Supplementary Materials

Technological optimization for H_2O_2 electro-synthesis and economic evaluation on electro-Fenton for treating refractory organic wastewater

Jianshe Wang¹, Ruirui Chen¹, Tianyi zhang², Junfeng Wan², Xianglin Cheng¹, Jianhong Zhao¹, Xinhai Wang³

1 School of Chemical Engineering, Zhengzhou University, Zhengzhou, Henan, 450000, P. R. China

2 School of Ecology and Environment, Zhengzhou University, Zhengzhou, Henan, 450000, P. R. China

3 Henan Engineering Research Center of Industrial Circulating Water Treatment, College of Chemistry and Chemical Engineering. Henan University, Kaifeng, Henan, 475004, P. R. China

Corresponding authors: wangjs07@zzu.edu.cn (J. Wang) xinhaiwang@126.com (X. Wang)

Figure S1. Standard curve of H₂O₂ concentration and absorbance.

Figure S2. Standard curve of COD concentration and absorbance of (a) Low range $(15\sim250 \text{ mg L}^{-1})$, (b) High range $(100\sim1000 \text{ mg L}^{-1})$.

Figure S3. Cyclic voltammograms of (a) CNTs, (b) O-CNTs, (c) AQ-CNTs, and (d) N-CNTs performed in N_2 -saturated (in black) and O_2 -saturated (in red) 0.1 M Na_2SO_4 (pH: 3) at 50 mV s⁻¹.

Figure S4. The working potential of GDE measured at different current density.

Figure S5. (a) H_2O_2 selectivity and (b) number of transferred electrons (*n*) for oxygen reduction reaction on O-CNTs measured on RRDE (1600 rpm) during linear scanning voltammetry (LSV) scanning at 5 mV s⁻¹ in 0.1 M Na₂SO₄ at different pH.

Figure S6. H_2O_2 concentration varying with time at pH 3 and 9.

Cathode material	pН	j or E	Gas flow rate (L min ⁻¹)	H_2O_2 yield (mg L ⁻¹ h ⁻¹)	H_2O_2 yield (mg h ⁻¹ cm ⁻²)	Ref.
MC	3	150 mA cm ⁻²	-	92.2	14.3	1
TBAQ-CNT	3	7.1 mA cm ⁻²	0.4 (air)	100.4	4.24	2
CNTs	3	-0.5 V vs. SCE	0.4 (O ₂)	24	0.6	3
TBAQ-CB	-	-1.0 V vs. SCE	-	200	4	4
CoPc	3	-0.4V vs. Ag/AgCl	-	220	4.97	5
Ta ₂ O ₅ -C	2	-0.1V vs. Ag/AgCl	0.6 (air)	14	1.64	6
N-G@CNT	3	-0.2 V vs. SCE	-	10.5	0.26	7
FePc	-	-1.0 V vs. Ag/AgCl	-	160	3.6	8
O-CNTs	3	14 mA cm ⁻²	0.6 (O ₂)	304	6.7	This work

Table S1. H_2O_2 yield collected from published paper.

Figure S7. (a) RhB removal efficiency and (b) COD removal efficiency and energy consumption at different Fe²⁺ concentration. Conditions: 0.1 mol L⁻¹ Na₂SO₄, pH=3, [RhB]: 200 mg L⁻¹, current density: 14 mA cm⁻², O₂ flow rate:0.6 L min⁻¹.

Figure S8. (a) RhB removal efficiency and (b) COD removal efficiency and energy consumption at different solution pH. Conditions: 0.1 mol L⁻¹ Na₂SO₄, [Fe²⁺]: 2 mM, [RhB]: 200 mg L⁻¹, current density: 14 mA cm⁻², O₂ flow rate:0.6 L min⁻¹.

Figure S9. The reusability of GDE evaluated after 7-time runs in electro-Fenton treatment of RhB wastewater. Conditions: 0.1 mol L⁻¹ Na₂SO₄, [Fe²⁺]: 2 mM, pH=3, [RhB]: 200 mg L⁻¹, current density: 14 mA cm⁻², O₂ flow rate: 0.6 L min⁻¹.

Reaction time (min)	slot voltage (V)	Current (A)	Initial COD (mg L ⁻¹)	COD at time t(mg L ⁻¹)	Solution volume (L)
15				117.7	
30	3.3	0.25	264	87.2	0.4
45				50	
60				31.8	

Table S2. The necessary data for calculation of energy consumption.

