₃₃)₃] • 62 H₂O): Na 5.14 (7.34), Sb 3.89 (3.28), W 54.79 (45.10), Tb 5.08 (4.19).

<u>Synthesis of Na₂₁[(Dy(H₂O)(OH)₂(CH₃COO))₃(WO₄)(SbW₉O₃₃)₃] • 116 H₂O (NaDySbW₉):</u>

The synthesis of **NaDySbW**₉ was similar to that of **NaTbSbW**₉ except that $Tb(NO_3)_3 \cdot 5 H_2O$ was replaced by $Dy(NO_3)_3 \cdot 5 H_2O$ (0.07 g, 0.201 mmol). Colorless block shaped crystals were obtained after approximately 2 weeks. Yield: 1.08 g, 52 % based on Dy. Elem. Anal. calcd (found) for $Na_{21}Dy_3Sb_3W_{28}O_{228}H_{245}$ ($Na_{21}[(Dy(H_2O)(OH)_2(CH_3COO))_3(WO_4)(SbW_9O_{33})_3] \cdot 116 H_2O$): Na 4.65 (6.08), Sb 3.52 (3.68), W 49.60 (49.90), Dy 4.70 (4.66).

<u>Synthesis of Na₂₁[(Ho(H₂O)(OH)₂(CH₃COO))₃(WO₄)(SbW₉O₃₃)₃] • 72 H₂O (NaHoSbW₉):</u>

The synthesis of **NaHoSbW**₉ was similar to that of **NaTbSbW**₉ except that $Tb(NO_3)_3 \cdot 5 H_2O$ was replaced by $Ho(NO_3)_3 \cdot 5 H_2O$ (0.089 g, 0.201 mmol). Pink block shaped crystals were obtained after approximately 2 weeks. Yield: 1.23 g, 64 % based on Ho. Elem. Anal. calcd (found) for $Na_{21}Ho_3Sb_3W_{28}O_{184}H_{157}$ ($Na_{21}[(Ho(H_2O)(OH)_2(CH_3COO))_3(WO_4)(SbW_9O_{33})_3] \cdot 72 H_2O$): Na 5.03 (5.78), Sb 3.81 (3.26), W 53.66 (47.80), Ho 5.16 (4.34).

<u>Synthesis of Na₂₁[(Er(H₂O)(OH)₂(CH₃COO))₃(WO₄)(SbW₉O₃₃)₃] • 87 H₂O (NaErSbW₉):</u>

The synthesis of **NaErSbW**₉ was similar to that of **NaTbSbW**₉ except that $Tb(NO_3)_3 \cdot 5 H_2O$ was replaced by $Er(NO_3)_3 \cdot 5H_2O$ (0.089 g, 0.201 mmol). Pink block shaped crystals were obtained after approximately 2 weeks. Yield: 1.39 g, 70 % based on Er. Elem. Anal. calcd (found) for $Na_{21}Er_3Sb_3W_{28}O_{199}H_{185}$ ($Na_{21}[(Er(H_2O)(OH)_2(CH_3COO))_3(WO_4)(SbW_9O_{33})_3] \cdot 87 H_2O$): Na 4.89 (5.23), Sb 3.70 (3.25), W 52.17 (44.00), Er 5.09 (4.35).

Synthesis of 3d-4f compounds using non-lacunary 4f-precursors

<u>Synthesis of K₅Na₁₂H₃[Ni(H₂O)Tb₃(H₂O)₅(W₃O₁₁)(SbW₉O₃₃)₃] • 94 H₂O (KNiTbSbW₉):</u>

NaTbSbW₉ (0.118 g, 0.0126 mmol) was dissolved in 5 ml of a 2:1 mixture of KOAc/NaOAc (5 % v/v) and H₂O. To the resulting solution, NiCl₂•6 H₂O (0.009 g, 0.0372 mmol) and 20 μ L of a K₂CO₃ [2 M] solution were added and the reaction mixture was heated to 50°C for 1.5 h. Slow evaporation at 18°C gave light green block shaped crystals after 2 days. Yield: 0.114 g, 86 % based on W. Elem. Anal. calcd (found) for K₅Na₁₂NiTb₃Sb₃W₃₀O₂₁₅H₂₁₃ (K₅Na₁₂H₃[Ni(H₂O)Tb₃(H₂O)₅(W₃O₁₁)(SbW₉O₃₃)₃] • 99 H₂O): K 1.85 (2.04), Na 2.62 (5.54), Sb 3.47 (3.27), W 52.32 (47.70), Tb 4.52 (3.40), Ni 0.56 (0.71).

<u>Synthesis of K₅Na₁₂H₃[Ni(H₂O)Dy₃(H₂O)₅(W₃O₁₁)(SbW₉O₃₃)₃] • 110 H₂O (KNiDySbW₉)</u>

The synthesis of **KNiDySbW**₉ was similar to that of **KNiTbSbW**₉ except that **NaTbSbW**₉ was replaced by **NaDySbW**₉ (0.131 g, 0.0126 mmol). Light green block shaped crystals were obtained after approximately 2 days. Yield: 0.109 g, 80 % based on W. Elem. Anal. calcd (found) for K₅Na₁₂NiDy₃Sb₃W₃₀O₂₃₁H₂₄₅ (K₅Na₁₂H₃[Ni(H₂O)Dy₃(H₂O)₅(W₃O₁₁)(SbW₉O₃₃)₃] • 115 H₂O): K 1.80 (2.22), Na 2.54 (3.16), Sb 3.37 (3.03), W 50.87 (42.30), Dy 4.50 (3.51), Ni 0.54 (0.62).

<u>Synthesis of K₅Na₁₂H₃[Ni(H₂O)Ho₃(H₂O)₅(W₃O₁₁)(SbW₉O₃₃)₃] • 81 H₂O (KNiHoSbW₉)</u>

The synthesis of **KNiHoSbW**₉ was similar to that of **KNiTbSbW**₉ except that **NaTbSbW**₉ was replaced by **NaHoSbW**₉ (0.121 g, 0.0126 mmol). Light green block shaped crystals were obtained after approximately 2 days. Yield: 0.110 g, 84 % based on W. Elem. Anal. calcd (found) for K₅Na₁₂NiHo₃Sb₃W₃₀O₂₀₂H₁₈₇ (K₅Na₁₂H₃[Ni(H₂O)Ho₃(H₂O)₅(W₃O₁₁)(SbW₉O₃₃)₃] • 86 H₂O): K 1.89 (2.04), Na 2.67 (4.98), Sb 3.54 (3.41), W 53.41 (48.90), Ho 4.79 (3.84), Ni 0.57 (0.73).

<u>Synthesis of K₅Na₁₂H₃[Ni(H₂O)Er₃(H₂O)₅(W₃O₁₁)(SbW₉O₃₃)₃] • 63 H₂O (**KNiErSbW**₉)</u> The synthesis of **KNiErSbW**₉ was similar to that of **KNiTbSbW**₉ except that **NaTbSbW**₉ was replaced by **NaErSbW**₉ (0.124 g, 0.0126 mmol). Light green block shaped crystals were obtained after approximately 2 days. Yield: 0.087 g, 69 % based on W. Elem. Anal. calcd (found) for K₅Na₁₂NiEr₃Sb₃W₃₀O₁₈₄H₁₅₁ (K₅Na₁₂H₃[Ni(H₂O)Er₃(H₂O)₅(W₃O₁₁)(SbW₉O₃₃)₃] • 68 H₂O): K 1.95 (1.86), Na 2.76 (4.35), Sb 3.65 (3.79), W 55.11 (52.60), Er 5.01 (2.72), Ni 0.59 (1.17).

