Supporting Information

Preparation of acifluorfen-based ionic liquids with fluorescent properties for enhancing biological activities and reducing the risk to the aquatic environment Gang Tang, Junfan Niu, Wenbing Zhang, Jiale Yang, Jingyue Tang, Rong Tang, Zhiyuan Zhou, Jianqiang Li, Yongsong Cao* College of Plant Protection, China Agricultural University, Beijing, China *Corresponding author: NO.2 Yuanmingyuan West Road, China Agricultural University, Beijing, China, 100193 Telephone: 86-10-62734302. Fax: 86-10-62734302. Email: caoysong@126.com, caoys@cau.edu.cn

Number of pages: 23 Number of figures: 46 Number of tables: 1

```
Fig. S1 <sup>1</sup>H NMR (300.13 MHz; CDCl<sub>3</sub>) of Est1 (Methyl 2-hydroxybenzoate)
Fig. S2 <sup>1</sup>C NMR (75.47 MHz; CDCl<sub>3</sub>) of Est1 (Methyl 2-hydroxybenzoate)
Fig. S3 <sup>1</sup>H NMR (300.13 MHz; CDCl<sub>3</sub>) of Est2 (Methyl 3-hydroxy-2-naphthoate)
Fig. S4 <sup>1</sup>C NMR (75.47 MHz; CDCl<sub>3</sub>) of Est2 (Methyl 3-hydroxy-2-naphthoate)
Fig. S5 <sup>1</sup>H NMR (300.13 MHz; CDCl<sub>3</sub>) of Est3 (Ethyl 2-oxo-2H-chromene-6-carboxylate)
Fig. S6 <sup>1</sup>C NMR (75.47 MHz; CDCl<sub>3</sub>) of Est3 (Ethyl 2-oxo-2H-chromene-6-carboxyla
Fig. S7 <sup>1</sup>H NMR (300.13 MHz; CDCl<sub>3</sub>) of Frc1 (2-Hydroxybenzohydrazide)
Fig. S8 <sup>1</sup>C NMR (75.47 MHz; DMSO) of Frc1 (2-Hydroxybenzohydrazide)
Fig. S9 <sup>1</sup>H NMR (300.13 MHz; DMSO) of Frc2 (3-Hydroxy-2-naphthohydrazide)
Fig. S10 <sup>1</sup>C NMR (75.47 MHz; DMSO) of Frc2 (3-Hydroxy-2-naphthohydrazide)
Fig. S11 <sup>1</sup>H NMR (300.13 MHz; CDCl<sub>3</sub>) of Frc3 (2-Oxo-2H-chromene-6-carbohydrazide)
Fig. S12 <sup>1</sup>C NMR (75.47 MHz; DMSO) of Frc3 (2-Oxo-2H-chromene-6-carbohydrazide)
Fig. S13 <sup>1</sup>H NMR (300.13 MHz; CDCl<sub>3</sub>) of HIL1
Fig. S14 <sup>1</sup>C NMR (75.47 MHz; DMSO) of HIL1
Fig. S15 <sup>1</sup>H NMR (300.13 MHz; CDCl<sub>3</sub>) of HIL2
Fig. S16 <sup>1</sup>C NMR (75.47 MHz; DMSO) of HIL2
Fig. S17 <sup>1</sup>H NMR (300.13 MHz; CDCl<sub>3</sub>) of HIL3
Fig. S18 <sup>1</sup>C NMR (75.47 MHz; DMSO) of HIL3
Fig. S19 <sup>1</sup>H NMR (300.13 MHz; CDCl<sub>3</sub>) of HIL4
Fig. S20 <sup>1</sup>C NMR (75.47 MHz; DMSO) of HIL4
Fig. S21 <sup>1</sup>H NMR (300.13 MHz; CDCl<sub>3</sub>) of HIL5
Fig. S22 <sup>1</sup>C NMR (75.47 MHz; CDCl<sub>3</sub>) of HIL5
Fig. S23 <sup>1</sup>H NMR (300.13 MHz; CDCl<sub>3</sub>) of HIL6
Fig. S24 <sup>1</sup>C NMR (75.47 MHz; CDCl<sub>3</sub>) of HIL6
Fig. S25 <sup>1</sup>H NMR (300.13 MHz; CDCl<sub>3</sub>) of HIL7
Fig. S26 <sup>1</sup>C NMR (75.47 MHz; CDCl<sub>3</sub>) of HIL7
Fig. S27 <sup>1</sup>H NMR (300.13 MHz; CDCl<sub>3</sub>) of HIL8
Fig. S28 <sup>1</sup>H NMR (300.13 MHz; CDCl<sub>3</sub>) of HIL9
Fig. S29 <sup>1</sup>H NMR (300.13 MHz; CDCl<sub>3</sub>) of HIL10
Fig. S30 <sup>1</sup>H NMR (300.13 MHz; CDCl<sub>3</sub>) of HIL11
Fig. S31 <sup>1</sup>H NMR (300.13 MHz; CDCl<sub>3</sub>) of HIL12
Fig. S32 The surface tension curves (\gamma-lg C curves) for HIL1-12
```

```
        Table S1 The values of critical micelle concentration (CMC) of HIL1-12
```

