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A short tutorial on using WGCNA for proteomics co-expression 

analysis 

Background 

Weighted Gene Correlation Network Analysis (WGCNA) is a method proposed for gene co-

expression network modelling and clustering(1, 2). Instead of using the raw pairwise correlation to 

measure the relationships between genes, it uses a weighted correlation which is modelled as the 

pairwise correlation raised to a power. For clustering, it uses the topology overlap similarity (TOM) 

as the distance measurement in the hierarchical clustering algorithm and uses a dynamic tree 

cutting algorithm to generate an optimal set of clusters. Though it has been widely used in genomics 

data co-expression analysis, its application in proteomics area is still relatively new. In this short 

tutorial, we will describe briefly our in-house workflow for using WGCNA for proteomics co-

expression analysis and demonstrate it using the rice-leave TMT data published (3). For a detailed 

WGCNA tutorial, readers can refer to a comprehensive WGCNA online tutorial (4).  

Data pre-processing 
Before the data goes into the WGCNA workflow, it usually needs to be pre-processed. There are 

many different techniques used for quantitative proteomics, each of which have their own 

recommended pre-processing; for instance, in our lab we routinely use label free data with spectral 

counting quantitation via NSAF (5), label free SWATH data (6), and labelled data such as TMT (7) and 

iTRAQ (8) – each have slightly different pre-processing and handling, and some have different 

normalisation approaches that are specific to each. Even for the same technique the data pre-

processing procedure can be different under various contexts. For example, for SWATH-MS, if the 

peptide spectra library used for data extraction is big and noisy, then additional FDR-based peptide 

filtering is recommended and can greatly improve the data quality (9). As an aside, some recent 

public datasets make available side by side proteomics and transcriptomics datasets from the same 



patients, which can be used to compare the numerical characteristics of protein versus transcript 

data (10). 

Usually the raw proteomics data will be searched and extracted using vendor-specific commercial 

software, for example, PeakView (Sciex) for SWATH data and ProteomeDiscover (Thermo) for TMT 

data. Such software often has data filtering features which can be used to remove low abundance 

and low confidence data and perform FDR control. The resulting data will be combined into a matrix 

of quantitation with proteins (rows) and samples (columns). Proteins with missing values can be 

removed or imputed at pre-processing.  WGCNA can also work with data with missing values. For 

both datasets we used in this paper, proteins with missing values were removed. 

Data normalisation 

The pre-processed quantitative proteomics data needs to be properly normalised before executing 

WGNCA analysis. There are many different types of data normalisation, and the aim is to remove 

technical difference as much as possible while preserving the real biological variability. Naturally 

each normalisation method in effect changes the data, so special consideration has to be given to 

this process.   

Normalisation for data within a single batch aims to minimize the difference such as arising from 

slightly different column amount or other mass spectrometer-related difference. The common types 

normalisation in this case include total area normalisation and median normalisation. In total area 

normalisation, the value of each individual protein is divided by the total protein amount for the 

sample, in order to account for perhaps unequal loading. In median normalisation, the value of each 

individual protein is divided by the median protein amount for the sample, and where thus the 

assumption is that most protein should not differ in abundance across samples. In both cases, we 

prefer to keep the data on the same scale as the raw data, hence scale by Total/max(Total) or 

Median/max(Median), respectively. 



If the data comes from multiple batches (such as several TMT runs or SWATH batches), additional 

normalisation steps may be needed to align abundance across batches for each individual protein. 

Batch normalisation methods such as IRS (11) can be used, for instance for data coming from 

different TMT runs.  Usually data quality checking (such as boxplots, PCA, correlation and CV if 

technical replicates are present) is performed before and after the data normalisation to make sure 

the data quality is suitable for analysis. 

For the label-free TMT rice leaf ratio dataset, we applied median normalisation for each sample; for 

the SWATH plasma dataset, we first aggregated the peptide peak areas to proteins and then applied 

total area normalisation for each sample.   

After the normalisation, the protein expression was log-transformed before the analysis was 

performed.  

WGCNA steps and parameters 

The WGCNA workflow starts after the data quality checking, normalisation and log-transforming of 

protein abundance or ratio matrix. The dataset can include all proteins from the experiments or only 

a subset such as the differentially expressed proteins. The data can include missing values and 

WGCNA can check (function goodSamplesGenes) and remove proteins or samples with too many 

missing values. Figure S1 shows our generic workflow for WGCNA analysis. 



 

Figure S1. WGCNA workflow 

Firstly, a soft threshold is selected for constructing the weighted correlation matrix by using the 

approximate scale-free network criteria.  A scale free network is one where the topology is 

dominated by a few highly connected nodes, which link the rest of the less connected nodes to the 

system(2); it is assumed that most biologically relevant networks should satisfy this property.  By 

raising the correlation to the selected soft threshold, the correlation network becomes scale-free.  A 

parameter RsquaredCut, which indicates the cut-off value for the correlation R square, can be used 

to adjust the soft threshold selection. The default value is 0.85 in the WGCNA R package(1). WGCNA 

can build signed or unsigned network adjacency matrix and the default is unsigned which transforms 

all correlations to positive values. However, we recommend that signed network adjacency matrix 

should be used for proteomics datasets so that proteins with different regulation trends will be 

clustered separately. 

Then the TOM distance is calculated from the network adjacency; the aim of the TOM distance is to 

calculate clusters which are tightly correlated to each other. Hierarchical clustering is performed 

based on the TOM distance by using average linkage, and then a set of clusters are obtained by using 



the dynamic tree cutting method. The number of clusters can be adjusted by changing the 

parameter value of minClusterSize, which controls the minimum number of proteins in each cluster. 

