Supporting Information for:

Cubane Chirality via Substitution of "Hidden" Regular Tetrahedron

Nana Yoshino, ${ }^{\text {a }}$ Yumi Kato, ${ }^{\text {a }}$ Thibaud Mabit, ${ }^{\text {a,b }}$ Yuuya Nagata, ${ }^{\text {c }}$ Craig M. Williams, ${ }^{\text {d }}$ Mei Harada, ${ }^{\mathrm{e}}$ Atsuya Muranaka, ${ }^{\mathrm{f}}$ Masanobu Uchiyama, ${ }^{\text {e, }}{ }^{\text {f }}$ and Seijiro Matsubara*a${ }^{a}$ Department of Material Chemistry, Graduate School of Engineering, Kyoto University,Kyoto-daigaku Katsura, Nishikyo-ku, Kyoto 615-8510, Japan${ }^{b} J S P S$ International Fellowship for Research
'Institute for Chemical Reaction Design and Discovery, Hokkaido University
${ }^{d}$ School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, 4072,Queensland, Australia
${ }^{e}$ Cluster for Pioneering Research (CPR), Advanced Elements Chemistry Laboratory, RIKEN,
2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
${ }^{f}$ University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
Contents
Experimental Procedure S3
Characterization Data S4
${ }^{1} H$ NMR and ${ }^{13} \mathbf{C}$ NMR Spectra of Products S8
HPLC for 12b-e S26

Instrumentation and Chemicals

Nuclear magnetic resonance spectra were taken on Varian UNITY INOVA $500\left({ }^{1} \mathrm{H}, 500\right.$ $\left.\mathrm{MHz} ;{ }^{13} \mathrm{C}, 125.7 \mathrm{MHz}\right)$ spectrometer using tetramethylsilane for ${ }^{1} \mathrm{H}$ NMR as an internal standard ($\delta=0 \mathrm{ppm}$), CDCl_{3} for ${ }^{13} \mathrm{C}$ NMR as an internal standard ($\delta=77.0 \mathrm{ppm}$). ${ }^{1} \mathrm{H}$ NMR data are reported as follows: chemical shift, multiplicity ($\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, q $=$ quartet, quint $=$ quintet, sext $=$ sextet, sept $=$ septet, $\mathrm{br}=$ broad, $\mathrm{m}=$ multiplet $)$, coupling constants (Hz), and integration. High-resolution mass spectra were obtained with a JEOL JMS-700 spectrometer for EI and with a Thermo Fisher SCIENTIFIC EXTRACTIVE spectrometer for ESI and APCI. Infrared (IR) spectra were determined on a SHIMADZU FTIR-8200PC spectrometer. Melting points were determined using a YANAKO MP-500D. High performance liquid chromatography (HPLC) was performed with a SHIMADZU Prominence. Electronic absorption spectra were collected on a JASCO V-630 spectrometer. CD spectra were recorded with a JASCO J-820 spectrodichrometer. A 1 mm quartz cell was used for these measurements. The magnitude of the CD signal is expressed in terms of molar circular dichroism $\Delta \varepsilon$ / $\mathrm{M}^{-1} \mathrm{~cm}^{-1}$. TLC analyses were performed by means of Merck Kieselgel 60 F254 (0.25 mm) Plates. Visualization was accomplished with UV light (254 nm) and an aqueous anisaldehyde solution followed by heating. Flash column chromatography was carried out using Kanto Chemical silica gel (spherical, 40-100 $\mu \mathrm{m}$). Unless otherwise noted, commercially available reagents were used without purification. Tetrahydrofuran, Dehydrated stabilizer free —Super— was purchased from Kanto Chemical Co., stored under argon, and used as it is.
4-Deuteriocubane- N, N-diisopropylcarboxamide (6) was prepared by Iodine-Metal Exchange reaction ${ }^{1}$ of 4-Iodocubane- N, N-diisopropylcarboxamide with $n-\mathrm{Bu}_{4} \mathrm{ZnLi}_{2}$ solution ${ }^{2}$ followed by a reaction with $D_{2} O$. The characterization of the isolated compounds $\mathbf{3}, \mathbf{5}, \mathbf{8}, \mathbf{1 2}$, and $\mathbf{1 3}$ were also shown.