<u>Synthesis of K₅Na₁₂H₃[Co(H₂O)Tb₃(H₂O)₅(W₃O₁₁)(SbW₉O₃₃)₃] • 63 H₂O (KCoTbSbW₉)</u>

NaTbSbW₉ (0.118 g, 0.0126 mmol) was dissolved in 5 ml of a 2:1 mixture of KOAc/NaOAc (5% v/v) and H₂O. To the resulting solution, $CoCl_2$ •6 H₂O (0.009 g, 0.0372 mmol) and 20 µL of a K₂CO₃ [2 M] solution were added and the pink reaction mixture was heated to 50°C for 1.5 h. Slow evaporation at 18°C gave light pink block shaped crystals after 2 days. Yield: 0.091 g, 72 % based on W. Elem. Anal. calcd (found) for K₅Na₁₂CoTb₃Sb₃W₃₀O₁₈₄H₁₅₁

 $(K_5Na_{12}H_3[Co(H_2O)Tb_3(H_2O)_5(W_3O_{11})(SbW_9O_{33})_3] \bullet 68 H_2O)$: K 1.96 (2.46), Na 2.76 (5.22), Sb 3.65 (3.39), W 55.24 (49.40), Tb 4.78 (4.18), Co 0.59 (0.59).

<u>Synthesis of K₅Na₁₂H₃[Co(H₂O)Dy₃(H₂O)₅(W₃O₁₁)(SbW₉O₃₃)₃] • 57 H₂O (**KCoDySbW**₉)</u>

The synthesis of **KCoDySbW**₉ was similar to that of **KCoTbSbW**₉ except that **NaTbSbW**₉ was replaced by **NaDySbW**₉ (0.131 g, 0.0126 mmol). Light pink block shaped crystals were obtained after approximately 2 days. Yield: 0.107 g, 86 % based on W. Elem. Anal. calcd (found) for $K_5Na_{12}CoDy_3Sb_3W_{30}O_{178}H_{139}$ ($K_5Na_{12}H_3[Co(H_2O)Dy_3(H_2O)_5(W_3O_{11})(SbW_9O_{33})_3]$ • 62 H₂O): K 1.98 (2.43), Na 2.79 (4.31), Sb 3.69 (3.70), W 55.79 (51.30), Dy 4.93 (4.62), Co 0.60 (0.63).

<u>Synthesis of K₅Na₁₂H₃[Co(H₂O)Ho₃(H₂O)₅(W₃O₁₁)(SbW₉O₃₃)₃] • 55 H₂O (**KCoHoSbW**₉)</u>

The synthesis of **KCoHoSbW**₉ was similar to that of **KCoTbSbW**₉ except that **NaTbSbW**₉ was replaced by **NaHoSbW**₉ (0.121 g, 0.0126 mmol). Light pink block shaped crystals were obtained after approximately 2 days. Yield: 0.092 g, 74 % based on W. Elem. Anal. calcd (found) for $K_5Na_{12}CoHo_3Sb_3W_{30}O_{176}H_{135}$ ($K_5Na_{12}H_3[Co(H_2O)Ho_3(H_2O)_5(W_3O_{11})(SbW_9O_{33})_3]$ • 60 H₂O): K 1.98 (2.39), Na 2.80 (4.01), Sb 3.71 (3.66), W 55.95 (53.20), Ho 5.02 (4.65), Co 0.60 (0.63).

<u>Synthesis of K₅Na₁₂H₃[Co(H₂O)Er₃(H₂O)₅(W₃O₁₁)(SbW₉O₃₃)₃] • 64 H₂O (KCoErSbW₉)</u>

The synthesis of **KCoErSbW**₉ was similar to that of **KCoTbSbW**₉ except that **NaTbSbW**₉ was replaced by **NaErSbW**₉ (0.124 g, 0.0126 mmol). Light pink block shaped crystals were obtained after approximately 2 days. Yield: 0.088 g, 70 % based on W. Elem. Anal. calcd (found) for K₅Na₁₂CoEr₃Sb₃W₃₀O₁₈₅H₁₅₃ (K₅Na₁₂H₃[Co(H₂O)Er₃(H₂O)₅(W₃O₁₁)(SbW₉O₃₃)₃] • 69 H₂O): K 1.95 (2.45), Na 2.75 (4.19), Sb 3.64 (3.70), W 55.01 (49.30), Er 5.00 (4.81), Co 0.59 (0.63).

Synthesis of $K_5Na_{12}H_3[Co(H_2O)Y_3(H_2O)_5(W_3O_{11})(SbW_9O_{33})_3] \cdot 46 H_2O$ (**KCoYSbW**₉) Na₁₆(NH₄)[{Y(α -SbW_9O_{31}(OH)_2)(CH₃COO)(H₂O)}₃(WO₄)]₃ 48 H₂O (0.337 g, 0.0378 mmol) was dissolved in 15 ml of a 2:1 mixture of KOAc/NaOAc (5% v/v) and H₂O. To the resulting solution, CoCl₂•6H₂O (0.027 g, 0.1116 mmol) and 120 µL of a K₂CO₃ [2 M] solution were added and the reaction mixture was heated to 50°C for 1.5 h. Slow evaporation at 18°C gave light green block shaped crystals after 2 days. Yield: 0.290 g, 81 % based on W. Elem. Anal. calcd (found) for K₅Na₁₂CoY₃Sb₃W₃₀O₁₆₇H₁₁₇ (K₅Na₁₂H₃[Co(H₂O)Y₃(H₂O)₅(W₃O₁₁)(SbW₉O₃₃)₃] • 51H₂O): K 2.06 (2.26), Na 2.91 (2.75), Sb 3.86 (3.86), W 58.26 (56.40), Y 2.82 (2.61), Co 0.62 (0.70).

IR-spectra

Figure S1. IR-spectra of **NaLnSbW**₉ (ATR-IR, cm⁻¹): 3364.4 (s), 3263.6 (s), 2359.4 (w), 1637.8 (w), 1508.1 (m), 1401.6(m), 1234.6 (m), 1151.6 (w), 936.4 (w), 748.5 (m)

Figure S2. IR-spectra of **KTMLnSbW**₉. (ATR-IR, cm⁻¹): 3362.3 (s), 3262.4 (s), 2358.3 (w), 1636.6 (w), 1508.1 (m), 1401.6 (w), 1233.4 (m), 1150.2 (w), 935.3 (w), 934.2 (w) 748.5 (m)

Figure S3. IR-spectrum of $NaHoSbW_9$ and $KNiHoSbW_9$ in the range of 1580 – 1300 cm⁻¹ showing the bending – and rocking vibrations corresponding to the acetate ligands present in $NaLnSbW_9$.

Table S1. Survey of reported crystal structures of 3d-4f heterometallic tungstoantimonates (TA). Hpic = picolinic acid, OAc = acetate. Ln = lanthanide, TM = transition metal.

