Supporting Information

"Synthesis of a-Trifluoromethylthio-a, \beta-unsaturated Carbonyl Compounds by

DABCO-Mediated Electrophilic Trifluoromethylthiolation with

N-SCF₃-dibenzenesulfonimide"

Jeyeon Yoo,[†] Heun-Jong Ha,[†] Bora Kim, and Chang-Woo Cho*

Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Daegu 41566, Republic of Korea

*E-mail: cwcho@knu.ac.kr

^tJ.Y. and H.-J.H. contributed equally to this work.

Table of Contents

NMR spectra for new compounds

X-Ray crystallographic data of 5

S47-S48

S2-S46

S1

¹³C NMR of **2b** (125 MHz, CDCl₃)

¹⁹F NMR of **2b** (564 MHz, CDCl₃)

¹³C NMR of **2c** (125 MHz, CDCl₃)

¹⁹F NMR of **2d** (564 MHz, CDCl₃)

¹³C NMR of **2e** (125 MHz, CDCl₃)

7.0

6.5

6.0

5.5

5.0

7.5

8.5

8.0

4.5 4.0 f1 (ppm) 3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 (1 (ppm)

¹H NMR of **2f** (500 MHz, CDCl₃)

¹⁹F NMR of **2f** (564 MHz, CDCl₃)

¹³C NMR of **2g** (125 MHz, CDCl₃)

40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 11 (ppm)

¹H NMR of **2h** (500 MHz, CDCl₃)

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

¹⁹F NMR of **2h** (564 MHz, CDCl₃)

¹H NMR of 2i (500 MHz, CDCl₃)

¹⁹F NMR of **2i** (564 MHz, CDCl₃)

40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 f1 (ppm)

¹H NMR of 2j (500 MHz, CDCl₃) 8.045 8.042 8.042 8.039 8.036 8.036 8.036 7.555 7.555 7.555 7.555 7.554 7.554 7.554 7.554 7.554 7.540 7.7404 7.7404 7.7393 7.7404 6.7339 6.561 6.568 SCF₃ **2**j 1.00-1.02<u>4</u> 1.02<u>4</u> 1.07 8.0 7.5 6.5 4.5 4.0 f1 (ppm) 8.5 7.0 6.0 5.5 3.5 3.0 2.5 2.0 1.0 0.5 0.0 5.0 1.5

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

¹⁹F NMR of **2j** (564 MHz, CDCl₃)

¹H NMR of **2k** (500 MHz, CDCl₃)

¹³C NMR of 2k (125 MHz, CDCl₃)

¹⁹F NMR of 2k (564 MHz, CDCl₃)

¹H NMR of 2l (500 MHz, CDCl₃)

¹⁹F NMR of **2l** (564 MHz, CDCl₃)

¹³C NMR of **2m** (125 MHz, CDCl₃)

40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 11 (ppm)

¹H NMR of **20** (500 MHz, CDCl₃)

¹³C NMR of **20** (125 MHz, CDCl₃)

40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 f1 (ppm)

SCF₃

¹H NMR of **2p** (500 MHz, CDCl₃)

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 11 (ppm)

¹⁹F NMR of **2p** (564 MHz, CDCl₃)

¹H NMR of **2q** (500 MHz, CDCl₃)

7.2.70 6.451 6.451 6.451 6.451 6.451 6.451 1.722 3.1.68 4.1.70 4.1.69 4.1.69 4.1.69 4.1.69 4.1.69 4.1.69 4.1.69 4.1.69 4.1.69 4.1.69 4.1.69 4.1.60 4.1.60 4.1.60 4.1.60 4.1.60 4.1.60 4.1.61

¹⁹F NMR of **2q** (564 MHz, CDCl₃)

40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 11 (ppm)

¹H NMR of 2r (500 MHz, CDCl₃)

7.291 6.643 5.115 5.117

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 (1 (ρρm)

¹⁹F NMR of 2r (564 MHz, CDCl₃)

¹H NMR of 2s (500 MHz, CDCl₃)

7,7332 7,7327 7,7327 7,7327 7,7327 7,7327 7,7327 7,7328 7,2328 7,

¹³C NMR of 2s (125 MHz, CDCl₃)

40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 11 (ppm)

¹H NMR of 4a (500 MHz, CDCl₃)

¹⁹F NMR of 4a (564 MHz, CDCl₃)

40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 f1 (ppm)

¹H NMR of **4c** (500 MHz, CDCl₃)

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

¹⁹*F NMR of* **4***c* (564 *MHz*, *CDCl*₃)

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

¹*H* NMR of **4e** (500 MHz, CDCl₃)

¹H NMR of 4f (500 MHz, CDCl₃)

¹³C NMR of **4f** (125 MHz, CDCl₃)

¹⁹F NMR of **4f** (564 MHz, CDCl₃)

¹H NMR of 5 (500 MHz, CDCl₃)

9.0

8.5

9.5

7.5

8.0

7.0

6.5

6.0

5.5

40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 f1 (ppm)

5.0 4.5 f1 (ppm)

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

¹⁹F NMR of **5** (564 MHz, CDCl₃)

¹³C NMR of 6 (125 MHz, CDCl₃)

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 11 (ppm)

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 11 (ppm)

¹⁹F NMR of 7 (564 MHz, CDCl₃)

¹³C NMR of 8 (125 MHz, CDCl₃)

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ρρm)

4.5 4.0 f1 (ppm)

3.5

3.0

2.5

3.09-

1.5

1.0

0.5

0.0

2.0

1.00

5.0

0.954 2.01-8.0

8.5

7.5

7.0

6.5

6.0

5.5

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

¹⁹F NMR of **9** (564 MHz, CDCl₃)

X-Ray crystallographic data of compound 5

Figure S1. X-Ray crystal structure of 5. Thermal ellipsoids are drawn at the 50% probability level.

Sample preparation

A single crystal of compound 5 was obtained by slow evaporation of a solution of 5 in dichloromethane-hexanes at room temperature.

Tuble D1. Crystal data and structure refiner		
Identification code	5	
Empirical formula	C12 H8 F3 N O S	
Formula weight	271.25	
Temperature	223(2) K	
Wavelength	0.71073 Å	
Crystal system	Orthorhombic	
Space group	Pbca	
Unit cell dimensions	a = 8.2239(10) Å	$\alpha = 90^{\circ}$.
	b = 11.2158(11) Å	$\beta = 90^{\circ}$.
	c = 25.146(3) Å	$\gamma = 90^{\circ}$.
Volume	2319.4(5) Å ³	
Ζ	8	
Density (calculated)	1.554 Mg/m ³	
Absorption coefficient	0.304 mm ⁻¹	
F(000)	1104	
Crystal size	0.230 x 0.150 x 0.050 mm ³	
Theta range for data collection	2.960 to 28.376°.	
Index ranges	-10<=h<=10, -14<=k<=14, -33<=l<=33	
Reflections collected	72285	
Independent reflections	2893 [R(int) = 0.0777]	
Completeness to theta = 25.242°	100.0 %	
Absorption correction	Semi-empirical from equivalents	
Max. and min. transmission	0.7457 and 0.6950	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	2893 / 0 / 163	
Goodness-of-fit on F ²	1.042	
Final R indices [I>2sigma(I)]	R1 = 0.0588, wR2 = 0.1393	
R indices (all data)	R1 = 0.0823, $wR2 = 0.1554$	
Extinction coefficient	n/a	
Largest diff. peak and hole	1.103 and -0.607 e.Å ⁻³	

Table S1. Crystal data and structure refinement for 5