## **Supplementary Materials**

## Achieving Fast and Stable Lithium/Potassium Storage by In-situ Decorating FeSe<sub>2</sub> Nanodots into Three-dimensional Hierarchical Porous Carbon Networks

Wang Zhao,<sup>†</sup> Qiwei Tan,<sup>†</sup> Kun Han, Donglin He, Ping Li,\* Mingli Qin, and Xuanhui Qu

Beijing Advanced Innovation Center for Materials Genome Engineering, Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China.

<sup>\*</sup> Corresponding author: Ping Li, E-mail address: ustbliping@126.com.

<sup>&</sup>lt;sup>†</sup>W.Z. and Q.T. contributed equally.



**Figure S1.** (a) Low magnification and (b) high magnification SEM images, (c) TEM image and (d) XRD pattern of the Fe<sub>3</sub>C/PCN precursor.



**Figure S2.** (a-d) The corresponding height distribution curves of the four selected nanosheets from Figure 2 (f) by AFM characterizations.



**Figure S3.** XRD profiles of the freshly prepared FeSe<sub>2</sub>@PCN sample and the same sample after 9 months storage in air atmosphere.



**Figure S4.** (a) Low magnification and (b) high magnification SEM images, (c) the corresponding EDS result and (d) XRD pattern of the bm-FeSe<sub>2</sub> synthesized *via* ball-milling.



**Figure S5.** A comparison of lithium storage properties of as-reported selenide anode materials *vs.* the FeSe<sub>2</sub>/PCN in this work.



**Figure S6.** Cycling performance of the bm-FeSe<sub>2</sub> electrode tested at (a)  $0.2 \text{ A g}^{-1}$  and (b) 10 A g<sup>-1</sup> as an anode for LIBs.



Figure S7. Electrochemical impedance spectroscopy (EIS) of (a) the  $FeSe_2/PCN$  and (b) the bm-FeSe<sub>2</sub> electrodes for lithium-ion batteries (LIBs) before and after 5000 cycles at 10 A g<sup>-1</sup>.



**Figure S8.** Cycling performance of the bm-FeSe<sub>2</sub> electrode tested at (a)  $0.1 \text{ A g}^{-1}$  and (b) 2 A g<sup>-1</sup> as an anode for KIBs.



**Figure S9.** A comparison of potassium storage properties of as-reported anode materials *vs.* the FeSe<sub>2</sub>/PCN in this work.



**Figure S10.** Electrochemical impedance spectroscopy (EIS) of (a) the  $FeSe_2/PCN$  and (b) the bm-FeSe<sub>2</sub> electrodes for potassium-ion batteries (KIBs) before and after 500 cycles at 2 A g<sup>-1</sup>.



Figure S11 The XRD pattern of the FeSe2/PCN electrode after 500 cycles and charged to 3.0 V in KIBs.



Figure S12. (a) XRD patterns and (b) TGA plots of the FeSe<sub>2</sub>/PCN-H and FeSe<sub>2</sub>/PCN-L.



Figure S13. FESEM images of (a-b) the FeSe<sub>2</sub>/PCN-H and (c-d) and the FeSe<sub>2</sub>/PCN-L.



**Figure S14.** A comparison of cycling performance of the FeSe<sub>2</sub>/PCN, FeSe<sub>2</sub>/PCN-H and FeSe<sub>2</sub>/PCN-L electrodes tested at 0.1 A g<sup>-1</sup> in KIBs.

**Note S1.** Possible chemical reactions occurred during the calcination process to fabricate the Fe<sub>3</sub>C/PCN precursor.<sup>11</sup>

During the calcination process in N<sub>2</sub> atmosphere, the pyrolysis of  $Fe(NO_3)_3 \cdot 9H_2O$  (equation 1 and 2) give rise to the release of large amount of NO<sub>x</sub> gas, which blew the melted PVP fluid to expand and result in the formation of honeycomb-like porous scaffold. In the meantime, the carbonization of PVP (equation 3) result in the generation of N-doped carbon matrix. While the Fe<sub>2</sub>O<sub>3</sub> nanodots, as pyrolysis product of  $Fe(NO_3)_3 \cdot 9H_2O$ , were in-situ decorated into the carbon matrix. After the temperature was further elevated to 600~800 °C, the carbothermic reduction reactions occurred (equation 4 and 5), and the decorated Fe<sub>2</sub>O<sub>3</sub> nanodots were reduced into Fe<sub>3</sub>C nanodots. Thus result in the formation of the Fe<sub>3</sub>C/PCN precursor.

