Supporting Information

Protecting Group Controlled Remote Regioselective Electrophilic Aromatic Halogenation Reactions

William D. G. Brittain*,[†] and Steven L. Cobb*,[†]

[†]Department of Chemistry, Durham University, South Road, Durham, DH1 3LE, United Kingdom

Email: william.d.brittain@durham.ac.uk, and s.l.cobb@durham.ac.uk

Contents

NMR Data for Reaction Condition Screening	S2
NMR Data for Synthesised Compounds	S3
Mulliken Atomic Charge Values on Static Optimised Geometries of Anisole and TFP-Phenol S	181
Crystal Structure Data S	183
References S	184

NMR Data for Reaction Condition Screening

NMR Data for Synthesised Compounds

-75 -80 -85 -90 -95 -100 -105 -110 -115 -120 f1 (ppm) -125 -145 -160 -130 -135 -140 -150 -155

	•			•											•	
-80	-85	-90	-95	-100	-105	-110	-115	-120	-125	-130	-135	-140	-145	-150	-155	-160
								f1 (ppm)								

	1

		1		1 1	1 1		1	' '		. 1				· · · ·	· · · ·	· · · ·
-80	-85	-90	-95	-100	-105	-110	-115	-120	-125	-130	-135	-140	-145	-150	-155	-160
								f1 (ppm)								

Sample was prepared using the general procedure for iodination A

2,3,5,6-tetrafluoro-4-(4-iodophenoxy)pyridine

2,3,5,6-tetrafluoro-4-(4-iodophenoxy)pyridine

Sample was prepared using the general procedure for iodination A

-120 f1 (ppm) -75 -80 -85 -90 -95 -115 -130 -135 -140 -145 -155 -100 -105 -110 -125 -150 -160 -165

PROTON_01 SLC:WB:WB2MeOTFP

Sample was prepared using the general procedure for iodination A

	· · ·	·	· ·	· · ·	· · ·		·	· · ·	· ·		· 1	· 1		· · ·	- I	
-80	-85	-90	-95	-100	-105	-110	-115	-120	-125	-130	-135	-140	-145	-150	-155	-160
								f1 (ppm)								

f1 (ppm)

55 -70 -75 -80 -85 -90 -95 -100 -105 -120 -125 -130 -135 -140 -145 -150 -165 -110 -115 -155 -160 f1 (ppm)

Sample was prepared using the general procedure for iodination A

								·	' '				· · ·	'	, , , ,	
-80	-85	-90	-95	-100	-105	-110	-115	-120	-125	-130	-135	-140	-145	-150	-155	-160
00	05	50	55	100	105	110	115	120	125	150	155	110	115	150	155	100
f1 (nnm)																
								1 (PPIII)								

11

Sample was prepared using the general procedure for iodination A

f1 (ppm)

หลงในของเป็นของของสามสาขสาของสาของข้านให้หลายสาขให้หลายสาขสาขสาขสาขสาขสาขสาขสาขสาขสาขสาขไป <mark>ไ</mark> ปรับป	กกล่างใหญ่หมู่สุขในที่สมุทรากที่มีหมู่สิ่งที่มาให้หน่งจะหลากที่หัญหายายหายแห่งสมุทรายแห่งการของหมู่มายนังสุขาย 	มากรรณวัตรกิจารัฐมากรรณ์หลักที่ไหวไหรราชสารสุกิจการแม่มีสารามัยการสินชาตรกิจไปและเหลาๆ(โกษตรางได้ 	MIMON AN ANALASIAN MILIYA SAMA

_			· 1			'	1	·			· [· 1	· 1	· 1				
-8	85	-90	-95	-	100	-105	-110	-115	-1	120	-125	-130	-135	-140	-145	-150	-155	
	f1 (ppm)																	

CARBON_01 SLC:WB:WB5-57	155.25 154.84	 138.00 132.65 128.28 128.17 	√ 116.94 √ 115.75	
F F F O 5c				
	<u>.</u>			

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

	- 0 F	5e				
	********	****	**********	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	₩₽\$₩₽~₩₽₽₩₽₩₽₽₩₽₩₽₩₽₩₽₩₽₩₽₩₽₩₽₩₽₩₽₩₽₩₽₩₽	determinenter and the second

	· · ·		· · ·									·	· · · ·			
-80	-85	-90	-95	-100	-105	-110	-115	-120	-125	-130	-135	-140	-145	-150	-155	-160
								f1 (ppr	n)							

CARBON_01 SLC:WB:WB5-65

 	 A

 - I - I		· ·		- I '			·	·	· ·		· · · ·		· · · ·	1 1	- I I	· · ·
-80	-85	-90	-95	-100	-105	-110	-115	-120	-125	-130	-135	-140	-145	-150	-155	-160
								f1 (ppm)								