Formula	Type of TA lacunary building block	Number & types of TM centers	Number & types of Ln centers	Ref.
[Ln(H ₂ O) ₅] ₂ [TM ₄ (H ₂ O) ₂ (pic) ₄ (<i>B</i> -β-SbW ₉ O ₃₃) ₂] ⁴⁻	B-β-SbW ₉ O ₃₃	4 Fe ³⁺	4 Pr ³⁺ , Nd ³⁺ , Sm ³⁺ , Eu ³⁺	12
[TM ₂ W ₄ O ₉ (H ₂ O) ₂ (Hpic) ₄ (<i>B</i> -β- SbW ₉ O ₃₃) ₂][Ln(H ₂ O) ₈] ₂ [TM ₄ W ₂ O ₇ (H ₂ O) ₄ (pic) ₂ (Hpic) ₂ (B-β- SbW ₉ O ₃₃) ₂] ¹⁰⁻	<i>Β</i> -β-SbW ₉ O ₃₃	6 Fe³+	2 Gd ³⁺ , Dy ³⁺	12
{[Ln(H ₂ O) ₆] ₂ [TM ₄ (H ₂ O) ₂ (Hpic) ₂ (pic) ₂ (<i>B</i> -β-SbW ₃ O ₃₃) ₂]} ₂ ⁴⁻	B-β-SbW ₉ O ₃₃	8 Fe ³⁺	3 Ho ³⁺ , Er ³⁺	12
[Ln ₃ (H ₂ O) ₅ TM(H ₂ O) ₃ (Sb ₄ O ₄)(SbW ₉ O ₃₃) ₃ (TMW ₆ O ₂₄)(WO ₂) ₃ (CH ₃ COO)] ¹⁷⁻	<i>B</i> -α-SbW ₉ O ₃₃	2 Ni ²⁺	3 La ³⁺ , Pr ³⁺ , Nd ³⁺	13
[Ln ₃ (H ₂ O) ₃ TM ₃ (H ₂ O) ₆ (SbW ₉ O ₃₃) ₃ (WO ₄)(CO ₃)] ¹⁶⁻	<i>B</i> -α-SbW ₉ O ₃₃	3 Ni ²⁺	3 La ³⁺ , Pr ³⁺ , Nd ³⁺	13
[Ln ₃ TM ₉ (µ ₃ -OH) ₉ (SbW ₉ O ₃₃) ₂ (PW ₉ O ₃₄) ₃ (CH ₃ COO) ₃] ³⁰⁻	<i>Β</i> -α-SbW ₉ O ₃₃ <i>Β</i> -α-PW ₉ O ₃₄	9 Ni ²⁺	3 Dy ³⁺ , Er ³⁺	13
[Sb ₇ W ₃₆ O ₁₃₃ Ln ₃ TM ₂ (OAc)(H ₂ O) ₈] ¹⁷⁻	B-α-SbW ₉ O ₃₃	2 Ni ²⁺ , 2 Zn ²⁺	3 Ce ³⁺	14
[Sb ₇ W ₃₆ O ₁₃₃ Ln ₃ TM ₂ (OAc)(H ₂ O) ₈] ¹⁷⁻	<i>B</i> -α-SbW ₉ O ₃₃	2 Co ²⁺	3 La ³⁺ , Pr ³⁺ , Nd ³⁺ , Sm ³⁺ , Eu ³⁺ . Gd ³⁺	14
[Ln(H ₂ O) ₈][Ln(H ₂ O) ₆] [TM ₄ (H ₂ O) ₁₀ (<i>B</i> -β-SbW ₉ O ₃₃) ₂]·	B-β-SbW ₉ O ₃₃	4 Fe ³⁺	2 Ce ³⁺	15
[TM(H ₂ O)Ln ₃ (H ₂ O)₅(W ₃ O ₁₁)(SbW ₉ O ₃₃) ₃] ²⁰⁻	$B-\alpha$ -SbW ₉ O ₃₃	1 Co ²⁺ , 1 Ni ²⁺	3 Tb ³⁺ , Dy ³⁺ , Ho ³⁺ , Er ³⁺ , Y ³⁺	this work

Table S2. Full sum formulas of heterometallic **KTMLnSbW**₉ compounds and the corresponding non-lacunary 4f precursors **NaLnSbW**₉ (TM = Co^{II}, Ni^{II}; Ln = Tb^{III}, Dy^{III}, Ho^{III}, Er^{III}, Y^{III})

Applied non-lacunary 4f-precursor

Transition metal source: CoCl₂•6H₂O

Transition metal source: NiCl₂•6H₂O

Na ₂₁ [(Tb(H ₂ O)(OH) ₂ (CH ₃ COO)) ₃ (WO ₄)(SbW ₉ O ₃	K ₅ Na ₁₂ H ₃ [Co(H ₂ O)Tb ₃ (H ₂ O) ₅ (W ₃ O ₁₁)(SbW ₉ O ₃₃) ₃] •	K ₅ Na ₁₂ H ₃ [Ni(H ₂ O)Tb ₃ (H ₂ O) ₅ (W ₃ O ₁₁)(SbW ₉ O ₃
3) ₃] • 62 H ₂ O	63 H ₂ O	3) ₃] • 94 H ₂ O
Na ₂₁ [(Dy(H ₂ O)(OH) ₂ (CH ₃ COO)) ₃ (WO ₄)(SbW ₉ O ₃	K5Na12H3[Co(H2O)Dy3(H2O)5(W3O11)(SbW9O33)3] •	K5Na12H3[Ni(H2O)Dy3(H2O)5(W3O11)(SbW9O3
₃) ₃] • 116 H ₂ O	57 H2O	3)3] • 110 H2O
Na ₂₁ [(Ho(H ₂ O)(OH) ₂ (CH ₃ COO)) ₃ (WO ₄)(SbW ₉ O ₃	K5Na12H3[Co(H2O)H03(H2O)5(W3O11)(SbW9O33)3] •	K5Na12H3[Ni(H2O)H03(H2O)5(W3O11)(SbW9O3
₃) ₃] • 72 H ₂ O	55 H2O	3)3] • 81 H2O
Na ₂₁ [(Er(H ₂ O)(OH) ₂ (CH ₃ COO)) ₃ (WO ₄)(SbW ₉ O ₃₃) ₃] • 87 H ₂ O	K₅Na₁₂H₃[Co(H₂O)Er₃(H₂O)₅(W₃O₁1)(SbW9 O₃₃)₃] • 64 H₂O	K₅Na₁₂H₃[Ni(H₂O)Er₃(H₂O)₅(W₃O₁1)(S bW₃O₃₃)₃] • 63 H₂O
Na16(NH4)[{Y(α- SbW9O31(OH)2)(CH3COO)(H2O)}3(WO4)]3 48 H2O	K5Na12H3[Co(H2O)Y3(H2O)5(W3O11)(SbW9O33)3] • 46 H2O	

Thermogravimetric Analysis

TableS3. TGA data for compounds **NaLnSbW**₉ • nH₂O (**Fig. S4 – S7**), **KNiLnSbW**₉ • nH₂O (**Fig. S8 – S11**) and **KCoLnSbW**₉ • nH₂O (**Fig. S12 – S16**). The discrepancy in the number of weight-loss steps may be observed due to the complex porous structure of POTs. In general, the number of H₂O molecules lost in the region 45-700°C is almost identical with about 50 H₂O molecules.

Compound	Step	т, °С	mass-loss, %	number of molecules corresponding to mass-loss
	I	20-40	0.73	3 H ₂ O
[(Tb(H₂O)(OH)₂(CH₃COO))₃(WO₄)(SbW9O₃3)₃] ²¹⁻ ●	П	40-260	10.96	56 H ₂ O
62 H₂O	111	260-350	2.57	12 H ₂ O
	IV	350-700	2.47	3 CH ₃ COO⁻
	I	20-40	3.59	17 H ₂ O
[(Dy(H ₂ O)(OH) ₂ (CH ₃ COO)) ₃ (WO ₄)(SbW ₉ O ₃₃) ₃] ²¹⁻ •	П	40-300	12.39	65 H ₂ O
116 H ₂ O	III	300-450	8.63	43 H ₂ O
	IV	450-700	2.13	3 CH ₃ COO⁻
	I	25-40	3.31	15.5 H ₂ O
[(Ho(H ₂ O)(OH) ₂ (CH ₃ COO)) ₃ (WO ₄)(SbW ₉ O ₃₃) ₃] ²¹⁻ •	П	40-250	8.27	41 H ₂ O
72 H₂O	111	250-500	5.02	24.5 H ₂ O
	IV	500-700	2.67	3 CH ₃ COO ⁻
	I	25-70	3.76	17.5 H ₂ O
[(Er(H₂O)(OH)₂(CH₃COO))₃(WO₄)(SbW ₉ O ₃₃)₃] ²¹⁻ ●	П	70-340	8.88	44.5 H ₂ O
87 H ₂ O	III	240-440	5.81	34 H ₂ O
	IV	440-700	1.89	3 CH ₃ COO⁻
	I	25-44	5.88	29.6 H ₂ O
	П	44-185	5.16	25.8 H ₂ O
[Ni(H₂O)Tb₃(H₂O)₅(W₃O₁1)(SbW∍O₃3)₃] ²⁰⁻ ● 94 H₂O	III	185-300	2.10	10.2 H ₂ O
	IV	300-420	3.79	18.7 H ₂ O
	V	420-700	3.14	15.3 H ₂ O
[Ni(H₂O)Dy₃(H₂O)₅(W₃O₁1)(SbW₃O₃3)₃] ²⁰⁻ ● 110	1	20-45	6.18	31 H ₂ O

