Supporting Information

Phase behavior of the bilayers containing hydrogenated soy lecithin and β sitosteryl sulfate

Ananda Kafle^{1*}, Masaaki Akamatsu¹, Avinash Bhadani², Kenichi Sakai^{1,2}, Chihiro Kaise^{2,3},

Teruhisa Kaneko ^{2,3}, Hideki Sakai^{1,2*}

¹Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo

University of Science, 2641-Yamazaki, Noda, Chiba, 278-8510, Japan

²Research Institute for Science and Technology, Tokyo University of Science, 2641-

Yamazaki, Noda, Chiba, 278-8510, Japan

³L. V. M. C. Inc. Kamagome-7-14-3, Toshima-ku, Tokyo, 170-0003

Corresponding Authors: <u>hisakai@rs.noda.tus.ac.jp</u> anandakafle@rs.tus.ac.jp

Number of pages: 6 Number of figures: 6 Number of tables: 0 Number of schemes: 0

Table of Contents

S. No. 1.	Title POM Textures for samples with 40 wt% lipid concentration	Pages S2
2.	Change in viscosity with increasing mole fraction of PSO ₄ for 40 wt% lipid samples	S3
3.	DSC thermograms for samples with lower concentrations	S3
4.	SAXS and WAXS profiles for samples with 50, 40, and 30 wt% lipids	S4
5.	WAXS evidence for the $L_{\beta 1}$ and $L_{\beta 2}$ phases	S5
6.	Additional phase diagrams	S6

1. POM Textures for samples with 40 wt% lipid concentration

Figure S1: POM textures for the HLC-PSO₄ samples with 40 wt% of lipids. x stands for the mole fraction of PSO₄.

2. Change in viscosity with increasing mole fraction of PSO₄ for 40 wt% lipid samples.

Figure S2. Picture showing the gradual decrease of viscosity of the samples (40 wt% lipid) with increasing mole fraction of $PSO_4(x)$. The test-tubes are tilted to the same angle and the softening of the samples and the increasing flow as a function of *x* is visualized. It indicates that PSO_4 enhances the fluidity of HLC bilayers.

3. DSC thermograms for samples with lower concentrations

Figure S3: DSC heating endotherms for the HLC-PSO₄ samples with 50 wt% (a), 40 wt% (b), and 30 wt% (c) lipid concentrations, respectively.

4. SAXS and WAXS profiles for samples with 50, 40, and 30 wt% lipids

Figure S4: SAXS (left) and WAXS (right) profiles for the HLC-PSO₄ samples with 50 (a), 40 (b), and 30 (c) wt% lipids, respectively.

5. WAXS evidence for the $L_{\beta 1}$ and $L_{\beta 2}$ phases

Figure S5. WAXS profiles for the x = 0 sample at different temperatures. The profile at 25 °C represents gel phase. At 55 °C, a part of it on the left side indicates formation of the L_a phase. Narrowing of the peak at 55 °C indicates that the peak at 25 °C is resulted from overlapping of the two gel-phase peaks. As the gel-phase peaks at both temperatures lack the shoulder characteristic of the L_β ' (tilted gel phase) phase, it can be concluded that both gel phases are L_β (without tilt). At 63 °C, both gel phases have already transformed into the L_α phase.

6. Additional phase diagrams

Figure S6. Temperature-composition binary phase diagrams for the HLC-PSO₄ systems derived from 50 (a), 40 (b) and 30 (c) wt % of lipids. They are comparable to the phase diagram shown in Fig. 7 of the paper.