Pyrolysis of Fe(NO<sub>3</sub>)<sub>3</sub>·9H<sub>2</sub>O and PVP:

$$Fe(NO_3)_3 \cdot 9H_2O \rightarrow Fe(OH)_3 + H_2O \uparrow + NO_x \uparrow$$
(1)

$$Fe(OH)_3 \rightarrow Fe_2O_3 + H_2O \uparrow$$
 (2)

$$PVP \rightarrow (N-doped Carbon Matrix) + CO_2 \uparrow + H_2O \uparrow$$
(3)

Carbothermic reduction of iron oxides:

$$Fe_2O_3 + C \rightarrow Fe_3O_4 + CO_2 \uparrow$$
 (4)

$$Fe_3O_4 + C \rightarrow Fe_3C + CO_2 \uparrow$$
 (5)

**Note S2.** The calculation process to determine mass percentages of FeSe<sub>2</sub> and carbon content in the FeSe<sub>2</sub>/PCN, FeSe<sub>2</sub>/PCN-H and FeSe<sub>2</sub>/PCN-L composites.

We first assume that the mass percentage of  $FeSe_2$  is y, and carbon content is (1-y). Based on the reaction formula:

 $2\text{FeSe}_2 + \text{O}_2 + (\text{Carbon Contents}) \rightarrow \text{Fe}_2\text{O}_3 + \text{SeO}_2 \uparrow + \text{CO/CO}_2 \uparrow$  $y \qquad (1-y) \qquad 0.374 \cdot y$ 

After TGA test, only  $Fe_2O_3$  was left, while the carbon content and  $SeO_2$  were removed.

Thus, a formula can be acquired:

$$0.374 \cdot y = \text{Final weight value}$$

Therefore, the respective mass percentages of FeSe<sub>2</sub> and carbon contents in the FeSe<sub>2</sub>/PCN, FeSe<sub>2</sub>/PCN-H and FeSe<sub>2</sub>/PCN-L composites are listed in the table below:

| Samples                  | Weight Percentages |                 |  |
|--------------------------|--------------------|-----------------|--|
|                          | FeSe <sub>2</sub>  | Carbon Contents |  |
| FeSe <sub>2</sub> /PCN   | 70.67%             | 29.33%          |  |
| FeSe <sub>2</sub> /PCN-H | 77.70%             | 22.30%          |  |
| FeSe <sub>2</sub> /PCN-L | 61.04%             | 38.96%          |  |

**Table S1.** Manifest specific capacities of the FeSe<sub>2</sub>/PCN, FeSe<sub>2</sub>/PCN-H and FeSe<sub>2</sub>/PCN-L electrodes measured from 0.1 to 10 A g<sup>-1</sup> for lithium-ion storage.

| Electrodes               | Manifest specific capacities in LIBs (Current density unit: A g <sup>-1</sup> /Cycle <sup>th</sup> ) |                              |                              |                              |                              |                              |                               |                              |
|--------------------------|------------------------------------------------------------------------------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|-------------------------------|------------------------------|
|                          | <b>0.1</b> /5 <sup>th</sup>                                                                          | <b>0.2</b> /15 <sup>th</sup> | <b>0.5</b> /25 <sup>th</sup> | <b>1.0</b> /35 <sup>th</sup> | <b>2.0</b> /45 <sup>th</sup> | <b>5.0</b> /55 <sup>th</sup> | <b>10.0</b> /65 <sup>th</sup> | <b>0.1</b> /75 <sup>th</sup> |
| FeSe <sub>2</sub> /PCN   | 752                                                                                                  | 790                          | 803                          | 810                          | 766                          | 672                          | 523                           | 1056                         |
| FeSe <sub>2</sub> /PCN-H | 773                                                                                                  | 742                          | 722                          | 686                          | 641                          | 548                          | 405                           | 778                          |
| FeSe <sub>2</sub> /PCN-L | 661                                                                                                  | 668                          | 663                          | 631                          | 591                          | 523                          | 386                           | 720                          |

**Table S2.** Manifest specific capacities of the FeSe<sub>2</sub>/PCN, FeSe<sub>2</sub>/PCN-H and FeSe<sub>2</sub>/PCN-L electrodes measured from 0.1 to 10 A g<sup>-1</sup> for potassium-ion storage.

