Supporting Information for

# Design of MoS<sub>2</sub>/Graphene van der Waals Heterostructure as Highly Efficient and Stable Electrocatalyst for Hydrogen Evolution in Acidic and Alkaline Media

Xianbo Yu,<sup>†</sup> Guangyu Zhao,<sup>\*\*‡</sup> Shan Gong,<sup>†</sup> Chao Liu,<sup>†</sup> Canlong Wu,<sup>†</sup> Pengbo Lyu,<sup>\*\*§</sup> Guillaume Maurin,<sup>§</sup> and Naiqing Zhang<sup>\*,‡</sup>

<sup>†</sup> School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China

‡ Interdisciplinary Science Research Center, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China

§ ICGM, CNRS, ENSCM, Univ. Montpellier, Montpellier, 34095, France

\*Corresponding Author

E-mail: Guangyu Zhang (zhaogy810525@gmail.com); Naiqing Zhang (znqmww@163.com); Pengbo Lyu (pengbo.lyu@umontpellier.fr)

#### **Experimental Section**

#### Chemicals

The Graphene oxide (GO) was synthesized by Hummers' method and then allocated to a GO/water homogeneous dispersion with the GO concentration of 1.0 mg mL<sup>-1</sup>. Moreover, all the relevant reagents in this work were purchase from Shanghai Aladdin biochemical technology co., LTD (China) without further treatment except potassium hydroxide aqueous electrolyte was purified.

# Preparation of MoS<sub>2</sub>/G HS

The MoS<sub>2</sub>/G HS catalyst was synthesized as follows: First, 30 mL of negatively charged GO/water homogeneous was modified by the dispersed mixture solution, which was formed by 360 mg of positively charged polyethyleneimine (PEI) and 20 mL distilled water. After stirred continuously for 24 h, the products (PEI/GO) were centrifuged and washed several times by the distilled water. Second, the obtain PEI/GO dispersed in the 30 mL distilled water with sonicated for 30 min, and then 200 mg (NH<sub>4</sub>)<sub>2</sub>MoS<sub>4</sub> were added into the above mixture solution under vigorous stirring for another 24 h. The relevant solid products were collected by centrifuged and washed with distilled water, and dried through a freeze-drying process. Third, the obtained powder was thermally treated at 450°C for 2 h and then 750°C for another 2 h under an H<sub>2</sub>/Ar flow. After cooling to room temperature, the MoS<sub>2</sub>/G HS was obtained.

# Preparation of MoS<sub>2</sub>/G MP, G, and MoS<sub>2</sub>/G MM

The pure  $MoS_2$  micron particles ( $MoS_2$  MP) and pure G were obtained by directly thermal treatment under an H<sub>2</sub>/Ar flow from the ( $NH_4$ )<sub>2</sub>MoS<sub>4</sub> and GO power, respectively. The  $MoS_2/G$  MM was synthesized by mechanical mixture of  $MoS_2$  MP and G with the appropriate molar concentration ratios of 82.1:17.9.

# **Electrochemical Measurements**

The electrocatalytic activity measurements were performed by a CHI 660D electrochemical workstation in  $N_2$  saturated 1.0 M KOH and 0.5 M  $H_2SO_4$  solutions. The as-synthesized

catalysts covered on the carbon fiber papers were the working electrode with the mass of 1.5 mg cm<sup>-2</sup>, and a graphite rod and Ag/AgCl electrode can selected as the counter and reference electrodes, respectively. All current densities presented were corrected against ohmic potential drop. The 1000<sup>th</sup> cyclic voltammetry curves (CVs) measurement were conducted between 0.2 and –0.28 *vs*. the reversible hydrogen electrode (RHE) in 0.5 M H<sub>2</sub>SO<sub>4</sub> solution (0.2 and –0.32 *vs*. RHE in 1.0 M KOH solution) to investigate the stability of MoS<sub>2</sub>/G HS. Electrochemical impedance spectroscopy (EIS) were measured in a frequency range from 0.1 Hz to 100 kHz. All the measured potentials were corrected *vs*. RHE by the Nernst equation:  $E_{RHE} = E_{Ag/AgCl} + 0.059 \times pH + 0.197 V$ .

# **Structure Characterizations**

The crystal structure of catalysts were measured by X-ray diffractometer (PANalytical X'Pert PRO) with Cu K $\alpha$  radiation ( $\lambda = 1.5418$  Å) at 40 kV and 40 mA. The morphology and microstructures were characterized by scanning electron microscope (Hitachi SU8010, 15 kV) and transmission electron microscopy (Tecnai G2 F30, 200 kV). X-ray photoelectron spectroscopy and Raman spectra analyses were carried out by using a spectrometer with Al K $\alpha$  radiation (Nepean, ON) and Renishaw INVIA. The contact angle was measured by the instrument from POWEREACH (JC2000D5, 220V).