H ₂ O	П	45-200	6.76	34 H ₂ O
	III	200-430	7.59	39 H ₂ O
	IV	430-700	2.53	12 H ₂ O
	I	25-40	4.82	24 H ₂ O
[Ni(H₂O)Ho₃(H₂O)₅(W₃O₁1)(SbW₃O₃3)₃] ²⁰⁻ ● 81	П	40-300	6.98	35 H ₂ O
H ₂ O	111	300-475	2.64	13 H ₂ O
	IV	475-700	2.98	15 H ₂ O
	I	20-40	2.75	13 H ₂ O
	П	40-300	6.63	34 H ₂ O
	III	300-480	1.97	9 H ₂ O
	IV	480-700	2.60	13 H ₂ O
	I	20-45	1.62	7 H ₂ O
[Co(H₂O)Tb₃(H₂O)₅(W₃O₁1)(SbW₃O₃3)₃] ²⁰⁻ ● 63	П	45-195	5.12	26 H ₂ O
H₂O	III	195-405	5.57	28 H ₂ O
	IV	405-700	1.58	8 H ₂ O
	I	20-45	2.30	11 H ₂ O
[Co(H₂O)Dy₃(H₂O)₅(W₃O₁₁)(SbW₃O₃₃)₃] ²⁰⁻ ● 57	П	45-210	5.42	27 H ₂ O
H ₂ O	111	210-445	3.68	18 H ₂ O
	IV	445-700	1.61	7 H ₂ O
	I	20-45	2.36	11.5 H ₂ O
[Co(H₂O)Ho₃(H₂O)₅(W₃O₁1)(SbW9O₃3)₃] ²⁰⁻ ● 55	П	45-250	5.24	26 H ₂ O
H₂O	111	250-400	2.83	14 H ₂ O
	IV	400-700	1.87	9.5 H ₂ O
	I	20-45	2.75	13.5 H ₂ O
[Co(H_O)Er_(H_O)_(W_O,)(Sb)W_O,)_1 ²⁰ • 64 H_O	П	45-320	6.63	34 H ₂ O
	111	320-480	1.97	9.5 H ₂ O
	IV	480-700	2.60	13 H ₂ O
[Co(H2O)Y2(H2O)2(W2O11)(ShW2O12)2] ²⁰⁻ • 46 H2O	I	20-50	0.49	2 H ₂ O
	II	50-700	10.07	50 H ₂ O

Figure S4. Thermogravimetric curve of NaTbSbW₉ • 71 H₂O.

Figure S5. Thermogravimetric curve of $NaDySbW_9 \cdot 125 H_2O$.

Figure S6. Thermogravimetric curve of NaHoSbW₉ • 81 H₂O.

Figure S7. Thermogravimetric curve of NaErSbW₉ • 96 H₂O.

Figure S8. Thermogravimetric curve of KNiTbSbW₉ • 100 H₂O.

Figure S9. Thermogravimetric curve of KNiDySbW₉ • 116 H₂O.

Figure S10. Thermogravimetric curve of KNiHoSbW₉ • 87 H₂O.

Figure S11. Thermogravimetric curve of $KNiErSbW_9 \cdot 69 H_2O$.

Figure S12. Thermogravimetric curve of KCoTbSbW₉ • 69 H₂O.

Figure S13. Thermogravimetric curve of KCoDySbW₉ • 63 H₂O.

Figure S14. Thermogravimetric curve of KCoHoSbW₉ • 61 H₂O.

Figure S15. Thermogravimetric curve of $KCoErSbW_9 \cdot 70 H_2O$.

Figure S16. Thermogravimetric curve of KCoYSbW₉ • 52 H₂O.

Single-Crystal X-ray Diffraction (SXRD)

Table	S4.	Experimental	parameter	and	CCDC-Codes.	The	compounds	were	measured	on a	Bruker	· X8
(NaLn	SbW	9) or on a Brul	ker D8 (KTI	MLnS	5bW 9) device, re	espec	tively. (TM =	Co ^{II} , 1	vi"; Ln = T	b ^{III} , Dy ^I	", Ho ^Ⅲ ,	ErⅢ,
Y''').												

Sample	Source	Temp.	Detector Distance	Time/ Frame	#Frames	Frame width	CCDC
		[K]	[mm]	[S]		[°]	
NaTbSbW ₉	Мо	200	60	25	873	2	1978900
NaDySbW ₉	Мо	200	40	25	574	2	1978889
NaHoSbW ₉	Мо	200	40	50	574	2	1978897
NaErSbW ₉	Мо	200	60	65	862	2	1978896
KNiTbSbW ₉	Мо	100	40	35	924	0.5	1978895
KNiDySbW ₉	Мо	100	35	20	2244	0.5	1978894
KNiErSbW ₉	Мо	100	37	60	1194	0.5	1978899
KCoTbSbW ₉	Мо	100	50	96	2695	1	1978898

KCoDySbW₃	Cu	100	40	15	3963	0.5	1978890
KCoHoSbW₃	Мо	100	50	10	896	0.5	1978892
KCoErSbW ₉	Мо	100	40	20	924	0.5	1978891
KCoYSbW ₉	Мо	100	37	4	3116	0.3	1978893

Table S5. Sample and crystal data of $NaTbSbW_{9}$

Chemical formula	$C_6H_9Na_{21}O_{147}Sb_3Tb_3W_{28}$	Crystal system	trigonal			
Formula weight [g/mol]	8897.82	Space group		R3m		
Temperature [K]	200.0	Z		3		
Measurement method	\f and \w scans	Volume [Å ³]	11904.8(13)			
Radiation (Wavelength [Å])	ΜοΚα (λ = 0.71073)	Unit cell dimensions [Å] and [°]	30.9094(14)	90.0		
Crystal size / [mm ³]	0.15 × 0.15 × 0.075		30.9094(14)	90.0		
Crystal habit	clear colorless block		14.3883(9)	120.0		
Density (calculated) / [g/cm³]	3.725	Absorption coefficient / [mm ⁻¹]	2	2.179		
Abs. correction Tmin	0.2722	Abs. correction Tmax	0.7461			
Abs. correction type	multi-scan	F(000) [e ⁻]	1	11599		

Table S6. Data collection and structure refinement of NaTbSbW9

Index ranges	-44 ≤ h ≤ 44, -44 ≤ k ≤ 44, -20 ≤ l ≤ 20	Theta range for data collection [°]	3.214 to 61.112		
Reflections number	124243	Data / restraints / parameters	8515/37/345		
Refinement method	Least squares	Final R	all data	R ₁ = 0.0699, wR ₂ = 0.1019	
Function minimized	$\Sigma w(F_o^2 - F_c^2)^2$	indices	l>2σ(l)	R ₁ = 0.0425, wR ₂ = 0.0880	
Goodness-of-fit on F ²	1.074	Weighting	w=1/[$\sigma^2(F_o^2)$ +(0.0546P) ² +622.7385P]		
Largest diff. peak and hole [e Å ⁻³]	2.17/-2.47	scheme	where $P = (F_o^2 + 2F_c^2)/3$		

Table S7. Sample and crystal data of NaDySbW₉

Chemical formula	$C_6H_9Dy_3Na_{21}O_{127}Sb_3W_{28}$	Crystal system	trigonal	
Formula weight [g/mol]	8595.64	Space group	R3m	

Temperature [K]	200.01	Z	3		
Measurement method	\f and \w scans	Volume [Å ³]	119	45.8(19)	
Radiation (Wavelength [Å])	ΜοΚα (λ = 0.71073)	Unit cell dimensions [Å] and [°]	30.909(2)	90.0	
Crystal size / [mm ³]	0.2 × 0.125 × 0.03		30.909(2) 90.0		
Crystal habit	clear colorless block		14.4385(11) 120.0		
Density (calculated) / [g/cm³]	3.317	Absorption coefficient / [mm ⁻¹]	2	2.162	
Abs. correction Tmin	0.096	Abs. correction Tmax	0.557		
Abs. correction type	multi-scan	F(000) [e ⁻]	10191		

Table S8. Data collection and structure refinement of NaDySbW₉

Index ranges	-42 ≤ h ≤ 44, -44 ≤ k ≤ 44, -20 ≤ l ≤ 20	Theta range for data collection [°]	3.204 to 61.052	
Reflections number	100051	Data / restraints / parameters	8526/1/242	
Refinement method	Least squares	Final R	all data	R ₁ = 0.0487, wR ₂ = 0.0840
Function minimized	$\Sigma w(F_o^2 - F_c^2)^2$	indices	l>2σ(l)	R ₁ = 0.0347, wR ₂ = 0.0790
Goodness-of-fit on F ²	1.046	Weighting	w=1/[$\sigma^2(F_o^2)$ +(0.0385P) ² +179.3861F	
Largest diff. peak and hole [e Å ⁻³]	1.52/-2.09	scheme	where $P=(F_o^2+2F_c^2)/3$	

