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Figure S1. (a) Low magnification and (b) high magnification SEM images, (c) TEM image and (d) 

XRD pattern of the Fe3C/PCN precursor.
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Figure S2. (a-d) The corresponding height distribution curves of the four selected nanosheets from 

Figure 2 (f) by AFM characterizations.
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Figure S3. XRD profiles of the freshly prepared FeSe2@PCN sample and the same sample after 9 

months storage in air atmosphere.
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Figure S4. (a) Low magnification and (b) high magnification SEM images, (c) the corresponding 

EDS result and (d) XRD pattern of the bm-FeSe2 synthesized via ball-milling.
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Figure S5. A comparison of lithium storage properties of as-reported selenide anode materials vs. the 

FeSe2/PCN in this work.
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Figure S6. Cycling performance of the bm-FeSe2 electrode tested at (a) 0.2 A g-1 and (b) 10 A g-1 as 

an anode for LIBs.
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Figure S7. Electrochemical impedance spectroscopy (EIS) of (a) the FeSe2/PCN and (b) the 

bm-FeSe2 electrodes for lithium-ion batteries (LIBs) before and after 5000 cycles at 10 A g-1.
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Figure S8. Cycling performance of the bm-FeSe2 electrode tested at (a) 0.1 A g-1 and (b) 2 A g-1 as 

an anode for KIBs.
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Figure S9. A comparison of potassium storage properties of as-reported anode materials vs. the 

FeSe2/PCN in this work.
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Figure S10. Electrochemical impedance spectroscopy (EIS) of (a) the FeSe2/PCN and (b) the 

bm-FeSe2 electrodes for potassium-ion batteries (KIBs) before and after 500 cycles at 2 A g-1.
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Figure S11 The XRD pattern of the FeSe2/PCN electrode after 500 cycles and charged to 3.0 V in 

KIBs.
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Figure S12. (a) XRD patterns and (b) TGA plots of the FeSe2/PCN-H and FeSe2/PCN-L.
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Figure S13. FESEM images of (a-b) the FeSe2/PCN-H and (c-d) and the FeSe2/PCN-L.
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Figure S14. A comparison of cycling performance of the FeSe2/PCN, FeSe2/PCN-H and 

FeSe2/PCN-L electrodes tested at 0.1 A g-1 in KIBs.
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Note S1. Possible chemical reactions occurred during the calcination process to fabricate the 

Fe3C/PCN precursor.11

During the calcination process in N2 atmosphere, the pyrolysis of Fe(NO3)3·9H2O (equation 1 and 2) 

give rise to the release of large amount of NOx gas, which blew the melted PVP fluid to expand and 

result in the formation of honeycomb-like porous scaffold. In the meantime, the carbonization of 

PVP (equation 3) result in the generation of N-doped carbon matrix. While the Fe2O3 nanodots, as 

pyrolysis product of Fe(NO3)3·9H2O, were in-situ decorated into the carbon matrix. After the 

temperature was further elevated to 600~800 °C, the carbothermic reduction reactions occurred 

(equation 4 and 5), and the decorated Fe2O3 nanodots were reduced into Fe3C nanodots. Thus result 

in the formation of the Fe3C/PCN precursor.

Pyrolysis of Fe(NO3)3·9H2O and PVP:

Fe(NO3)3·9H2O → Fe(OH)3 + H2O ↑ + NOx ↑                  (1)

Fe(OH)3 → Fe2O3 + H2O ↑                          (2)

 PVP → (N-doped Carbon Matrix) + CO2 ↑ + H2O ↑               (3)

Carbothermic reduction of iron oxides:

Fe2O3 + C → Fe3O4 + CO2 ↑                          (4)

Fe3O4 + C → Fe3C + CO2 ↑                           (5)
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Note S2. The calculation process to determine mass percentages of FeSe2 and carbon content in the 

FeSe2/PCN, FeSe2/PCN-H and FeSe2/PCN-L composites.

We first assume that the mass percentage of FeSe2 is y, and carbon content is (1-y).

Based on the reaction formula:

2FeSe2 + O2 + (Carbon Contents) → Fe2O3 + SeO2 ↑ + CO/CO2 ↑

                 y              (1-y)        0.374·y

After TGA test, only Fe2O3 was left, while the carbon content and SeO2 were removed.

Thus, a formula can be acquired: 

0.374·y = Final weight value

Therefore, the respective mass percentages of FeSe2 and carbon contents in the FeSe2/PCN, 

FeSe2/PCN-H and FeSe2/PCN-L composites are listed in the table below:

Weight Percentages
Samples

FeSe2 Carbon Contents

FeSe2/PCN 70.67% 29.33%

FeSe2/PCN-H 77.70% 22.30%

FeSe2/PCN-L 61.04% 38.96%
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Table S1. Manifest specific capacities of the FeSe2/PCN, FeSe2/PCN-H and FeSe2/PCN-L electrodes 

measured from 0.1 to 10 A g-1 for lithium-ion storage.

Manifest specific capacities in LIBs (Current density unit: A g-1/Cycle th)
Electrodes

0.1/5th 0.2/15th 0.5/25th 1.0/35th 2.0/45th 5.0/55th 10.0/65th 0.1/75th

FeSe2/PCN 752 790 803 810 766 672 523 1056

FeSe2/PCN-H 773 742 722 686 641 548 405 778

FeSe2/PCN-L 661 668 663 631 591 523 386 720
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Table S2. Manifest specific capacities of the FeSe2/PCN, FeSe2/PCN-H and FeSe2/PCN-L electrodes 

measured from 0.1 to 10 A g-1 for potassium-ion storage.

Manifest specific capacities in KIBs (Current density unit: A g-1/Cycle th)
Electrodes

0.1/5th 0.2/15th 0.5/25th 1.0/35th 2.0/45th 5.0/55th 0.1/65th

FeSe2/PCN 356 278 234 206 178 135 356

FeSe2/PCN-H 331 261 214 175 150 108 286

FeSe2/PCN-L 294 247 197 166 143 103 304
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