| Electrodes               | Manifest specific capacities in KIBs (Current density unit: A g-1/Cycle th) |                              |                              |                              |                              |                              |                              |
|--------------------------|-----------------------------------------------------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
|                          | <b>0.1</b> /5 <sup>th</sup>                                                 | <b>0.2</b> /15 <sup>th</sup> | <b>0.5</b> /25 <sup>th</sup> | <b>1.0</b> /35 <sup>th</sup> | <b>2.0</b> /45 <sup>th</sup> | <b>5.0</b> /55 <sup>th</sup> | <b>0.1</b> /65 <sup>th</sup> |
| FeSe <sub>2</sub> /PCN   | 356                                                                         | 278                          | 234                          | 206                          | 178                          | 135                          | 356                          |
| FeSe <sub>2</sub> /PCN-H | 331                                                                         | 261                          | 214                          | 175                          | 150                          | 108                          | 286                          |
| FeSe <sub>2</sub> /PCN-L | 294                                                                         | 247                          | 197                          | 166                          | 143                          | 103                          | 304                          |

## REFERENCES

- (1) Jiang, T.; Bu, F.; Liu, B.; Hao, G.; Xu, Y. Fe<sub>7</sub>Se<sub>8</sub>@C Core–Shell Nanoparticles Encapsulated within a Three-Dimensional Graphene Composite as a High-Performance Flexible Anode for Lithium-Ion Batteries. *New J. Chem.* 2017, *41*, 5121-5124.
- (2) Zhou, J.; Wang, Y.; Zhang, J.; Chen, T.; Song, H.; Yang, H. Y. Two Dimensional Layered Co<sub>0.85</sub>Se Nanosheets as a High-Capacity Anode for Lithium-Ion Batteries. *Nanoscale* 2016, *8*, 14992-15000.
- (3) Zhang, Z.; Zhao, X.; Li, J. SnSe/Carbon Nanocomposite Synthesized by High Energy Ball Milling as an Anode Material for Sodium-Ion and Lithium-Ion Batteries. *Electrochim. Acta* 2015, 176, 1296-1301.
- (4) Luo, W.; Calas, A.; Tang, C.; Li, F.; Zhou, L.; Mai, L. Ultralong Sb<sub>2</sub>Se<sub>3</sub> Nanowire-Based Free-Standing Membrane Anode for Lithium/Sodium Ion Batteries. *ACS Appl. Mater. Interfaces* 2016, *8*, 35219-35226.
- (5) Zhang, Z.; Shi, X.; Yang, X. Synthesis of Core-Shell NiSe/C Nanospheres as Anodes for Lithium and Sodium Storage. *Electrochim. Acta* 2016, 208, 238-243.
- (6) Wu, X.; Lam, C. W. K.; Wu, N.; Pang, S.-S.; Xing, Z.; Zhang, W.; Ju, Z. Multiple Templates Fabrication of Hierarchical Porous Carbon for Enhanced Rate Capability in Potassium-Ion Batteries. *Mater. Today Energy* **2019**, *11*, 182-191.
- (7) Ju, Z.; Li, P.; Ma, G.; Xing, Z.; Zhuang, Q.; Qian, Y. Few Layer Nitrogen-Doped Graphene with Highly Reversible Potassium Storage. *Energy Storage Mater.* **2018**, *11*, 38-46.
- (8) Qi, X.; Huang, K.; Wu, X.; Zhao, W.; Wang, H.; Zhuang, Q.; Ju, Z. Novel Fabrication of N-doped Hierarchically Porous Carbon with Exceptional Potassium Storage Properties. *Carbon*

**2018**, *131*, 79-85.

- (9) Xie, K.; Yuan, K.; Li, X.; Lu, W.; Shen, C.; Liang, C.; Vajtai, R.; Ajayan, P.; Wei, B. Superior Potassium Ion Storage via Vertical MoS<sub>2</sub> "Nano-Rose" with Expanded Interlayers on Graphene. *Small* 2017, 13, 1701471.
- (10)Xie, J.; Zhu, Y.; Zhuang, N.; Lei, H.; Zhu, W.; Fu, Y.; Javed, M. S.; Li, J.; Mai, W. Rational Design of Metal Organic Framework-Derived FeS<sub>2</sub> Hollow Nanocages@Reduced Graphene Oxide for K-Ion Storage. *Nanoscale* **2018**, *10*, 17092-17098.
- (11)Han, K.; Liu, Z.; Li, P.; Yu, Q.; Wang, W.; Lao, C.-Y.; He, D.; Zhao, W.; Suo, G.; Guo, H., et al. High-Throughput Fabrication of 3D N-doped Graphenic Framework Coupled with Fe<sub>3</sub>C@Porous Graphite Carbon for Ultrastable Potassium Ion Storage. *Energy Storage Mater.* 2019, 22, 185-193.