Experimental Procedure

Dibromination of 4-deuteriocubane- N, N-diisopropylcarboxamide 6: Preparation of 8.
The site-selective bromination reported by Alexanian ${ }^{3}$ was applied to 6 . A flame-dried 20 mL pyrex vial was charged with 4-deuteriocubane- N, N-diisopropylcarboxamide ($\mathbf{6}, 116 \mathrm{mg}$, 0.5 mmol), N-bromo- N-(t-butyl)-3,5-bis(trifluoromethyl)benzamide (2, $196 \mathrm{mg}, 0.5 \mathrm{mmol}$), and anhydrous benzene $(7.0 \mathrm{~mL})$. The reaction vial was purged with argon for 10 minutes, and placed in a water bath held at $25^{\circ} \mathrm{C}$, followed by irradiated with visible light for 1 h . Aldrich ${ }^{\circledR}$ Micro Photochemical Reactor blue LED (ALDKIT001) was used as a light source. The pyrex vial was placed in the middle of a circle device (ALDKIT001) with a diameter of 11 cm . An additional one-molar equivalent of bromoamide ($2,196 \mathrm{mg}, 0.5 \mathrm{mmol}$) in 3.0 mL benzene was added to the mixture and stirred for 1 h . The another one-molar equivalent of bromoamide ($196 \mathrm{mg}, 0.5 \mathrm{mmol}$) in 3.0 mL benzene was added to the mixture and stirred for 2 h . The resulting mixture was concentrated in vacuo and dissolved in pentanes. The resulting suspension was run through a plug of silica and concentrated in vacuo. Purification by silica gel chromatography (Hexane/ $\mathrm{AcOEt}=5 / 1$ as an eluent) gave the corresponding product $\mathbf{8}$ in 72% yield (139 mg), along with $\mathbf{3}$ (3% yield) and $\mathbf{7}(16 \%$ yield). The monobromide $\mathbf{3}$ and 7 was obtained as a mixture, which cannot be separated by silica gel chromatography. Pure compound $\mathbf{3}$ was prepared in 28% yield from 4-(diisopropylcarbamoyl)cubane-1-carboxylic acid and N -bromophtalic imide by Fu's procedure for visible light-induced decarboxylative iodination. ${ }^{4}$ The ration of the monobromides ($\mathbf{3}$ and 7) was calculated by ${ }^{1} \mathrm{H}$ NMR of the crude product. The rati of $\mathbf{3}, \mathbf{4}$, and $\mathbf{5}$ in Scheme 1 was also determined in the same way.

Preparation of chiral cubane (12a-12e).

The dianionic zincate was prepared according to the reported procedure by Uchiyama. ${ }^{2}$ To a solution of anhydrous ZnCl_{2} (Commercially available "anhydrous ZnCl_{2} " was dried in vacuo at $\left.150{ }^{\circ} \mathrm{C} ; 402 \mathrm{mg}, 3.0 \mathrm{mmol}\right)$ in anhydrous THF $(18 \mathrm{ml}), n-\operatorname{BuLi}(1.57 \mathrm{M}$ in hexane, 7.7 ml , 12.0 mmol) was added dropwise at $-78^{\circ} \mathrm{C}$. The resulting mixture was stirred for 30 min at $0^{\circ} \mathrm{C}$. To a thus prepared pale yellow $n-\mathrm{Bu}_{4} \mathrm{ZnLi}_{2}$ THF solution, a solution of 3,5 -DibromoN, N-diisopropylcubane-1-carboxamide-4- $d(\mathbf{8}, 390 \mathrm{mg}, 1.0 \mathrm{mmol})$ in THF $(5.0 \mathrm{~mL})$ was added dropwise at $-78^{\circ} \mathrm{C}$. The whole was stirred for 2 h at $25^{\circ} \mathrm{C}$. To the resulting mixture, 4-bromobenzyl bromide ($1.25 \mathrm{~g}, 5.0 \mathrm{mmol}$) in THF (3.0 mL). The resulting mixture was stirred at $25^{\circ} \mathrm{C}$ for 12 h . The mixture was quenched with sat. $\mathrm{NH}_{4} \mathrm{Claq}$, and extracted with ether. The organic layers were washed with sat. $\mathrm{NaHCO}_{3} \mathrm{aq}$ and brine. The obtained organic solution was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Purification by silica gel
chromatography (Hexane/ $\mathrm{AcOEt}=5 / 1$ as an eluent) gave chiral cubane (12a-12d) as a racemic mixture.