Table S9. Sample and crystal data of $NaHoSbW_{9}$

Chemical formula	$C_6Ho_3Na_{21}O_{164}Sb_3W_{28}$	Crystal system	trigonal	
Formula weight [g/mol]	9195.66	Space group	R3m	
Temperature [K]	200	Z		3
Measurement method	\f and \w scans	Volume [Å ³]	119	908.9(19)
Radiation (Wavelength [Å])	ΜοΚα (λ = 0.71073)	Unit cell dimensions [Å] and [°]	30.882(2)	90.0
Crystal size / [mm ³]	0.1 × 0. 1 × 0.05		30.882(2)	90.0
Crystal habit	clear pink block		14.4192(11)	120.0
Density (calculated) / [g/cm ³]	3.371	Absorption coefficient /	22.261	

		[mm ⁻¹]	
Abs. correction Tmin	0.214	Abs. correction Tmax	0.402
Abs. correction type	multi-scan	F(000) [e ⁻]	10344.0

Table S10. Data collection and structure refinement of NaHoSbW9

Index ranges	-37 ≤ h ≤ 37, -37 ≤ k ≤ 37, -17 ≤ l ≤ 17	Theta range for data collection [°]	4.154 to 50.688	
Reflections number	81787	Data / restraints / parameters	5134/7/258	
Refinement method	Least squares	Final R	all data $R_1 = 0.0248, wR_2 = 0.0557$	
Function minimized	$\Sigma w(F_o^2 - F_c^2)^2$	indices	l>2σ(l)	R ₁ = 0.0223, wR ₂ = 0.0543
Goodness-of-fit on F ²	1.051	Weighting	w=1/[$\sigma^2(F_o^2)$ +(0.0240P) ² +321.9862F	
Largest diff. peak and hole [e Å ⁻³]	2.04/-1.12	scheme	where $P=(F_o^2+2F_c^2)/3$	

Table S11. Sample and crystal data of NaErSbW9

Chemical formula	$C_6 Er_3 Na_{21} O_{155} Sb_3 W_{28}$	Crystal system	1	trigonal
Formula weight [g/mol]	9041.77	Space group		R3m
Temperature [K]	200	Z		3
Measurement method	\f and \w scans	Volume [Å ³]	11	809.9(14)
Radiation (Wavelength [Å])	ΜοΚα (λ = 0.71073)	Unit cell dimensions [Å] and [°]	30.8680(14)	90.0
Crystal size / [mm ³]	0.15 × 0.1 × 0.03		30.8680(14)	90.0
Crystal habit	clear pink block		14.3120(10)	120.0
Density (calculated) / [g/cm³]	3.422	Absorption coefficient / [mm ⁻¹]	22.254	
Abs. correction Tmin	0.133	Abs. correction Tmax	0.551	
Abs. correction type	multi-scan	F(000) [e ⁻]		10425

Table S12. Data collection and structure refinement of $NaErSbW_{9}$

	Index ranges	-39 ≤ h ≤ 39, -39	Theta range	4.17 to 54.204
--	--------------	-------------------	-------------	----------------

	≤ k ≤ 39, -18 ≤ l ≤ 18	for data collection [°]		
Reflections number	92287	Data / restraints / parameters	61	27/356/243
Refinement method	Least squares	Final R	all data	R ₁ = 0.0602, wR ₂ = 0.1310
Function minimized	$\Sigma w(F_o^2 - F_c^2)^2$	indices	l>2σ(l)	R ₁ = 0.0481, wR ₂ = 0.1222
Goodness-of-fit on F ²	1.025	Weighting	w=1/[$\sigma^2(F_o^2)$ +(0.0735P) ² +839.4275P]
Largest diff. peak and hole [e Å ⁻³]	2.57/-1.65	scheme	where $P = (F_0^2 + 2F_c^2)/3$	

Table S13. Sample and crystal data of KNiTbSbW9

Chemical formula	$K_2Na_3NiO_{121}Sb_3Tb_3W_{30}$	Crystal system		triclinic
Formula weight [g/mol]	8499.39	Space group		P-1
Temperature [K]	102.06	Z		2
Measurement method	\f and \w scans	Volume [Å ³]	7	'178.6(4)
Radiation (Wavelength [Å])	ΜοΚα (λ = 0.71073)	Unit cell dimensions [Å] and [°]	18.1872(6)	80.9842(11)
Crystal size / [mm ³]	$0.08 \times 0.06 \times 0.04$		18.3542(6)	81.2334(10)
Crystal habit	clear green block		24.3503(7)	63.9208(11)
Density (calculated) / [g/cm³]	3.932	Absorption coefficient / [mm ⁻¹]	26.217	
Abs. correction Tmin	0.228	Abs. correction Tmax		0.42
Abs. correction type	multi-scan	F(000) [e ⁻]		7270

Table S14. Data collection and structure refinement of KNiTbSbW9

Index ranges	-25 ≤ h ≤ 25, -25 ≤ k ≤ 25, -34 ≤ l ≤ 33	Theta range for data collection [°]	4.536 to 60.114		
Reflections number	106772	Data / restraints / parameters	41889/12/1468		
Refinement method	Least squares	Final R	all data	R ₁ = 0.1096, wR ₂ = 0.2014	
Function minimized	$\Sigma w(F_o^2 - F_c^2)^2$	indices	l>2σ(l)	R ₁ = 0.0740, wR ₂ = 0.1725	
Goodness-of-fit on F ²	1.047	Weighting scheme	w=1/[o ² (F _o ²)+(0.0604P) ² +301.5323P]		

_		
Largest diff. peak and hole [e Å ⁻³]	6.44/-5.56	where $P=(F_o^2+2F_c^2)/3$

Chemical formula	$Dy_3K_4Na_6NiO_{128}Sb_3W_{30}$	Crystal system	t	riclinic
Formula weight [g/mol]	8769.3	Space group		P-1
Temperature [K]	100.5	Z		2
Measurement method	\f and \w scans	Volume [Å ³]	79	07.3(15)
Radiation (Wavelength [Å])	ΜοΚα (λ = 0.71073)	Unit cell dimensions [Å] and [°]	18.2082(19)	94.753(4)
Crystal size / [mm ³]	0.17 × 0.14 × 0.07		20.315(2)	99.297(3)
Crystal habit	clear green block		24.353(3)	115.475(3)
Density (calculated) / [g/cm³]	3.683	Absorption coefficient / [mm ⁻¹]	23.945	
Abs. correction Tmin	0.106	Abs. correction Tmax	0.285	
Abs. correction type	multi-scan	F(000) [e ⁻]		7530

Table S15. Sample and crystal data of KNiDySbW9

Table S16. Data collection and structure refinement of KNiDySbW₉

Index ranges	-21 ≤ h ≤ 21, -24 ≤ k ≤ 24, -29 ≤ l ≤ 29	Theta range for data collection [°]	4.32 to 51.064	
Reflections number	177285	Data / restraints / parameters	29152/138/1576	
Refinement method	Least squares	Final R	all data $R_1 = 0.0942, wR_2 = 0.2262$	
Function minimized	$\Sigma w(F_o^2 - F_c^2)^2$	indices	I>2σ(I) R ₁ = 0.0850, wR ₂ = 0.2173	
Goodness-of-fit on F ²	1.042	Weighting	w=1/[σ ² (F _o ²)+(0.0930P) ² +1011.8275P	
Largest diff. peak and hole [e Å ⁻³]	8.44/-3.79	scheme	where $P = (F_0^2 + 2F_c^2)/3$	