#### **Computational details**

DFT calculations were performed using the projector augmented wave (PAW) formalism within the generalized gradient approximation (GGA) method with Perdew-Burke-Ernzerhof (PBE) exchange-correlation functional as implemented in Vienna Ab Initio Simulation Package (VASP).<sup>1</sup> The cutoff energy of 500 eV for the plane-wave basis set has been consistently used in all calculations. The convergence criterion of 0.05 eV/Å was used for the forces in geometry optimizations and  $10^{-4}$  eV was used for the energy convergence. The rev-vdW-DF2 method proposed by Hamada was employed to include the dispersion contribution for the adsorption.<sup>2</sup> According to experimental observation, the pristine 2H-MoS<sub>2</sub> has the lattice parameters of

a=3.16 Å and c=12.29 Å.<sup>3</sup> In this work, the lattice parameters of 2H-MoS<sub>2</sub> unit cell optimized with a 10×10×3 Monkhorst-Pack grid were a=3.17 Å and c=12.33 Å (interlayer distance 6.17 Å), in good agreement with the experimental values.<sup>4</sup> The lattice parameter of graphene (a=2.46 Å) is distinct from MoS<sub>2</sub> by 22%. To construct the heterostructure of MoS<sub>2</sub> and graphene, a 4×4 supercell of MoS<sub>2</sub> and a 5×5 supercell of graphene were used. The difference of lattice parameters then reduced to 3%. Considering the experimental interlayer distance was determined to be 11 Å for the heterostructure in this work, the *c* vector was fixed to 22 Å (double the interlayer distance) during the optimization while *a* vector was relaxed; the optimized *a* vector of the heterostructure was 12.43 Å. The vaccum for the edge model was set to be at least 10Å.



Figure S1. XPS spectra of Mo 3d (a) and S 2p (b) in MoS<sub>2</sub>/G HS electrodes toward HER.



Figure S2. (a) Low-resolution TEM image of MoS<sub>2</sub>/G HS, (b-c) SEM images of MoS<sub>2</sub> MP.



Figure S3. (a-d) Element mapping images of C, Mo, S in MoS<sub>2</sub>/G HS.



Figure S4. (a) EDS image and (b) TG curve of  $MoS_2/G$  HS.



**Figure S5.** (a, c) Nitrogen adsorption and desorption isotherms and (b, d) the corresponding pore-size distribution calculated of MoS<sub>2</sub>/G HS and MoS<sub>2</sub> MP.



**Figure S6.** Calculated turnover frequencies for  $MoS_2/G$  HS electrode films in (a) 0.5 M H<sub>2</sub>SO<sub>4</sub> and (b) 1.0 M KOH solutions.



**Figure S7.** Cyclic voltammograms in the region of 0.25–0.35 V *vs.* RHE for (a) MoS<sub>2</sub>/G HS, (c) MoS<sub>2</sub>/G MM and (e) MoS<sub>2</sub> MP electrodes. The differences in current density at 0.3 V *vs.* RHE plotted against scan rate fitted to a linear regression allows for the estimation of  $C_{dl}$  for (b) MoS<sub>2</sub>/G HS, (d) MoS<sub>2</sub>/G MM and (f) MoS<sub>2</sub> MP electrodes.



**Figure S8.** Nyquist plots for  $MoS_2/G$  HS, (d)  $MoS_2/G$  MM and (f)  $MoS_2$  MP electrodes for HER in (a) 0.5 M H<sub>2</sub>SO<sub>4</sub> solution under the overpotentials of 300 mV and b) 1.0 M KOH solution under the overpotentials of 350 mV.