Methyl 2-hydroxybenzoate (Est1). ¹H NMR (300.13 MHz; CDCl₃; Me₄Si) δ ppm = 10.79 (s, 1H, OH), 7.85 (m, 1H, CH), 7.48 (m, 1H, CH), 7.01 (m, 1H, CH), 6.90 (m, 1H, CH), 3.97 (s, 3H, CH₃); ¹³C NMR (75.47 MHz; CDCl₃; Me₄Si) δ ppm = 51.99, 112.22, 117.36, 117.40, 118.93, 129.69, 129.73, 135.46 **Methyl 3-hydroxy-2-naphthoate (Est2)**. ¹H NMR (300.13 MHz; CDCl₃; Me₄Si) δ ppm = 10.43 (s, 1H, OH), 8.49 (s, 1H, CH), 7.80 (m, 1H, CH), 7.68 (m, 1H, CH), 7.49 (m, 1H, CH), 7.32 (m, 2H, CH), 4.02 (s, 3H, CH₃); ¹³C NMR (75.47 MHz; CDCl₃; Me₄Si) δ ppm = 52.22, 113.37, 113.89, 123.61, 126.00, 126.75, 128.82, 128.89, 132.12, 137.63, 155.99, 169.96

Ethyl 2-oxo-2H-chromene-6-carboxylate (Est3). ¹H NMR (300.13 MHz; CDCl₃; Me₄Si) δ ppm = 8.54 (s, 1H, CH), 7.65 (m, 2H, CH), 7.35 (m, 2H, CH), 4.42 (q, *J* = 7.15 Hz, 2H, CH₂), 1.42 (t, J = 7.13 Hz, 3H, CH₃); ¹³C NMR (75.47 MHz; CDCl₃; Me₄Si) δ ppm = 14.00, 61.67, 116.46, 117.65, 118.07, 124.66, 129.35, 134.12, 148.28, 154.89, 156.42, 162.73

2-Hydroxybenzohydrazide (Frc1). ¹H NMR (300.13 MHz; CDCl₃; Me₄Si) δ ppm = 7.56 (br, 1H, CH), 7.43 (m, 1H, CH), 7.32 (m, 1H, CH), 7.00 (m, 1H, CH), 6.87 (m, 1H, CH), 4.08 (br, 2H, NH₂); ¹³C NMR (75.47 MHz; DMSO; Me₄Si) δ ppm = 114.60, 117.43, 118.76, 127.72, 133.49, 159.73, 168.07

3-Hydroxy-2-naphthohydrazide (Frc2). ¹H NMR (300.13 MHz; CDCl₃; DMSO) δ ppm = 10.20 (br, 1H, OH), 8.44 (s, 1H, CH), 7.82 (m, 1H, CH), 7.72 (m, 1H, CH), 7.48 (m, 1H, CH), 7.32 (m, 1H, CH), 7.26 (s, 1H, CH), 4.75 (br, 2H, NH₂); ¹³C NMR (75.47 MHz; DMSO; Me₄Si) δ ppm = 110.76, 118.21, 123.75, 125.92, 126.80, 128.21, 128.79, 129.14, 135.98, 155.19, 167.17

2-Oxo-2H-chromene-6-carbohydrazide (Frc3). ¹H NMR (300.13 MHz; CDCl₃; Me₄Si) δ ppm = 11.39 (s, 1H, NH), 8.72 (s, 1H, CH), 7.38 (m, 2H, CH), 6.98 (m, 2H, CH); ¹³C NMR (75.47 MHz; DMSO; Me₄Si) δ ppm = 116.49, 118.57, 119.38, 125.39, 130.09, 134.52, 148.08, 149.95, 154.08, 158.47