Table S3. Data comparison for energy consumption and COD removal efficiency.

wastewater	j (mAcm ⁻²)	pН	[Fe ²⁺]	COD removal efficiency(%)	EC (kWh kg _{COD} ⁻¹)	Ref.
DMP	-	3	-	-	20~40	9
RhB	20	3	0.3 M	79	80	10
landfill	15	3	560 mg L ⁻¹	71±6	207±20	11
leachate						
RhB	-	6.2	3 mM	-	17	12
RhB	14	3	2 mM	88	9	This work

Reference:

(1) Garza-Campos, B.; Morales-Acosta, D.; Hernández-Ramírez, A.; Guzmán-Mar, J. L.; Hinojosa-Reyes, L.; Manríquez, J.; Ruiz-Ruiz, E. J. Air diffusion electrodes based on synthetized mesoporous carbon for application in amoxicillin degradation by electro-Fenton and solar photo electro-Fenton. *Electrochim. Acta*, **2018**, 269: 232-240.

(2) Lu, X.; Zhou, M.; Li, Y.; Su, P.; Cai, J.; Pan, Y. Improving the yield of hydrogen peroxide on gas diffusion electrode modified with tert-butyl-anthraquinone on different carbon support. *Electrochim. Acta*, **2019**,320: 134552.

(3) Wang, Y.; Liu, Y.; Liu, T.; Song, S.; Gui, X.; Liu, H.; Tsiakaras, P. Dimethyl phthalate degradation at novel and efficient electro-Fenton cathode. *Appl. Catal., B*, **2014**, 156-157: 1-7.

(4) Valim, R. B.; Reis, R. M.; Castro, P. S.; Lima, A. S.; Rocha, R. S.; Bertotti, M.; Lanza, M. R. V. Electrogeneration of hydrogen peroxide in gas diffusion electrodes modified with tert-butyl-anthraquinone on carbon black support. *Carbon*, **2013**, 61: 236-244.

(5) Barros, W. R. P.; Reis, R. M.; Rocha, R. S.; Lanza, M. R. V. Electrogeneration of hydrogen peroxide in acidic medium using gas diffusion electrodes modified with cobalt (II) phthalocyanine. *Electrochim. Acta*, **2013**, 104: 12-18.

(6) Carneiro, J. F.; Rocha, R. S.; Hammer, P.; Bertazzoli, R.; Lanza, M. R. V. Hydrogen peroxide electrogeneration in gas diffusion electrode nanostructured with Ta₂O₅. *Appl.Catal A-Gen.*, **2016**, 517: 161-167.

(7) Liu, T.; Wang, K.; Song, S.; Brouzgou, A.; Tsiakaras, P.; Wang, Y. New electro-Fenton gas diffusion cathode based on nitrogen-doped graphene@carbon nanotube composite materials. *Electrochim. Acta*, **2016**, 194: 228-238.

(8) Silva, F. L.; Reis, R. M.; Barros, W. R. P.; Rocha, R. S.; Lanza, M. R. V. Electrogeneration of hydrogen peroxide in gas diffusion electrodes: Application of iron (II) phthalocyanine as a modifier of carbon black. *J. Electroanal. Chem.*, **2014**, 722-723: 32-37.

(9) Zhao, H.; Qian, L.; Chen, Y.; Wang, Q.; Zhao, G. Selective catalytic two-electron O₂ reduction for onsite efficient oxidation reaction in heterogeneous electro-Fenton process. *Chem. Eng. J.*, **2018**, 332: 486-498.

(10) Zhang, Z.; Meng, H.; Wang, Y.; Shi, L.; Wang, X.; Chai, S. Fabrication of graphene@graphite-based gas diffusion electrode for improving H₂O₂ generation in electro-Fenton process. *Electrochim. Acta*, **2018**, 260: 112-120.

(11) Hu, Y.; Lu, Y.; Liu, G.; Luo, H.; Zhang, R.; Cai, X. Effect of the structure of stacked electro-Fenton reactor on treating nanofiltration concentrate of landfill leachate. *Chemosphere*, **2016**, 202: 191-197.

(12) Liu, W.; Ai, Z.; Zhang, L. Design of a neutral three-dimensional electro-Fenton

system with foam nickel as particle electrodes for wastewater treatment. *J. Hazard. Mater.*, **2012**, 243: 257-264.