**Figure S9.** (a) Low-resolution SEM, and (b) HRTEM images of  $MoS_2/G$  HS after HER process for 10 h.

**Table S1** Comparison of the HER activities of the  $MoS_2/G$  HS,  $MoS_2/G$  MM, and  $MoS_2$  MP catalysts in 0.5 M H<sub>2</sub>SO<sub>4</sub> and 1.0 M KOH solutions with recently published results.

| Catalyst                                          | $\eta_{10}$ | $\eta_{100}$ | Electrolyte                          | Ref. |
|---------------------------------------------------|-------------|--------------|--------------------------------------|------|
|                                                   | (mV)        | (mV)         |                                      |      |
| Au-MoS <sub>2</sub>                               | 280         | _            | 0.5 M H <sub>2</sub> SO <sub>4</sub> | [5]  |
| $MoS_2$                                           | 187         | $\sim 240$   | 0.5 M H <sub>2</sub> SO <sub>4</sub> | [6]  |
| P-doped 2H-MoS <sub>2</sub>                       | 217         | ~320         | 0.5 M H <sub>2</sub> SO <sub>4</sub> | [7]  |
| MoS <sub>2</sub> nanodots                         | 248         | _            | 0.5 M H <sub>2</sub> SO <sub>4</sub> | [8]  |
| MoS <sub>2</sub> -cPAN                            | 185         | _            | 0.5 M H <sub>2</sub> SO <sub>4</sub> | [9]  |
| MoO <sub>2</sub> /MoS <sub>2</sub><br>nanofiber   | 340         | _            | 0.5 M H <sub>2</sub> SO <sub>4</sub> | [10] |
| V-doping MoS <sub>2</sub>                         | 194         | ~275         | 0.5 M H <sub>2</sub> SO <sub>4</sub> | [11] |
| metallic-Phase $MoS_2$                            | 210         | _            | 0.5 M H <sub>2</sub> SO <sub>4</sub> | [12] |
| edge-aligned -<br>2H/1T-MoS <sub>2</sub> /RGO     | 186         | ~230         | 0.5 M H <sub>2</sub> SO <sub>4</sub> | [13] |
| amorphous<br>phosphorus-doped<br>MoS <sub>2</sub> | 219         | _            | 0.5 M H <sub>2</sub> SO <sub>4</sub> | [14] |
| oxygen-<br>incorporated MoS <sub>2</sub>          | ~185        | ~290         | 0.5 M H <sub>2</sub> SO <sub>4</sub> | [15] |
| defect-rich MoS <sub>2</sub>                      | ~190        | _            | 0.5 M H <sub>2</sub> SO <sub>4</sub> | [16] |
| Co-BDC/MoS <sub>2</sub>                           | 248         | _            | 1.0 M KOH                            | [17] |
| 1T-2H MoS <sub>2</sub><br>Heterostructures        | ~280        | _            | 1.0 M KOH                            | [18] |
| Ni(OH) <sub>2</sub> /MoS <sub>2</sub>             | 227         | _            | 1.0 M KOH                            | [19] |

| MoS <sub>2</sub> MP    | 383 | 675 | 0.5 M H <sub>2</sub> SO <sub>4</sub> | This work |
|------------------------|-----|-----|--------------------------------------|-----------|
|                        | 436 | 647 | 1.0 M KOH                            |           |
| MoS <sub>2</sub> /G MM | 343 | 494 | 0.5 M H <sub>2</sub> SO <sub>4</sub> | This work |
|                        | 348 | 468 | 1.0 M KOH                            |           |
| MoS <sub>2</sub> /G HS | 180 | 268 | 0.5 M H <sub>2</sub> SO <sub>4</sub> | This work |
|                        | 183 | 313 | 1.0 M KOH                            |           |

### References

- Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. *Phys. Rev. Lett.* **1996**, 77, 3865–3868.
- (2) Hamada, I. Van der Waals Density Functional Made Accurate. *Phys. Rev. B* 2014, 89, 121103.
- (3) Jellinek, F.; Brauer, G.; MÜLler, H. Molybdenum and Niobium Sulphides. *Nature* 1960, 185, 376.
- (4) Monkhorst, H. J.; Pack, J. D. Special Points for Brillouin-Zone Integrations. *Phys. Rev. B* 1976, *13*, 5188–5192.
- (5) Zhao, S.; Jin, R.; Song, Y.; Zhang, H.; House, S. D.; Yang, J. C.; Jin, R. Atomically Precise Gold Nanoclusters Accelerate Hydrogen Evolution over MoS<sub>2</sub> Nanosheets: The Dual Interfacial Effect. *Small* **2017**, *13*, 1701519.
- (6) Lukowski, M. A.; Daniel, A. S.; Meng, F.; Forticaux, A.; Li, L.; Jin, S. Enhanced Hydrogen Evolution Catalysis from Chemically Exfoliated Metallic MoS<sub>2</sub> Nanosheets. *J. Am. Chem. Soc.* 2013, *135*, 10274–10277.
- (7) Huang, X.; Leng, M.; Xiao, W.; Li, M.; Ding, J.; Tan, T. L.; Lee, W. S. V.; Xue, J. Activating Basal Planes and S-Terminated Edges of MoS<sub>2</sub> toward More Efficient Hydrogen Evolution. *Adv. Funct. Mater.* **2017**, *27*, 1604943.
- (8) Benson, J.; Li, M.; Wang, S.; Wang, P.; Papakonstantinou, P. Electrocatalytic Hydrogen Evolution Reaction on Edges of a Few Layer Molybdenum Disulfide Nanodots. ACS Appl. Mater. Interfaces 2015, 7, 14113–14122.
- (9) Zeleke, T. S.; Tsai, M.-C.; Weret, M. A.; Huang, C.-J.; Birhanu, M. K.; Liu, T.-C.; Huang, C.-P.; Soo, Y.-L.; Yang, Y.-W.; Su, W.-N.; Hwang, B.-J. Immobilized Single Molecular Molybdenum Disulfide on Carbonized Polyacrylonitrile for Hydrogen Evolution Reaction. *ACS Nano* 2019, *13*, 6720–6729.