HIL1. ¹H NMR (300.13 MHz; CDCl₃; Me₄Si) δ ppm = 8.02 (d, *J* = 8.98 Hz, 1H, CH), 7.83 (m, 1H, CH), 7.63 (m, 1H, CH), 7.51 (m, 1H, CH), 7.48 (m, 1H, CH), 7.30 (m, 1H, CH), 7.25 (m, 1H, CH), 7.09 (m, 1H, CH), 7.01 (m, 1H, CH), 6.90 (m, 1H, CH); ¹³C NMR (75.47 MHz; DMSO; Me₄Si) δ ppm = 114.65, 117.34, 117.67, 118.74, 119.33, 121.47, 122.90, 125.08, 126.59, 127.18, 127.55, 128.45, 132.16, 132.27, 143.01, 153.20, 159.07, 159.51, 165.86, 167.79

HIL2. ¹H NMR (300.13 MHz; CDCl₃; Me₄Si) δ ppm = 8.43 (s, 1H, CH), 8.12 (m, 1H, CH), 8.06 (d, J =

8.94 Hz, 1H, CH), 7.80 (m, 1H, 2H), 7.70 (m, 1H, CH), 7.49 (m, 2H, CH), 7.36 (m, 1H, CH), 7.29 (m, 3H, CH); ¹³C NMR (75.47 MHz; DMSO; Me₄Si) δ ppm = 110.71, 117.72, 118.20, 119.47, 122.96, 123.71, 125.87, 126.62, 126.97, 127.60, 128.19, 128.77, 129.27, 131.91, 135.97, 142.99, 153.21, 155.05, 159.11, 165.76, 166.99

HIL3. ¹H NMR (300.13 MHz; CDCl₃; Me₄Si) δ ppm = 9.11 (s, 1H, CH), 7.99 (d, *J* = 8.97 Hz, 1H, CH), 7.78 (m, 1H, CH), 7.62 (m, 1H, CH), 7.40 (m, 2H, CH), 7.25 (m, 1H, CH), 7.10 (m, 1H, CH), 7.00 (m, 2H, CH); ¹³C NMR (75.47 MHz; DMSO; Me₄Si) δ ppm = 117.76, 119.61, 121.51, 123.01, 125.12, 126.27, 126.25, 126.70, 127.05, 127.19, 127.63, 128.50, 128.54, 131.49, 142.95, 153.19, 159.16, 165.65

HIL4. ¹H NMR (300.13 MHz; CDCl₃; Me₄Si) δ ppm = 8.06 (d, *J* = 8.92 Hz, 1H, CH), 7.95 (m, 1H, CH), 7.72 (m, 1H, CH), 7.37 (m, 1H, CH), 7.31 (m, 1H, CH), 7.07 (m, 1H, CH), 3.64 (s, 12H, CH₃); ¹³C NMR (75.47 MHz; DMSO; Me₄Si) δ ppm = 54.47, 116.43, 117.07, 121.57, 122.47, 125.20, 126.53, 126.93, 127.37, 128.35, 141.58, 144.17, 153.99, 157.87, 155.02

HIL5. ¹H NMR (300.13 MHz; CDCl₃; Me₄Si) δ ppm = 7.82 (d, *J* = 8.94 Hz, 1H, CH), 7.73 (m, 1H, CH), 7.50 (m, 1H, CH), 7.18 (m, 2H, CH), 6.84 (m, 1H, CH), 3.36 (m, 8H, CH₂), 1.69 (m, 8H, CH₂), 1.35 (m, 8H, CH₂), 0.94 (t, *J* = 7.30 Hz, 12H, CH₃); ¹³C NMR (75.47 MHz; CDCl₃; Me₄Si) δ ppm = 13.21, 19.29, 23.69, 58.53, 115.63, 117.58, 121.02, 124.54, 125.05, 126.06, 126.98, 127.61, 140.08, 141.36, 153.54, 159.03, 170.04

HIL6. ¹H NMR (300.13 MHz; CDCl₃; Me₄Si) δ ppm = 7.65 (m, 2H, CH), 7.41 (m, 1H, CH), 7.22 (m, 1H, CH), 7.10 (m, 1H, CH), 6.67 (m, 1H, CH), 3.46 (m, 2H, CH₂), 3.35 (s, 9H, CH₃), 1.69 (m, 2H, CH₂), 1.23 (m, 18H, CH₂), 0.87 (t, *J* = 6.68 Hz, 3H, CH₃); ¹³C NMR (75.47 MHz; CDCl₃; Me₄Si) δ ppm = 13.52, 22.12, 22.58, 25.67, 28.83, 31.36, 52.78, 48.99, 66.29, 115.54, 119.44, 120.99, 124.41, 125.09, 126.04, 127.14, 127.65, 139.50, 141.77, 153.30, 158.88, 169.62