Table S17. Sample and crystal data of KNiErSbW₉

Chemical formula	$Er_3K_2Na_5NiO_{128}Sb_3W_{30}$	Crystal system	triclinic
Formula weight [g/mol]	8675.61	Space group	P-1
Temperature [K]	99.95	Z	2
Measurement	\f and \w scans	Volume [Å ³]	8022.8(7)

method				
Radiation (Wavelength [Å])	ΜοΚα (λ = 0.71073)	Unit cell dimensions [Å] and [°]	18.2734(9)	96.0424(19)
Crystal size / [mm ³]	$0.09 \times 0.09 \times 0.08$		20.6197(11)	99.118(2)
Crystal habit	clear green block		24.4271(12)	115.8029(17)
Density (calculated) / [g/cm³]	3.591	Absorption coefficient / [mm ⁻¹]	23.716	
Abs. correction Tmin	0.224	Abs. correction Tmax	0.253	
Abs. correction type	multi-scan	F(000) [e ⁻]	7438	

Table S18. Data collection and structure refinement of KNiErSbW₉

Index ranges	-22 ≤ h ≤ 21, -24 ≤ k ≤ 24, -27 ≤ l ≤ 29	Theta range for data collection [°]	4.468 to 50.7	
Reflections number	128306	Data / restraints / parameters	29180/60/1549	
Refinement method	Least squares	Final R	all data	R ₁ = 0.1073, wR ₂ = 0.2705
Function minimized	$\Sigma w(F_o^2 - F_c^2)^2$	indices	l>2σ(l)	R ₁ = 0.0913, wR ₂ = 0.2478
Goodness-of-fit on F ²	1.056	Weighting	w=1/[$\sigma^2(F_o^2)$ +(0.1443P) ² +416.5409	
Largest diff. peak and hole [e Å ⁻³]	6.35/-2.35	scheme	where	$P=(F_o^2+2F_c^2)/3$

Table S19. Sample and crystal data of KCoTbSbW₉

Chemical formula	$CoK_3NaO_{123}Sb_3Tb_3W_{30}$	Crystal system		triclinic
Formula weight [g/mol]	8520.81	Space group		P-1
Temperature [K]	100	Z		2
Measurement method	\f and \w scans	Volume [Å ³]	7	7205.1(3)
Radiation (Wavelength [Å])	ΜοΚα (λ = 0.71073)	Unit cell dimensions [Å] and [°]	18.1998(4)	80.6281(7)
Crystal size / [mm ³]	0.11 × 0.1 × 0.05		18.4371(5)	81.3537(7)
Crystal habit	clear pink block		24.3838(6)	63.6381(7)
Density (calculated) / [g/cm³]	3.928	Absorption coefficient / [mm ⁻¹]	26.13	
Abs. correction Tmin	0.161	Abs. correction Tmax		0.355

Abs. correction	multi acan	E(000) [a-1	7300
type	multi-scan	F(000) [e]	7290

Index ranges	-21 ≤ h ≤ 21, -22 ≤ k ≤ 22, -29 ≤ l ≤ 28	Theta range for data collection [°]	4.398 to 50.75	
Reflections number	87744	Data / restraints / parameters	26318/1181/1486	
Refinement method	Least squares	Final R	all data	R ₁ = 0.1334, wR ₂ = 0.2575
Function minimized	$\Sigma w(F_o^2 - F_c^2)^2$	indices	l>2σ(l)	R ₁ = 0.0866, wR ₂ = 0.2212
Goodness-of-fit on F ²	1.02	Weighting	w=1/[$\sigma^{2}(F_{o}^{2})$ +	(0.1321P) ² +23.5531P]
Largest diff. peak and hole [e Å ⁻³]	2.58/-2.17	scheme	where $P=(F_o^2+2F_c^2)/3$	

Table S20. Data collection and structure refinement of KCoTbSbW₉

Table S21. Sample and crystal data of KCoDySbW₉

Chemical formula	$CoDy_3K_3Na_8O_{121}Sb_3W_{30}$	Crystal system	t	riclinic
Formula weight [g/mol]	8664.4	Space group		P-1
Temperature [K]	100	Z		2
Measurement method	\f and \w scans	Volume [Å ³]	77	52.4(14)
Radiation (Wavelength [Å])	CuKα (λ = 1.54178)	Unit cell dimensions [Å] and [°]	18.2885(16)	93.201(6)
Crystal size / [mm ³]	0.12 × 0.12 × 0.04		19.955(2) 99.171(4)	
Crystal habit	clear pink block		24.429(2)	117.082(4)
Density (calculated) / [g/cm³]	3.712	Absorption coefficient / [mm ⁻¹]	54.05	
Abs. correction Tmin	0.0122	Abs. correction Tmax	0.1099	
Abs. correction type	multi-scan	F(000) [e ⁻]		7422

Table S22. Data collection and structure refinement of KCoDySbW₉

Index ranges	-21 ≤ h ≤ 21, -23 ≤ k ≤ 23, -28 ≤ l ≤ 21	Theta range for data collection [°]	5.028 to 127.374		
Reflections number	89327	Data / restraints / parameters	25114/6/1522		
Refinement	Least squares	Final R	all data	$R_1 = 0.0679, wR_2 =$	

method		indices		0.1795
Function minimized	$\Sigma w(F_o^2 - F_c^2)^2$		l>2σ(l)	R ₁ = 0.0628, wR ₂ = 0.1739
Goodness-of-fit on F ²	1.096	Weighting	$w=1/[\sigma^2(F_o^2)+(0.0901P)^2+66.3364P]$	
Largest diff. peak and hole [e Å ⁻³]	4.93/-1.48	scheme	where $P=(F_o^2+2F_c^2)/3$	

Table S23. Sample and crystal data of KCoHoSbW9

Chemical formula	CoHo ₃ K ₃ Na ₄ O ₁₂₀ Sb ₃ W ₃₀	Crystal system	1	triclinic
Formula weight [g/mol]	8555.97	Space group		P-1
Temperature [K]	100	Z		2
Measurement method	\f and \w scans	Volume [Å ³]	76	648.6(10)
Radiation (Wavelength [Å])	ΜοΚα (λ = 0.71073)	Unit cell dimensions [Å] and [°]	18.2065(13)	79.311(2)
Crystal size / [mm ³]	0.22 × 0.18 × 0.1		19.7028(15)	81.003(2)
Crystal habit	clear pink block		24.4697(19)	62.841(2)
Density (calculated) / [g/cm³]	3.715	Absorption coefficient / [mm ⁻¹]	24.786	
Abs. correction Tmin	0.003	Abs. correction Tmax	0.0186	
Abs. correction type	multi-scan	F(000) [e ⁻]		7316

Table S24. Data collection and structure refinement of KCoHoSbW₉

Index ranges	-21 ≤ h ≤ 21, -21 ≤ k ≤ 23, -29 ≤ l ≤ 28	Theta range for data collection [°]	4.372 to 50.892	
Reflections number	58599	Data / restraints / parameters	27828/84/1468	
Refinement method	Least squares	Final R	all data	R ₁ = 0.0920, wR ₂ = 0.2213
Function minimized	$\Sigma w(F_o^2 - F_c^2)^2$	indices	l>2σ(l)	R ₁ = 0.0753, wR ₂ = 0.2073
Goodness-of-fit on F ²	1.041	Weighting	$w=1/[\sigma^2(F_o^2)+(0.1135P)^2+295]$	
Largest diff. peak and hole [e Å ⁻³]	7.17/-3.23	scheme	where $P=(F_o^2+2F_c^2)/3$	

Table S25. Sample and crystal data of KCoErSbW₉

Chemical formula	$CoEr_{3}K_{5}Na_{12}O_{110}Sb_{3}W_{30}$	Crystal system	t	riclinic
Formula weight [g/mol]	8672.84	Space group		P-1
Temperature [K]	101.77	Z		2
Measurement method	\f and \w scans	Volume [Å ³]	77	788.5(7)
Radiation (Wavelength [Å])	ΜοΚα (λ = 0.71073)	Unit cell dimensions [Å] and [°]	18.3211(9)	94.6511(17)
Crystal size / [mm ³]	0.12 × 0.08 × 0.06		19.9321(10) 99.2600(15)	
Crystal habit	clear pink block		24.6926(13)	117.2426(13)
Density (calculated) / [g/cm³]	3.698	Absorption coefficient / [mm ⁻¹]	24.503	
Abs. correction Tmin	0.018	Abs. correction Tmax	0.0504	
Abs. correction type	multi-scan	F(000) [e ⁻]		7422