Characterization Data

4-Bromo-N,N-diisopropylcubane-1-carboxamide-4-d (3)

A white solid (mp 122.5-124.5 ${ }^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $4.28-4.24(\mathrm{~m}, 3 \mathrm{H}), 1 \mathrm{H}), 4.24-4.20(\mathrm{~m}, 3 \mathrm{H}), 3.38$ (sept, $J=7.0 \mathrm{~Hz}$, $1 \mathrm{H}), 3.30$ (sept, $J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.40(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 6 \mathrm{H}), 1.18(\mathrm{~d}, J=$
$37.0 \mathrm{~Hz}, 6 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 169.8,62.8,59.8,53.8$, 48.4, 47.6, 45.9, 21.0, 20.4; HRMS (ESI) m/z: [M + Na] ${ }^{+}$Calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{DBrNONa} 332.0620$; Found332.0625; IR (KBr): 2966, 1617, 1448, 1370, $1348 \mathrm{~cm}^{-1}$..

3,5-Dibromo- N, N-diisopropylcubane-1-carboxamide (5)

Yield ($36 \%, 70 \mathrm{mg}$). A white solid (mp 112-112.5 ${ }^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR (500
 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 4.57(\mathrm{~m}, 1 \mathrm{H}), 4.45$ (ddd, $J=5.5,3.0,3.0 \mathrm{~Hz}, 2 \mathrm{H}$), 4,41 (dddd, $J=5.5,3.0,3.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}$), 4.14 (dddd, $J=5.5,5.5,5.5,1.0 \mathrm{~Hz}$, 1 H), 3.53 (sept, $J=7.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.32 (sept, $J=7.0 \mathrm{~Hz}, 1 \mathrm{H}$), 1.41 (d, J $=7.0 \mathrm{~Hz}, 6 \mathrm{H}), 1.22(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 166.9,66.9,64.2,58.6,55.4,55.0,48.9,46.2,40.4,20.7,20.4 ;$ HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$ Calcd for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{Br}_{2} \mathrm{NONa} 412.9711$; Found 411.9708; IR (KBr): 2960, 1650, 1625, $1448 \mathrm{~cm}^{-1}$.

3,5-Dibromo- N, N-diisopropylcubane-1-carboxamide-4-d (8)

Yield ($72 \%, 139 \mathrm{mg}$). A white solid (mp 111-112 ${ }^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 4.56$ (ddd, $J=3.0,3.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}$), 4.44 (dd, $J=5.5,3.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.13$ (ddd, $J=5.5,5.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.53$ (sept, $J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.32(\mathrm{sept}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.41(\mathrm{~d}, J=7.0$ $\mathrm{Hz}, 6 \mathrm{H}), 1.22(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 166.9, 66.9, 63.8 (t), 58.5, 55.4, 54.9, 48.8, 46.2, 40.3, 20.7, 20.4; HRMS (ESI) m/z: [M + $\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{DBr}_{2} \mathrm{NONa} 412.9768$; Found 412.9764; IR (KBr): 2260, 1653, 1628, 1457, 1437, 1374, 1346, 754.

3-Allyl-5-n-buthyl- N, N-diisopropylcubane-1-carboxamide-4-d (12a)

Prepared following the general procedure using 0.1 mmol of $\mathbf{8}$: Yield 67% (colorless oil, 22.0 mg). ${ }^{1} \mathrm{H}$ NMR (500 MHz , CDCl_{3}): $\delta 5.72$ (dddd, $\left.J=17.0,13.5,9.5,6.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.07-$ 5.00 (m, 2H), 3.94 (ddd, $J=5.0,2.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}$), 3.90 (ddd, J $=5.0,2.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{dd}, J=2.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.62(\mathrm{dd}$, $J=5.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.58$ (sept, $J=7.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.27 (sept, $J=7.0 \mathrm{~Hz}, 1 \mathrm{H}$), 2.37-2.28 (m, $2 \mathrm{H}), 1.56(\mathrm{dt}, J=16.0,6.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.54(\mathrm{dt}, J=16.0,6.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.40(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 6 \mathrm{H})$, 1.35-1.19 (m, 4H), 1.16 (d, $J=6.5 \mathrm{~Hz}, 6 \mathrm{H}), 0.89(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125.7 MHz, $\left.\mathrm{CDCl}_{3}\right): ~ \delta 171.3,133.6,116.5,52.7,52.5,51.8,51.1,50.9,50.8,48.0,45.7,37.3,37.2,32.2$, 26.3, 22.9, 20.8, 20.6, 14.1 (The signal of D-substituted carbon in cubane skeleton wan not strong enough to be detected because of coupling with D); HRMS (ESI) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{Na}]^{+}$ Calcd for $\mathrm{C}_{22} \mathrm{H}_{32} \mathrm{DNONa} 351.2517$; Found 351.2524; IR (KBr): 2963, 2925, 2224, 1627, 1441, 1369, 1340, 1217, $1046 \mathrm{~cm}^{-1}$.