-90 -125 -145 -150 -95 -120 -80 -85 -100 -105 -110 -115 -130 -135 -140 -155 -160 -165 f1 (ppm)

10160329.13.fid SLC:WDGB:WB5-51

 L	 a.d.h.aa	

														'				
-75	-80	-85	-90	-95	-100	-105	-110	-115	-120	-125	-130	-135	-140	-145	-150	-155	-160	-165
									f1 (ppm)									

ir (bhiii)

-90 -95 -135 -140 -120 -80 -85 -100 -105 -110 -115 -125 -130 -145 -150 -155 -160 f1 (ppm)

	· ·	·	·	· · · ·	· · · ·		1	· 1	· · · · ·		י <u>ו</u> י	I	·	· · · ·	· · · · ·	· I
-80	-85	-90	-95	-100	-105	-110	-115	-120	-125	-130	-135	-140	-145	-150	-155	-160
								f1 (ppm)								

05160212.13.fid SLC:WDGB:WB5-71

-70 -75 -85 -80 -90 -95 -100 -105 -115 -120 -125 -130 -135 -140 -145 -150 -155 -160 -165 -110 f1 (ppm)

S117

f1 (ppm)

S127

- 88.72

f2 (ppm)

S133

S145

-75 -90 -95 -80 -85 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -150 -155 -160 -165 f1 (ppm)

	·					·		· · · ·							i	
-80	-85	-90	-95	-100	-105	-110	-115	-120	-125	-130	-135	-140	-145	-150	-155	-160
								f1 (ppm)							

Iodination Competition Experiment

9.0 8.9 8.8 8.7 8.6 8.5 8.4 8.3 8.2 8.1 8.0 7.9 7.8 7.7 7.6 7.5 7.4 7.3 7.2 7.1 7.0 6.9 6.8 6.7 6.6 6.5 6.4 6.3 6.2 6.1 6.0 5.9 5.8 5.7 5.6 f1 (ppm)

¹H NMR of Crude Reaction Mixture of Iodination of TFP-BPA

¹H NMR of Crude Reaction Mixture of Iodination of BPA

7.80 7.75 7.70 7.65 7.60 7.55 7.50 7.45 7.40 7.35 7.30 7.25 7.20 7.15 7.10 7.05 7.00 6.95 6.90 6.85 6.80 6.75 6.70 6.65 6.60 6.55 6.50 6.45 6.4 f1 (ppm)

Mulliken Atomic Charge Values on Static Optimised Geometries of Anisole and TFP-Phenol

Computations

Optimized geometries of PhOTFP and PhOMe and their Mulliken charges were performed with the Gaussian 09 package¹ using the popular $B3LYP^{2,3}$ functional with the 6-31(d) basis set.^{4,5} The optimized S₀ geometries were true minima based on no imaginary frequencies found from frequency calculations.

Cartesian Coordinates

PhOTFP

B3LYP	6-31G(d)	
Total	Energy = -951.466658 au	
Imagir	ary Frequency = 0	
Gibbs	Free Energy = -951.367192 au	
С	-4.374618 0.241140 0.67890	0
С	-4.222420 -0.333231 -0.58521	6
С	-2.959932 -0.707014 -1.04369	11
C	-1 854432 -0 500872 -0 22192	2
C	-1 984947 0 058442 1 04733	3
C	-3 254748 0 433841 1 48900	7
U U	-5 359235 0 53/127 1 03080	2
и П	-5 088342 = 0 489592 = 1 22222	a
п	-5.000542 -0.409592 -1.22222	9
п		9
H		5
H	-3.364058 0.873371 2.47642	С С
0	-0.632931 -0.963348 -0.71915	0
С	0.534646 -0.379437 -0.36095	8
С	0.769011 1.002743 -0.39163	1
С	1.616861 -1.208035 -0.03697	8
С	2.042123 1.465437 -0.07295	9
С	2.845671 -0.618448 0.24320	7
N	3.054396 0.681403 0.23172	4
F	1.461072 -2.534372 0.00071	2
F	-0.210253 1.855286 -0.71729	5
F	2.261309 2.781691 -0.09124	2
F	3.875001 -1.408037 0.55388	4
PhOMe		
B3LYP	6-31G(d)	
Total	Energy = -346.771321 au	
Imagir	ary Frequency = 0	
Gibbs	Free Energy = -346.668736 au	
С	2.283558 0.330606 -0.000029)
С	1.336290 1.351641 -0.000079)
С	-0.032584 1.063643 0.000104	
С	-0.454700 -0.271095 0.000072	
С	0.495022 -1.303614 0.000161	
С	1.851813 -1.000474 -0.000167	
H	3 344114 0 564725 0 000503	
н	1 656099 2 390637 0 000210	
ц	-0.750287 1 876188 -0.000341	
н Ц	0.1/2631 - 2.330/8/ - 0.000341	
ц	2578130 -1800153 -0.000100	
11		
C		
н	-3.720349 -0.209731 -0.000671	
H	-2./11281 0.959260 0.894885	
Н	-2./10/26 0.960471 -0.894111	