Table S26. Data collection and structure refinement of KCoErSbW₉

Index ranges	-25 ≤ h ≤ 25, -28 ≤ k ≤ 28, -34 ≤ l ≤ 34	Theta range for data collection [°]	4.09 to 60.128		
Reflections number	116105	Data / restraints / parameters	45386/0/1738		
Refinement method	Least squares	Final R	all data	R ₁ = 0.0453, wR ₂ = 0.0971	
Function minimized	$\Sigma w(F_o^2 - F_c^2)^2$	indices	l>2σ(l)	R ₁ = 0.0390, wR ₂ = 0.0940	
Goodness-of-fit on F ²	1.054	Weighting	w=1/[$\sigma^2(F_o^2)$ +(0.0357P) ² +163.9879P]		
Largest diff. peak and hole [e Å ⁻³]	6.64/-5.01	scheme	where $P=(F_o^2+2F_c^2)/3$		

Table S27. Sample and crystal data of KCoYSbW₉

Chemical formula	$CoK_4Na_8O_{127}Sb_3W_{30}Y_3$	Crystal system	triclinic		
Formula weight [g/mol]	8579.23	Space group	P-1		
Temperature [K]	100	Z	2		
Measurement method	\f and \w scans	Volume [Å ³]	7982.1(14)		
Radiation (Wavelength [Å])	ΜοΚα (λ = 0.71073)	Unit cell dimensions [Å] and [°]	18.2516(18)	94.866(4)	
Crystal size / [mm ³]	0.12 × 0.12 × 0.05		20.402(2)	99.426(4)	

Crystal habit	clear pink block		24.473(2)	115.603(4)	
Density (calculated) / [g/cm³]	3.57	Absorption coefficient / [mm ⁻¹]	23.403		
Abs. correction Tmin	0.2675	Abs. correction Tmax	0.7461		
Abs. correction type	multi-scan	F(000) [e ⁻]		7395	

Table S28. Data collection and structure refinement of KCoYSbW9

Index ranges	-23 ≤ h ≤ 23, -26 ≤ k ≤ 26, -31 ≤ l ≤ 31	Theta range for data collection [°]	4.04 to 54.968		
Reflections number	225113	Data / restraints / parameters	36563/3393/1518		
Refinement method	Least squares	Final R	all data	R ₁ = 0.1229, wR ₂ = 0.2146	
Function minimized	$\Sigma w(F_o^2 - F_c^2)^2$	indices	l>2σ(l)	R ₁ = 0.0749, wR ₂ = 0.1848	
Goodness-of-fit on F ²	1.054	Weighting	w=1/[o ² (F _o ²)+(0.0990P) ² +247.5574P]		
Largest diff. peak and hole [e Å ⁻³]	7.18/-4.23	scheme	where $P=(F_o^2+2F_c^2)/3$		

Figure S17. Microscopic images of crystal of A) Krebs-type POM mixed phases Na₁₀[(TM(H₂O)₃)₂(WO₂)₂(SbW₉O₃₃)₂] unreacted (red circled crystal), B) 4f-precursor Na₂₁[(Ln(H₂O)(OH)₂(CH₃COO))₃(WO₄)(SbW₉O₃₃)₃] (black circled crystal) and **C)** the corresponding 3d-4f compound $K_5Na_{12}H_3[TM(H_2O)Ln_3(H_2O)_5(W_3O_{11})(SbW_9O_{33})_3]$ (TM = Co^{II}, Ni^{II}; Ln = Tb^{III}, Dy^{III}, Ho^{III}, Er^{III}, Y^{III}) (violet circled crystal) before changing the K⁺ content of the reaction mixture. Color legend: WO₆, fairy floss octahedra; Ln^{III}, black balls; TM^{II}, grey balls; Sb^{III}, dark green balls; K⁺, light blue balls; O, red balls; C, white balls, tetrahedrally coordinated WO₄ capping unit, pink ball.

Figure S18. Crystal structure of **NaLnSbW**₉ (Ln = Tb^{III}, Dy^{III}, Ho^{III}, Er^{III}). Color legend: WO₆, fairy floss octahedra; Ln^{III}, dark green balls; Sb^{III}, dark grey balls; O, red balls; C, white balls; tetrahedrally coordinated WO₄ capping unit, fairy floss (pink) ball.

Powder X-ray Diffraction (PXRD)

Figure S19. Comparison of the experimental and simulated PXRD patterns of NaTbSbW9 and KCoYSbW9.

Figure S20. Comparison of the experimental and simulated PXRD patterns of **KNiLnSbW**₉ (Ln = Tb^{III}, Dy^{III}, Ho^{III}, Er^{III}).

Figure S21. Comparison of the experimental and simulated PXRD patterns of **KCoLnSbW**₉ (Ln = Tb^{III}, Dy^{III}, Ho^{III}, Er^{III}).

UV/Vis Spectroscopy

Figure S22. UV/Vis-spectrum of the **NaLnSbW**₉ (Ln = Tb^{III}, Dy^{III}, Ho^{III}, Er^{III}) 4f-precursors showing typical $O \rightarrow W$ ligand-to-metal charge-transfer (274 nm).

Figure S23. UV/Vis-spectrum of **KTMLnSbW**₉ (TM = Ni^{II}, Co^{II}; Ln = Tb^{III}, Dy^{III}, Ho^{III}, Er^{III}) showing typical $O \rightarrow W$ ligand-to-metal charge-transfer (272 nm).

Magnetism

The extracted temperature and field dependence of relaxation times in **KCoDySbW**₉, **KNiDySbW**₉ and **KCoYSbW**₉ can be analyzed based on four relaxation mechanisms given by equation:

$$\tau_{T/H}^{-1}(T,H) = \frac{Q_1}{1+Q_2H^2} + \tau_0^{-1} * \exp\left(-\frac{U_{eff}}{kT}\right) + AH^4T + CT^n \quad (eq-S1)$$

Here, the first term represents Quantum Tunneling of Magnetization (QTM), the second term is Orbach, third is a Direct and the last term is the Raman process. H represents the applied magnetic field, and T is the temperature. In order to constrain the variable parameters and to avoid overparameterization, the temperature and field dependence of relaxation times was fitted simultaneously¹⁶ (**Fig. S27, S28**) (vector of data: τ^{-1} in s⁻¹, T in Kelvin and H in kOe).

Figure S24. Field dependence (A), B)) and temperature dependence (D), E)) of ac susceptibility (H_{ac}= 3.0 Oe) and Cole-Cole plots (C) and F)) for KCoDySbW₉ at indicated temperature and field. The solid lines represent the best fits according to the generalized Debye model for two relaxation processes. (eq. S4, S5).

Figure S25. Field dependence (A), B)) and temperature dependence (D), E)) of ac susceptibility (H_{ac}= 3.0 Oe) and Cole-Cole plots (C) and F)) for KCoYSbW₉ at indicated temperature and field. The solid lines represent the best fits according to the generalized Debye model for two relaxation processes. (eq. S4, S5).

Figure S26. Field dependence (A), B)) and temperature dependence (D), E)) of ac susceptibility (H_{ac} = 3.0 Oe) and Cole-Cole plots (C) and F)) for KNiDySbW₉ at indicated temperature and field. The solid lines represent the best fits according to the generalized Debye model for two relaxation processes. (eq. S4, S5).