HIL7. ¹H NMR (300.13 MHz; CDCl₃; Me₄Si) δ ppm = 7.88 (d, *J* = 8.94 Hz, 1H, CH), 7.75 (m, 1H, CH), 7.52 (m, 1H, CH), 7.18 (m, 1H, CH), 7.10 (m, 1H, CH), 6.90 (m, 1H, CH), 3.37 (s, 9H, CH₃), 1.74 (m, 2H, CH₂), 1.25 (m, 28H, CH₂), 0.88 (t, *J* = 6.65 Hz, 3H, CH₃); ¹³C NMR (75.47 MHz; CDCl₃; Me₄Si) δ ppm = 13.63, 22.25, 22.58, 25.79, 29.12, 31.50, 52.77, 66.30, 115.35, 117.50, 120.90, 121.36, 124.51, 125.24, 126.32, 127.63, 128.22, 140.49, 141.97, 153.42, 159.03, 169.08

HIL8. ¹H NMR (300.13 MHz; CDCl₃; Me₄Si) δ ppm = 8.75 (s, 1H, CH), 7.99 (d, *J* = 8.95 Hz, 1.1H, CH), 7.82 (m, 1.1H, CH), 7.62 (m, 1.1H, CH), 7.41 (m, 2H, CH), 7.22 (m, 1.1H, CH), 7.07 (m, 2H, CH), 6.99 (m, 1.1H, CH), 3.30 (s, 1H, CH₃), 1.74 (m, 0.2H, CH₂), 1.26 (m, 3.1H, CH₂), 0.90 (t, 0.3H, CH₃)

HIL9. ¹H NMR (300.13 MHz; CDCl₃; Me₄Si) δ ppm = 8.72 (s, 0.7H, CH), 7.92 (d, *J* = 8.97 Hz, 1H, CH), 7.77 (m, 1H, CH), 7.54 (m, 1H, CH), 7.38 (m, 1.4H, CH), 7.24 (m, 1H, CH), 7.14 (m, 1H, CH), 7.03 (m, 1.4H, CH), 6.99 (m, 1H, CH), 3.29 (s, 2.7H, CH₃), 1.78 (m, 0.6H, CH₂), 1.23 (m, 8.4 H, CH₂), 0.87 (t, *J* = 6.68 Hz, 0.9 H, CH₃)

HIL10. ¹H NMR (300.13 MHz; CDCl₃; Me₄Si) δ ppm = 8.73 (s, 1H, CH), 7.91 (d, *J* = 8.88 Hz, 2H, CH), 7.77 (m, 2H, CH), 7.55 (m, 2H, CH), 7.39 (m, 2H, CH), 7.20 (m, 2H, CH), 7.12 (m, 2H, CH), 7.03 (m, 2H, CH), 6.97 (m, 2H, CH), 3.32 (s, 9H, CH₃), 1.78 (m, 2H, CH₂), 1.24 (m, 28H, CH₂), 0.88 (t, *J* = 6.45 Hz, 3H, CH₃)

HIL11. ¹H NMR (300.13 MHz; CDCl₃; Me₄Si) δ ppm = 8.73 (s, 0.3H, CH), 7.88 (d, *J* = 8.95 Hz, 1H, CH), 7.76 (m, 1H, CH), 7.54 (m, 1H, CH), 7.36 (m, 0.7H, CH), 7.10 (m, 1H, CH), 7.04 (m, 1H, CH), 6.96 (m, 0.7H, CH), 6.92 (m, 1H, CH), 3.33 (s, 6.3H, CH₃), 1.75 (m, 0.6H, CH₂), 1.24 (m, 19.6 H, CH₂), 0.88 (t, *J* = 6.52 Hz, 2.1H, CH₃)

HIL12. ¹H NMR (300.13 MHz; CDCl₃; Me₄Si) δ ppm = 8.73 (s, 0.1H, CH), 7.89 (d, *J* = 8.94 Hz, 1H, CH), 7.75 (m, 1H, CH), 7.50 (m, 1H, CH), 7.36 (m, 0.2H, CH), 7.17 (m, 1H, CH), 7.09 (m, 1H, CH), 6.96 (m, 0.2H, CH), 6.88 (m, 1H, CH), 3.37 (s, 8.1H, CH₃), 1.75 (m, 1.8H, CH₂), 1.25 (m, 25 H, CH₂), 0.88 (t, *J* = 6.68 Hz, 2.7H, CH₃)