- (10)Rheem, Y.; Han, Y.; Lee, K. H.; Choi, S.-M.; Myung, N. V. Synthesis of Hierarchical MoO<sub>2</sub>/MoS<sub>2</sub> Nanofibers for Electrocatalytic Hydrogen Evolution. *Nanotechnology* 2017, 28, 105605.
- (11)Bolar, S.; Shit, S.; Kumar, J. S.; Murmu, N. C.; Ganesh, R. S.; Inokawa, H.; Kuil, T. Optimization of Active Surface Area of Flower Like MoS<sub>2</sub> Using V-Doping Towards Enhanced Hydrogen Evolution Reaction in Acidic and Basic medium. *Applied Catalysis B: Environmental* 2019, 254, 432–442.
- (12) Wang, J.; Wang, N.; Guo, Y.; Yang, J.; Wang, J.; Wang, F.; Sun, J.; Xu, H.; Liu, Z.-H.; Jiang. R. Metallic-Phase MoS<sub>2</sub> Nanopetals with Enhanced Electrocatalytic Activity for Hydrogen Evolution. *ACS Sustainable Chem. Eng.* 2018, *6*, 13435–13442.
- (13) You, B.; Jiang, N.; Sheng, M.; Yano, J.; Sun, Y. High-Performance Overall Water Splitting Electrocatalysts Derived from Cobalt-Based Metal-Organic Frameworks. *Chem. Mater.* 2015, 27, 7636–7642.
- (14)Wang, D.; Xie, Y.; Wu, Z. Amorphous Phosphorus-Doped MoS<sub>2</sub> Catalyst for Efficient Hydrogen Evolution Reaction. *Nanotechnology* 2019, *30*, 205401.
- (15)Xie, J.; Zhang, J.; Li, S.; Grote, F.; Zhang, X.; Zhang, H.; Wang, R.; Lei, Y.; Pan, B.; Xie, Y. Controllable Disorder Engineering in Oxygen-Incorporated MoS<sub>2</sub> Ultrathin Nanosheets for Efficient Hydrogen Evolution. *J. Am. Chem. Soc.* 2013, *135*, 17881–17888.
- (16)Xie, J.; Zhang, H.; Li, S.; Wang, R.; Sun, X.; Zhou, M.; Zhou, J.; Lou, X. W.; Xie, Y. Defect-Rich MoS<sub>2</sub> Ultrathin Nanosheets with Additional Active Edge Sites for Enhanced Electrocatalytic Hydrogen Evolution. *Adv. Mater.* 2013, 25, 5807–5813.
- (17)Zhu, D.; Liu, J.; Zhao, Y.; Zheng Y.; Qiao, S. Engineering 2D Metal-Organic Frameworks/MoS<sub>2</sub> Interface for Enhanced Alkaline Hydrogen Evolution. *Small* 2019, 15, 1805511.
- (18) Wang, S.; Zhang, D.; Li, B.; Zhang, C.; Du, Z.; Yin, H.; Bi, X.; Yang, S. Ultrastable In-Plane 1T-2H MoS<sub>2</sub> Heterostructures for Enhanced Hydrogen Evolution Reaction. *Adv. Energy Mater.* **2018**, *8*, 1801345.
- (19)Zhao, G.; Lin, Y.; Rui, K.; Zhou, Q.; Chen, Y.; Dou, S. X.; Sun, W. Epitaxial Growth of Ni(OH)<sub>2</sub> Nanoclusters on MoS<sub>2</sub> Nanosheets for Enhanced Alkaline Hydrogen Evolution Reaction. *Nanoscale* **2018**, *10*, 19074–19081.