DISPLAYED EQUATIONS

Mathematical expressions for *ac* susceptibility given by the generalized Debye model for one and two relaxation processes:

$$\chi'(\nu_{ac}) = \chi_{\infty} + \frac{(\chi_0 - \chi_{\infty}) \left[1 + (2\pi\nu_{ac}\tau)^{1-\alpha} \sin(\alpha\pi/2) \right]}{1 + 2(2\pi\nu_{ac}\tau)^{1-\alpha} \sin(\alpha\pi/2) + (2\pi\nu_{ac}\tau)^{2(1-\alpha)}}$$
(eq-S2)

$$\chi''(v_{ac}) = \frac{(\chi_0 - \chi_{\infty})(2\pi v_{ac}\tau)^{l-\alpha}\cos(\alpha\pi/2)}{1 + 2(2\pi v_{ac}\tau)^{l-\alpha}\sin(\alpha\pi/2) + (2\pi v_{ac}\tau)^{2(l-\alpha)}}$$
(eq-S3)

$$\chi'(\omega) = \chi_{S,tot} + \Delta \chi_1 \frac{1 + (\omega\tau_1)^{1-\alpha_1} \sin\left(\frac{\pi\alpha_1}{2}\right)}{1 + (\omega\tau_1)^{1-\alpha_1} \sin\left(\frac{\pi\alpha_1}{2}\right) + (\omega\tau_1)^{(2-2\alpha_1)}} + \Delta \chi_2 \frac{1 + (\omega\tau_2)^{1-\alpha_2} \sin\left(\frac{\pi\alpha_2}{2}\right)}{1 + (\omega\tau_2)^{1-\alpha_2} \sin\left(\frac{\pi\alpha_2}{2}\right) + (\omega\tau_2)^{(2-2\alpha_2)}}$$
(eq-S4)

$$\chi''(\omega) = \Delta \chi_1 \ \frac{1 + (\omega\tau_1)^{1-\alpha_1} \cos\left(\frac{\pi\alpha_1}{2}\right)}{1 + (\omega\tau_1)^{1-\alpha_1} \sin\left(\frac{\pi\alpha_1}{2}\right) + (\omega\tau_1)^{(2-2\alpha_1)}} + \Delta \chi_2 \frac{1 + (\omega\tau_2)^{1-\alpha_2} \cos\left(\frac{\pi\alpha_2}{2}\right)}{1 + (\omega\tau_2)^{1-\alpha_2} \sin\left(\frac{\pi\alpha_2}{2}\right) + (\omega\tau_2)^{(2-2\alpha_2)}}$$
(eq-S5)

Where $\omega = 2\pi\nu$, with ν being the frequency of the applied field (s⁻¹), $\tau_{1,2}$ the corresponding relaxation time (µs), $\alpha_{1,2}$ the distribution factor and χ the corresponding susceptibility.

Table S29. The variable parameters A, n, C, U_{eff} , τ_0^{-1} and Q_i obtained upon application of eq-S1 for simultaneous fit of relaxation times as function of temperature and field for KCoDySbW₉ (Fig. S27), KNiDySbW₉ (Fig. S28) and KCoYSbW₉ (Fig. 5) and the corresponding R-values. Fit A represents a fit of relaxation data considering an Orbach mechanism of relaxation, whereas the relaxation data fitted in Fit B are fitted under the assumption of a Raman relaxation mechanism. The relaxation data for KCoYSbW₉ was fitted assuming a direct mechanism. For all three compounds, Quantum Tunneling of Magnetization (QTM) was observed.

POM	Fit	Q ₁ (s ⁻¹)	Q ₂ (T ⁻²)	т ⁻¹ (S ⁻¹)	U _{eff} (K)	A (s ⁻¹ K ⁻¹ T ⁻⁴)	C (s ⁻¹ K ⁿ)	n	R
KCoDySbW₃	A	2.1(2) × 10 ²	1.9(4) × 10 ²	1.0(2) × 10 ³	9.0(6)	-	-	-	0.28
	В	2.1(3) × 10 ²	1.9(5) × 10 ²	-	-	-	3.2(3)	1.3(5)	0.31
KNiDySbW₃	A	2.1(9) × 10 ³	7.7(3) ×10 ²	1.5(2) × 10 ²	6.5(4)	-	-	-	0.33
	В	1.2(3) × 10 ³	4.2(1) × 10 ³	-	-	-	1.1(3)	2.4(2)	0.47
KCoYSbW ₉		1.8(4) × 10 ³	0.6(4) × 10 ²	-	-	4.0(9) ×10 ³	2.4(8) × 10 ²	2.3(2)	0.36

Figure S27. Field (A), B)) and temperature (C), D)) dependence of relaxation time fitted under assumption of an Orbach (Fit A) - and a Raman mechanism (Fit B) (Table S28) based on eq. S1) for KCoDySbW₉.

Figure S28. Field (A), B)) and temperature (C), D)) dependence of relaxation time fitted under assumption of an Orbach (Fit A) - and a Raman mechanism (Fit B) (Table S28) based on eq. S1) for KNiDySbW₉.

Figure S29. Magnetization curves measured between 0 and 5 T at different temperatures for KCoDySbW₉, KNiDySbW₉ and KCoYSbW₉.

References

1 M. Bösing, I. Loose, H. Pohlmann, B. Krebs. New Strategies for the Generation of Large Heteropolymetalate Clusters: The β -B-SbW₉ Fragment as a Multifunctional Unit. *Chem.* – *Eur. J.*, **1997**, *3*, 1232–1237.

2 M. Ibrahim, S. Sankar Mal, B. S. Bassil, A. Banerjee, U. Kortz. Yttrium (III)-Containing Tungstoantimonate(III) Stabilized by Tetrahedral WO₄²⁻ Capping Unit, $[{Y(\alpha-SbW_9O_{31}(OH)_2)(CH_3COO)(H_2O)}_3(WO_4)]^{17-}$ Inorg. Chem. **2011**, 50, 956–960.

3 Bruker SAINT v7.68A Copyright © 2005-2016 Bruker AXS.

4 G.M. Sheldrick SADABS University of Göttingen, Germany (1996).

5 G. M Sheldrick. (1996). SHELXS. University of Göttingen, Germany.

6 G. M Sheldrick. (1996). SHELXL. University of Göttingen, Germany.

7 O. V. Dolomanov, L. J. Bourhis, R. J., Gildea, J. A. K. Howard, H. Puschmann, OLEX2, J. Appl. Cryst., 2009, 42, 339-341.

8 C. B. Huebschle, G. M. Sheldrick, B. Dittrich, ShelXle: a Qt graphical user interface for SHELXL, *J. Appl. Cryst.*, **2011**, *44*, 1281-1284.

9 P. Pascal. Recherches Magnetochimiques. Ann. Chim. Phys. 1910, 19, 5–70.

10 O. Kahn. Molecular Magnetism; 1993.

11 D. Gatteschi, R. Sessoli Villain in Molecular Nanomagnets, Vol. 1. Oxford Univ. Press, Oxford, 2006; 376.

12 Y. Chen, L. Sun, S. Chang, L. Chen, J. Zhao. Synergistic Effect between Different Coordination Geometries of Lanthanides and Various Coordination Modes of 2-Picolinic Acid Ligands Tuning Three Types of Rare 3d–4f Heterometallic Tungstoantimonates. *Inorg. Chem.* **2018**, *57*, 15079–15092.

13 J. Cai, X.-Y. Zheng, J. Xie, Z.-H. Yan, X.-J. Kong, Y.-P. Ren, L.-S. Long, L.-S. Zheng. Anion-Dependent Assembly of Heterometallic 3d–4f Clusters Based on a Lacunary Polyoxometalate. *Inorg. Chem.* **2017**, *56*, 8439–8445.

14 B. Artetxe, S. Reinoso, L. S. Felices, L. Lezama, J. M. Gutierrez-Zorilla, C. Vincent, F. Haso, T. Liu. New Perspectives for Old Clusters: Anderson–Evans Anions as Building Blocks of Large Polyoxometalate Frameworks in a Series of Heterometallic 3 d–4 f Species. *Chem.- Eur. J.* **2016**, *22*, 4616–4625.

15 X. Ma, K. Song, J. Cao, P. Gong, H. Li, L. Chen, J. Zhao. Synthesis, structure and electrochemical properties of a Fe^{III}–Ce^{III} heterometallic sandwich-type tungstoantimonate with novel 2-D infinite structure $[Ce(H_2O)_8][Ce(H_2O)_6][Fe_4(H_2O)_{10}(B-\beta-SbW_9O_{33})_2]\cdot 16 H_2O.$ Inorg. Chem. Commun. **2015**, 60, 65-70.

16 X. Feng, J. L. Liu, K. S. Pedersen, J. Nehrkorn, A. Schnegg, K. Holldack, J. Bendix, M. Sigrist, H. Mutka, D. Samohvalov. Multifaceted Magnetization Dynamics in the Mononuclear Complex [Re^{IV}Cl₄(CN)₂]²⁻. *Chem. Commun.* **2016**, *52*, 12905–12908.