3-Benzyl-5-n-buthyl- N, N-diisopropylcubane-1-carboxamide-4-d (12b)

Prepared following the general procedure using 0.1 mmol of 8: Yield 48\% (colorless oil, 18.2 mg). ${ }^{1} \mathrm{H}$ NMR (500 MHz , CDCl_{3}): $\delta 7.28$ (dd, $J=7.5,7.0 \mathrm{~Hz}, 2 \mathrm{H}$), 7.19 (dd, $J=7.5$, $1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.12$ (d, $J=7.0 \mathrm{~Hz}, 2 \mathrm{H}$), 3.99 (ddd, $J=5.0,2.5$, $2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.86$ (ddd, $J=5.0,2.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}$), 3.71 (dd, J $=2.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.58(\mathrm{dd}, J=5.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.58(\mathrm{sept}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.27(\mathrm{sept}, J=$ $7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.90(\mathrm{~d}, J=19.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.87(\mathrm{~d}, J=19.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.48-1.30(\mathrm{~m}, 2 \mathrm{H}), 1.41(\mathrm{~d}$, $J=6.5 \mathrm{~Hz}, 6 \mathrm{H}), 1.23-1.10(\mathrm{~m}, 2 \mathrm{H}), 1.16(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 6 \mathrm{H}), 0.93-0.83(\mathrm{~m}, 2 \mathrm{H}), 0.79(\mathrm{t}, J=$ $7.5 \mathrm{~Hz}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 171.3,138.1,128.9,128.2,125.9,52.5,52.2$, $51.8,51.7,51.2,51.1,48.1,45.7,39.1,36.9,32.2,25.9,22.9,20.8,20.6,14.1$ (The signal of D-substituted carbon in cubane skeleton wan not strong enough to be detected because of coupling with D); HRMS (ESI) m/z: [M + Na] ${ }^{+}$Calcd for $\mathrm{C}_{26} \mathrm{H}_{34} \mathrm{DNO} 401.2674$; Found 401.2678; IR (KBr): 2960, 2922, 2224, 1625, 1436, 1368, $1340 \mathrm{~cm}^{-1}$.

3-(4-Bromobenzyl)-5-n-buthyl- N, N-diisopropylcubane-1-carboxamide-4- \boldsymbol{d} (12c)

Prepared following the general procedure using 0.1 mmol of 8: Yield 53% (colorless oil, 24.2 mg). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.39$ (d, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}$), 7.00 (d, J $=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.97(\mathrm{ddd}, J=5.1,2.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.84$ (ddd, $J=5.1,2.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.69 (bs, 1H), 3.58 (dd, J $=5.1,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.56(\mathrm{sept}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.27$ (sept, $J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.83$ (d, $J=15.0$ $\mathrm{Hz}, 1 \mathrm{H}), 2.82(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.43-1.36(\mathrm{~m}, 2 \mathrm{H}), 1.41(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 6 \mathrm{H}), 1.19-1.12$ (m, 2H), 1.16 (d, $J=6.6 \mathrm{~Hz}, 6 \mathrm{H}), 0.89-0.79(\mathrm{~m}, 2 \mathrm{H}), 0.81(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 171.1,137.0,131.3,130.7,119.8,52.5,52.2,51.6,51.5,51.4,50.9$, 48.1, 45.8, 38.4, 36.9, 32.2, 25.9, 22.9, 20.8, 20.6, 14.1 (The signal of D-substituted carbon in cubane skeleton wan not strong enough to be detected because of coupling with D); HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{26} \mathrm{H}_{33} \mathrm{DBrNONa} 479.1779$; Found 479.1781; IR (KBr): $2961,2225,1628,1490,1441,1369,1341 \mathrm{~cm}^{-1}$.