The optimal value for minClusterSize depends on the number of proteins in the dataset. Based on 

our experience, for small to medium proteomics datasets (for example few hundreds to a thousand), 

a value between 20 to 30 could generate a good number of well separated clusters. For relatively 

large dataset (say a few thousand proteins), the value might need to be increased to around 50.  For 

the analysis of both our datasets, the value of minClusterSize was set as 20. An automatic cluster 

merging function is invoked to merge the closely correlated clusters from the dynamic tree cutting. A 

parameter cutHeight can be used to adjust the merging criterion. For both our datasets, we set it as 

0.1.  

An eigenprotein is generated for each cluster, as the first principle component by using the singular 

value decomposition. The eigenprotein can be viewed as a representative protein for a cluster, 

though it is not one of the actual proteins but a “virtual protein”, a linear combination of the 

proteins in the cluster with certain coefficients. 

An kME value is then computed for each protein and each cluster, as the correlation between each 

protein and the eigenprotein from its respective cluster. The kME value can be seen as a 

measurement for the intra-module connectivity(1); the higher the kME the more connectivity the 

protein has to other proteins in its cluster. The top few proteins (for example 6 in (12), 10 in other 

publications) with the highest kME in each cluster can be regarded as hub proteins for the cluster. A 

hub protein (or gene) is a “loosely defined” term to describe the proteins (genes) that are highly 

connected(1). Due to this loose definition, a strict cut-off value for selecting hub proteins is not 

recommended. However, our results show that the hub proteins can provide useful guide for 

selecting candidate proteins for validation. 



Example outputs  

Each of the steps described above will output some visual images or tables. Here we use our main 

dataset results as an example to illustrate them. 

Selection of soft threshold power 

Scale-free topology fitting (R square) shows this dataset has a good scale-free topology fit (R 

square > 0.85). Figure S2 shows the change of the soft threshold fit and the mean connectivity as the 

power changes. There is a trade-off between the scale-free topology fit and the mean connectivity of 

the network.  The soft-threshold power selected was 12.   

 

Figure S2. Soft threshold and scale-free topology fit. Left, scale-free topology fitting (R square) vs soft threshold. The red 

horizontal line represents the 0.85 default cut-off value. Right, the mean connectivity (number of connected nodes) vs soft 

threshold.  

Cluster generation 

Seven clusters (or modules) were produced after the dynamic tree cutting and cluster merging. 

Figure S3 shows the cluster dendrogram and network heatmap for those clusters. 

 



                          

 

Figure S3. Cluster dendrogram and network heatmap. 

The top colour row in the left panel of Figure S3 represents the clusters (modules) generated by 

using dynamic tree cut, and the bottom colour row represents the clusters generated by merging 

closely correlated modules. In the network heatmap (right panel), each cell represents the TOM 

similarity (topology overlap) of two proteins. The more red the cell the higher topology overlap they 

share in the network. The blue and green module are shown to have high TOM similarity.  

Besides the default WGCNA plots, we added a set of additional cluster expression profile plots, each 

of which shows the abundance changing patterns with the experimental conditions/groups. Figure 

S4 shows the cluster expression profile for the seven clusters. Each grey line represents a protein 

abundance and the bold color line represent the average abundance of all proteins in that cluster; 

some proteins with high fold changes are visible.  

 



 

Figure S4. Cluster expression profile. each grey line represents one protein and the thick coloured line represents the 

average for all. 

Eigenproteins 

Figure S5 shows the eigenprotein dendrogram, heatmap and boxplots. The more red the colour, the 

more closely correlated they are.  The plots in the left panel are from the WGCNA package, and the 

additional figure in the right panel capture via boxplots the expression pattern of each individual 

eigenprotein across experimental groups.  



 

Figure S5. Eigenprotein dendrogram, heatmap and boxplots. 

Hub proteins 

The proteins in each cluster are ordered by their kME values decreasingly, and the proteins at the 

top of the list can be viewed as the hub proteins. Figure S6 shows an example of the boxplots the 

top 6 hub proteins in the red cluster. The top hub protein (Q53RM0 – a magnesium chelatase 

subunit) was identified in the original publication (3) as one of the relevant enzymes in the 

chlorophyll biosynthesis pathway.  



 

Figure S6. Top 6 hub proteins for the red cluster. 

 

Discussion 

The WGCNA workflow can be applied to either all proteins quantitative data or a subset of the data 

such as the differentially expressed proteins. In proteomics studies, it is common that statistical 

analysis is performed first to identify differentially expressed proteins (via ANOVA or t-tests or other 

methodology) which is then followed by unsupervised clustering and functional analysis. In our 

experience, performing WGCNA analysis on all proteins (usually a few thousands) often gives a large 

number of clusters among which the patterns are less informative or harder to interpret than on 

differentially expressed proteins. However, we have performed the WGCNA analysis on both all 

proteins and  differentially expressed proteins of our main dataset, the TMT rice leaves, and 

provided both results on our Github repository 

(https://github.com/APAFbioinformatics/PloGO2_R_Package). The clusters obtained with 

differentially expressed proteins have (not surprisingly) clearer cluster profile patterns. However, the 

https://github.com/APAFbioinformatics/PloGO2_R_Package


results obtained using the full dataset include a grey module (proteins unassigned to any module, 

which may be interesting in their own right) while the results from the DEP dataset does not.  

Hub proteins are proteins that are highly connected within a module.  Intromodular connectivity 

kME can be used as a measurement. However, due to its loose definition, it is hard to give a strict 

cut-off value for selecting hub proteins, and various papers use the top 10, top 6, or other kME cut-

off thresholds. The ranking provided by kME can give useful guide for selecting candidate proteins 

for validation. In addition to kME measurement, correlation with biological traits, if exists, can be 

another indicator(13). 
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