Fig. S1 ¹H NMR (300.13 MHz; CDCl₃) of Est1 (Methyl 2-hydroxybenzoate)

Fig. S2 ¹C NMR (75.47 MHz; CDCl₃) of Est1 (Methyl 2-hydroxybenzoate)

Fig. S3 ¹H NMR (300.13 MHz; CDCl₃) of Est2 (Methyl 3-hydroxy-2-naphthoate)

Fig. S4 ¹C NMR (75.47 MHz; CDCl₃) of Est2 (Methyl 3-hydroxy-2-naphthoate)

Fig. S5 ¹H NMR (300.13 MHz; CDCl₃) of Est3 (Ethyl 2-oxo-2H-chromene-6-carboxylate)

Fig. S6 ¹C NMR (75.47 MHz; CDCl₃) of Est3 (Ethyl 2-oxo-2H-chromene-6-carboxylate)

Fig. S7 ¹H NMR (300.13 MHz; CDCl₃) of Frc1 (2-Hydroxybenzohydrazide)

Fig. S8 ¹C NMR (75.47 MHz; DMSO) of Frc1 (2-Hydroxybenzohydrazide)

Fig. S9 ¹H NMR (300.13 MHz; DMSO) of Frc2 (3-Hydroxy-2-naphthohydrazide)

Fig. S10 ¹C NMR (75.47 MHz; DMSO) of Frc2 (3-Hydroxy-2-naphthohydrazide)

Fig. S11 ¹H NMR (300.13 MHz; CDCl₃) of Frc3 (2-Oxo-2H-chromene-6-carbohydrazide)

Fig. S12 ¹C NMR (75.47 MHz; DMSO) of Frc3 (2-Oxo-2H-chromene-6-carbohydrazide)

Fig. S13 ¹H NMR (300.13 MHz; CDCl₃) of HIL1

Fig. S14 ¹C NMR (75.47 MHz; DMSO) of HIL1

Fig. S15 ¹H NMR (300.13 MHz; CDCl₃) of HIL2

Fig. S16 ¹C NMR (75.47 MHz; DMSO) of HIL2

Fig. S17 ¹H NMR (300.13 MHz; CDCl₃) of HIL3

Fig. S18 ¹C NMR (75.47 MHz; DMSO) of HIL3

Fig. S19 $^1\mathrm{H}$ NMR (300.13 MHz; CDCl_3) of HIL4

Fig. S20 ¹C NMR (75.47 MHz; DMSO) of HIL4

Fig. S21 ¹H NMR (300.13 MHz; CDCl₃) of HIL5

Fig. S22 ¹C NMR (75.47 MHz; CDCl₃) of HIL5

Fig. S23 ¹H NMR (300.13 MHz; CDCl₃) of HIL6

Fig. S24 ¹C NMR (75.47 MHz; CDCl₃) of HIL6

Fig. S25 ¹H NMR (300.13 MHz; CDCl₃) of HIL7

Fig. S26 ¹C NMR (75.47 MHz; CDCl₃) of HIL7

Fig. S27 ¹H NMR (300.13 MHz; CDCl₃) of HIL8

Fig. S28 ¹H NMR (300.13 MHz; CDCl₃) of HIL9

Fig. S29 ¹H NMR (300.13 MHz; CDCl₃) of HIL10

Fig. S30 ¹H NMR (300.13 MHz; CDCl₃) of HIL11

Fig. S31 ¹H NMR (300.13 MHz; CDCl₃) of HIL12

#	Abbreviation	CMC
		(IIIOI/L)
1	HIL1	1.291 × 10 ⁻³
2	HIL2	7.079×10^{-3}
3	HIL3	1.738×10^{-3}
4	HIL4	0.015
5	HIL5	1.950×10^{-3}
6	HIL6	7.856×10^{-3}
7	HIL7	3.548×10^{-4}
8	HIL8	7.586×10^{-4}
9	HIL9	7.244×10^{-4}
10	HIL10	4.677×10^{-4}
11	HIL11	3.802×10^{-4}
12	HIL12	4.074×10^{-4}

TableS1 The values of critical micelle concentration (CMC) of HIL1-12