Crystal Structure Data

Figure S-1) Crystal structure of compound 3f, ellipsoids are drawn at the 50% probability level. Sample was prepared by slow evaporation from DCM.

Figure S-2) Crystal structure of compound 8, ellipsoids are drawn at the 50% probability level. Sample was prepared by slow evaporation from toluene. The X-ray single crystal data have been collected using λ MoK α radiation ($\lambda = 0.71073$ Å) on an Agilent XCalibur (compound **8**, Sapphire-3 CCD detector, fine-focus sealed tube, graphite monochromator, ω -scan, 1.0°/frame) and on a Bruker D8Venture (compound **3f**, Photon100 CMOS detector, I μ S-microsource, focusing mirrors) diffractometers equipped with a Cryostream (Oxford Cryosystems) open-flow nitrogen cryostat at the temperature 120.0(2)K. The structures were solved by direct method and refined by full-matrix least squares on F² for all data using Olex2⁶ and SHELXTL⁷ software. All non-hydrogen atoms were refined anisotropically, hydrogen atoms were placed in the calculated positions and refined in riding mode. Crystal data and parameters of refinement are listed in Table S2. Crystallographic data for the structure have been deposited with the Cambridge Crystallographic Data Centre as supplementary publications CCDC-1948713 and 1947954.

Compound	3f	8
Empirical formula	C ₁₅ H ₆ F ₄ INO	$C_{20}H_{13}F_4I_2NO_2$
Formula weight	419.1	629.11
Crystal system	monoclinic	monoclinic
Space group	P21	P2 ₁ /c

Table S2. Crystal data and structure refinement for compounds **3f** and **8**.

a/Å	4.6677(3)	12.3523(3)
b/Å	11.0185(7)	12.7890(3)
c/Å	13.0170(8)	12.8327(3)
β/°	90.865(2)	94.170(2)
Volume/Å ³	669.40(7)	2021.86(9)
Ζ	2	4
$\rho_{calc}g/cm^3$	2.079	2.067
µ/mm ⁻¹	2.439	3.163
F(000)	400.0	1192.0
Crystal size/mm ³	$0.23 \times 0.1 \times 0.06$	$0.38 \times 0.17 \times 0.15$
2Θ range for data collection/°	6.26 to 59.99	4.59 to 58.994
Reflections collected	14627	20412
Independent reflections, R _{int}	3908, 0.0261	5635, 0.0394
Data/restraints/parameters	3908/1/199	5635/0/264
Goodness-of-fit on F ²	1.048	1.024
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0163, wR_2 = 0.0397$	$R_1 = 0.0294, wR_2 = 0.0642$
Final R indexes [all data]	$R_1 = 0.0176, wR_2 = 0.0401$	$R_1 = 0.0426, wR_2 = 0.0711$
Largest diff. peak/hole / e Å ⁻³	0.58/-0.53	0.81/-0.90
Flack parameter	-0.044(7)	n/a

References

- Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Revision A.02. *Gaussian, Inc Wallingford CT* 2009.
- 2. Becke, A. D. Density-Functional Thermochemistry .3. The Role of Exact Exchange. *J. Chem. Phys.* **1993**, *98*, 5648-5652.
- 3. Lee, C. T.; Yang, W. T.; Parr, R. G. Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron-Density. *Phys. Rev. B* **1988**, *37*, 785-789.
- 4. Petersson, G. A.; Allaham, M. A. A Complete Basis Set Model Chemistry .2. Open-Shell Systems and the Total Energies of the 1st-Row Atoms. *J. Chem. Phys.* **1991**, *94*, 6081-6090.
- 5. Petersson, G. A.; Bennett, A.; Tensfeldt, T. G.; Allaham, M. A.; Shirley, W. A.; Mantzaris, J. A Complete Basis Set Model Chemistry .1. The Total Energies of Closed-Shell Atoms and Hydrides of the 1st-Row Elements. *J. Chem. Phys.* **1988**, *89*, 2193-2218.

- 6. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, *J. Appl. Crystallogr.* **2009**, *42*, 339-341.
- 7. G. Sheldrick, Acta Cryst. 2008, 64, 112-122.