The racemic micture was resolved by HPLC DAICEL CHIRALPAK ID iso-PrOH/Hexane: $5 / 95$, flow rate: $1.0 \mathrm{~mL} / \mathrm{min}$. The sample was separated into two eluents ($1^{\text {st }}$ fraction: 8.15 $\min ,[\alpha]^{25}{ }_{\mathrm{D}}=-13.5(c 9.2, \mathrm{CHCl} 3) ; 2^{\text {nd }}$ fraction $9.01 \mathrm{~min},[\alpha]^{25} \mathrm{D}=+13.9(c 7.3, \mathrm{CHCl} 3)$.

3-Iodo-5-n-buthyl- N, N-diisopropylcubane-1-carboxamide-4-d (12d)

Prepared following the general procedure using 0.3 mmol of 8: Yield 31% (colorless oil, 38.5 mg). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 4.41$ (ddd, $J=5.5,2.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{bs}, 1 \mathrm{H}), 4.13$ (ddd, $J=4.5,2.0$, $2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.96(\mathrm{dd}, J=4.5,5.5, \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{sept}, J=7.0 \mathrm{~Hz}$, $1 \mathrm{H}), 3.31$ (sept, $J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.66(\mathrm{~m}, 2 \mathrm{H}), 1.41(\mathrm{~d}, J=7.0 \mathrm{~Hz}$, $6 \mathrm{H}), 1.37-1.24(\mathrm{~m}, 4 \mathrm{H}), 1.21(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 6 \mathrm{H}), 0.91(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (500 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 168.7,61.1,60.1,57.9,57.3,57.0,50.3,48.5,46.0,41.7,41.5,31.5,26.2$, 22.6, 20.7, 20.5, 14.0 (The signal of D-substituted carbon in cubane skeleton wan not strong enough to be detected because of coupling with D); HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{DINO} 437.1171$; Found 437.1173; IR (KBr): 2964, 2926, 2239, 1628, 1437, 1369, $1340,1255,1215,1045 \mathrm{~cm}^{-1}$.

3-Carboxylateethyl-5-n-buthyl- N, N-diisopropylcubane-1-carboxamide-4-d (12e)

Prepared following the general procedure using 0.3 mmol of $\mathbf{8}$: Yield 40% (colorless oil, 43.3 mg). ${ }^{1} \mathrm{H}$ NMR (500 MHz , CDCl_{3}): $\delta 4.37$ (ddd, $\left.J=5.1,2.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.16(\mathrm{q}, J=7.0$ $\mathrm{Hz}, 2 \mathrm{H}), 4.11(\mathrm{dd}, J=2.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.92$ (ddd, $J=5.1,2.5$, $2.5 \mathrm{~Hz}, 1 \mathrm{H}$), 3.77 (dd, $J=5.1,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.64$ (sept, $J=6.5$ $\mathrm{Hz}, 1 \mathrm{H}), 3.30(\mathrm{sept}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.62(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.41(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H}), 1.36-$ $1.25(\mathrm{~m}, 4 \mathrm{H}), 1.27(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.19(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 6 \mathrm{H}), 0.90(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 171.7,169.9,60.3,53.7,53.5,53.1,52.2,49.9,49.6,48.3,45.8$, 38.3, 31.5, 26.0, 22.7, 20.8, 20.5, 14.3, 14.0 (The signal of D-substituted carbon in cubane skeleton wan not strong enough to be detected because of coupling with D); HRMS (ESI) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{22} \mathrm{H}_{32} \mathrm{DNO}_{3} \mathrm{Na} 383.2415$; Found 383.2417; IR (KBr): 2968, 2929, $2239,1722,1627,1441,1369,1343,1313,1191 \mathrm{~cm}^{-1}$

3,5-Diphenyl- N, N-diisopropylcubane-1-carboxamide-4- d (13)

