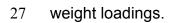
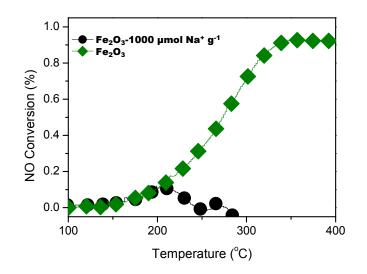

- **Supplementary Information for:**

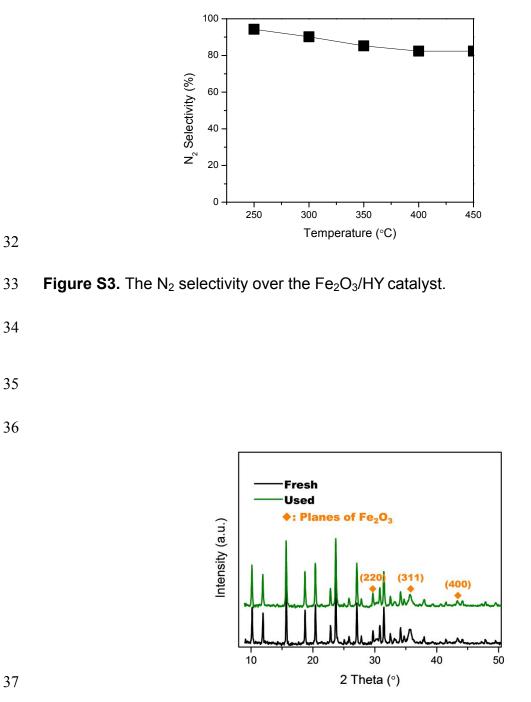

Fe₂O₃/HY catalyst: A microporous material with zeolite-type
 framework achieving highly improved alkali
 poisoning-resistant performance for selective reduction of
 NO_x with NH₃

```
7
     Yueyao Du, Zhiwei Huang, Jie Zhang, and Guohua Jing*
 8
 9
     Department of Environmental Science & Engineering, College of Chemical
10
11
     Engineering, Huaqiao University, Xiamen, Fujian, China
12
13
14
15
16
17
     *Corresponding author:
18
     *E-mail: zhoujing@hqu.edu.cn (G. Jing)
19
20
21
     Number of pages: 6
22
     Number of tables: 1
     Number of figures: 7
23
```



25

26 **Figure S1.** NH₃-SCR performance of Fe₂O₃/HY samples prepared at varying Fe₂O₃


28

29

30 Figure S2. NH_3 -SCR performance of Fe_2O_3 catalyst before and after 1000 µmol Na⁺

31 g⁻¹ poisoning.

Figure S4. XRD patterns of Fe_2O_3/HY before and after NH₃-SCR reaction.

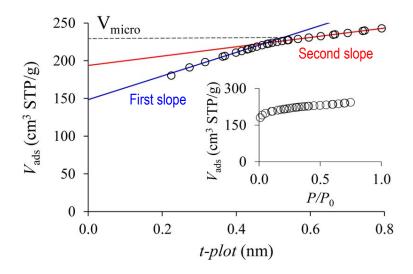
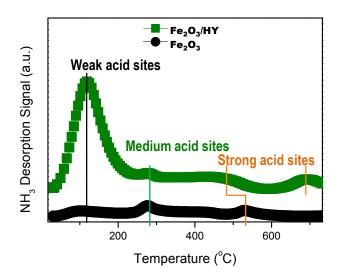
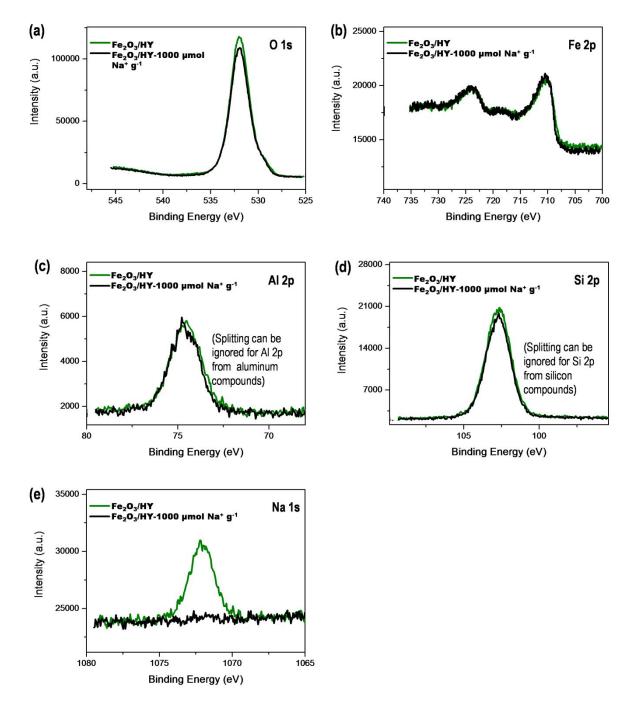




Figure S5. t-plot for catalyst. The inset is the raw data of the N₂ adsorption isotherm
at K which was used to obtain t-plot. The first and second slops provide estimation of
total surface area and microporesd volume of catalyst, respectively.

Figure S6. NH₃-TPD profiles of Fe_2O_3/HY in comparison with that of the Fe_2O_3 .

50 Figure S7. O, Fe, AI, Si, and Na XPS spectra for Fe₂O₃/HY before and after Na⁺

- 51 poisoning.
- 52

- 53
- _ .
- 54

56 **Table S1.** The total surface area; Microporous area and external surface area of fresh

Sample	Total Surface Area Micropore Area External Surface Area		
	[m² g⁻¹]	[m² g⁻¹]	[m² g⁻¹]
Fe ₂ O ₃ /HY	459	401	58
Fe ₂ O ₃ /HY -1000 µmol Na ⁺ g ⁻¹	444	381	63
V ₂ O ₅ /WO ₃ -TiO ₂	64	5	59
V ₂ O ₅ /WO ₃ -TiO ₂ -1000 µmol Na ⁺ g ⁻¹	44	7	37

57 and Na⁺ poisoned samples.