Prepared following the general procedure using 0.1 mmol of 1a: Yield 48% (18.5 mg , decomposed at $>250{ }^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR (500 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.46-7.20(\mathrm{~m}, 10 \mathrm{H}), 4.49(\mathrm{dd}, J=5.1,2.4 \mathrm{~Hz}$, 2 H), 4.46 (dd, $J=2.4,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.94(\mathrm{dd}, J=5.1,5.4 \mathrm{~Hz}, 1 \mathrm{H})$, 133.60 (sept, $J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.28$ (sept, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.42(\mathrm{~d}, J=$ $6.8 \mathrm{~Hz}, 6 \mathrm{H}), 1.09(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 170.2,141.6,128.6$, 126.3, 125.0, 57.2, 53.3(t), 53.1, 48.4, 45.9, 37.2, 20.8, 20.6; HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$ Calcd for $\mathrm{C}_{27} \mathrm{H}_{28} \mathrm{NONa} 407.2204$; Found 407.2208; IR (KBr): 3744, 2928, 2231, 1700, 1625, $1437 \mathrm{~cm}^{-1}$
(1) Y. Kato, C. M. Williams, M. Uchiyama, S. Matsubara, Org. Lett. 2019, 21, 473-475.
(2) Uchiyama, M.; Furuyama, T.; Kobayashi, M.; Matsumoto, Y.; Tanaka, K. J. Am. Chem. Soc. 2006, 128, 8404-8405.
(3) Schmidt, V. A.; Quinn, R. K.; Brusoe, A. T.; Alexanian, E. J. J. Am. Chem. Soc. 2014, 136, 14389-14392.
(4) Candish, L.; Standley, E. A.; Gómez-Suárez, A.; Mukherjee, S.; Glorius, F. Chem. Eur.J. 2016, 22, 9971-9974.

${ }^{1} \mathrm{H}$ NMR Spectra of $\mathbf{3}\left(\mathbf{5 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR Spectra of 3 （ $\mathbf{1 2 5 . 7 \mathrm { MHz } , \mathrm { CDCl } _ { 3 } \text { ）}) ~}$

3

OZし Oも
091

$\frac{8}{2}$
n^{π}
$\frac{2}{7}$
N

\circ
∞
∞

1 mown

\qquad
\qquad
77.259
77.000
76.748

${ }^{1} \mathrm{H}$ NMR Spectra of $5\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR Spectra of $5\left(\mathbf{1 2 5 . 7} \mathbf{M H z}, \mathrm{CDCl}_{3}\right)$

1200008 atep lod

${ }^{1} \mathrm{H}$ NMR Spectra of $8\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13}$ C NMR Spectra of $8\left(125.7 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR Spectra of $\mathbf{1 2 a}\left(\mathbf{5 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR Spectra of $12 \mathrm{a}\left(125.7 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathbf{H ~ N M R ~ o f ~} 12 \mathrm{~b}\left(\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right)$

${ }^{13} \mathrm{C}$ NMR Spectra of $\mathbf{1 2 b}\left(125.7 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR of $\mathbf{1 2 c}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR Spectra of $\mathbf{1 2 c}\left(125.7 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR Spectra of $\mathbf{1 2 d}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR Spectra of $12 \mathrm{~d}\left(125.7 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR NMR Spectra of $12 \mathrm{e}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR Spectra of $\mathbf{1 2 e}\left(\mathbf{1 2 5 . 7 M H z}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR NMR Spectra of $13\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR Spectra of $\mathbf{1 3}\left(\mathbf{1 2 5 . 7} \mathbf{M H z}, \mathrm{CDCl}_{3}\right)$

HPLC Analysis by SHIMADZU Prominence.

3-(4-Bromobenzyl)-5-n-buthyl- N, N-diisopropylcubane-1-carboxamide-4- \boldsymbol{d}

12c (Racemate) DAICEL CHIRAL PAK ID i-PrOH/Hexane: $5 / 951.0 \mathrm{~mL} / \mathrm{min}$

After Separation by HPLC

3-Benzyl-5-n-buthyl- N, N-diisopropylcubane-1-carboxamide-4-d (12b)

12b (Racemate) DAICEL CHIRAL PAK IC i-PrOH/Hexane: $1 / 991.0 \mathrm{~mL} / \mathrm{min}$

3-Iodo-5-n-buthyl- N, \boldsymbol{N}-diisopropylcubane-1-carboxamide-4- \boldsymbol{d} (12d)
12d (Racemate) DAICEL CHIRAL PAK ID i-PrOH/Hexane: $5 / 951.0 \mathrm{~mL} / \mathrm{min}$

3-Carboxylateethyl-5-n-buthyl- N, N-diisopropylcubane-1-carboxamide-4- \boldsymbol{d} (12e)

12e (Racemate) DAICEL CHIRAL PAK ID $i-\mathrm{PrOH} /$ Hexane: $1 / 991.0 \mathrm{~mL} / \mathrm{min}$

