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Description of Attenuator Arrangement  

Temperature is measured at the junction of the bend and of the second ‘leg’ of the U-shaped 

microchannel as indicated in Scheme S2. This location was chosen for two primary reasons - firstly 

that the simulated temperature profile shows negligible sensitivity to small changes in axial 

position at this location in built U1 and U2 microchannels. Secondly, the location is within the 

field of view of the cavity’s optical camera, which aids in keeping the fiber in position. 

 

Scheme S1. Description of Attenuator and Optical Fiber Arrangement. 
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Demonstration of Steady State Temperatures 

Temperature is measured in real time as microwave irradiation is applied to the cavity. These 

temperatures are logged to create a temperature-time profile. From the start of microwave 

irradiation, stream temperatures increase steadily. After 10-30 seconds of microwave irradiation, 

temperatures approach more stable values. Based upon this, a time of 90 seconds of microwave 

irradiation was chosen as the earliest approximation to steady state. Simulations show similar 

behavior. Typical temperature-time profiles are offered in Figure S1. 

 

 

Figure S1. Time under irradiation stream temperatures using the U2 microchannel (ID = 

0.762 mm) with input power = 40 W and flow rate = 0.8 mL/min. 

 

Dielectric Properties of Water and 20 wt% NaCl Solution 

Table S1. Dielectric properties of water at 2.45 GHz. Reprinted from ref. 1 Copyright (2012), 

with permission from Elsevier. 

Temperature [°C] Relative complex permittivity [-] 

20 78.0-10.5j 

30 75.0-8.6j 

40 72.0-6.7j 

50 69.0-5.1j 

60 66.2-3.85j 

70 63.9-3.3j 

80 62.7-3.1j 

90 62.3-3.0j 

100 62.0-2.9j 
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Table S2. Dielectric properties of 20 wt% NaCl solution at 2.45 GHz.2  

Temperature [°C] Relative complex permittivity [-] 

20 78.05-28.82j 

30 74.92-18.84j 

40 71.67-15.13j 

50 68.55-11.76j 

60 65.17-9.09j 

70 61.79-7.25j 

80 58.41-5.59j 

90 55.15-5.12j 

 

Mesh Convergence Analysis 

In Physics-controlled Mesh setting in COMSOL, the mesh for the U-shaped microchannel is 

set to “Finer”, where the element sizes are between 0.000217 and 0.00201 [m]; the mesh for PFA 

channel wall is set to “Fine”, where element sizes are range from 0.00212 to 0.017 [m]; and the 

mesh for the rest of the simulation domains are set to “Normal”, where element sizes range from 

0.00381 to 0.0212 [m]. Different element sizes are employed to carry out mesh independence 

analysis. The maximum/minimum element sizes employed for the U-shaped microchannel are 

0.00603/0.0007, 0.00402/0.000435, 0.00201/0.000217 and 0.00101/0.000109 [m], respectively. 

The mesh is automatically created and adapted by COMSOL, with the defined element size. 

Element sizes are selected when further mesh refinement changes both the averaged power 

dissipation density and the outlet temperature by less than 1%. Therefore, considering the 

computational cost, a 0.00201/0.000217 of maximum/minimum element size is chosen. A single 

simulation takes at least an hour computational time using 4 CPUs. 

 

 

Figure S2. Outlet temperature with respect to different element sizes. 
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Figure S3. Averaged power dissipation density with respect to different element sizes. 

 

Combinations of Variables used in Performing CFD Simulations 

Table S3. Combinations of variables used in performing CFD simulations and building the 

GBRT model. 

Variable Value 

Internal diameter, ID 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 6, 7, 8 mm 

Distance of the microchannel from cavity bottom, p 5, 20, 35, 40, 45 mm 

Distance between legs, D 5, 25, 30 mm 

Superficial velocity 0.00822, 0.01644, 0.0411 m/s 

Input power 50 and 100 W 

 

Hyperparameters of Gradient Boosting Regression Tree 

The hyperparameters tuned in this work are the maximum tree depth, the number of trees, and 

the learning rate. The hyperparameters’ selection is based on 4-fold cross-validation results. The 

maximum depth of the tree is selected as 7; the number of trees is set as 100; and the learning rate 

is set as 0.1. 

 

Bayesian Optimization 

In Bayesian optimization, a gaussian process (GP) is determined from a mean function (the 

average of all functions) and a covariance kernel function, which specifies the form of the 

individual functions and how they differ from the mean function. The GP is used to make 

predictions at unobserved points and propose the next sampling points. A typical Bayesian 

optimization procedure starts with finding the next sampling point by optimizing the acquisition 
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function over the GP. Once a new observation is obtained from f, it is added to the previous 

observations and the GP is updated. The process is repeated 100 times to obtain the optimal. In 

this work, we use the typical Matern covariance function, Eq. (S1), as the kernel function,  

𝐶𝑣(d) = 𝜎2 21−𝜈

Γ(ν)
(√2𝜈

𝑑

𝜌
)𝜈𝐾𝜈(√2𝜈

𝑑

𝜌
) (S1) 

where d is the distance between two points, 𝜎 is the standard deviation, 𝜈 and 𝜌 are non-negative 

parameters, Γ represents the gamma function, and 𝐾𝜈 is the modified Bessel function. In this work, 

𝜈 equals to 1.5; and 𝜌 is set as 1. The expected improvement, Eq. (S2), is chosen as the aquisition 

function 

EI(x) = 𝔼[max(𝑓(𝑥) − 𝑓∗),0] (S2) 

where f* is the current best observation. This Bayesian optimization procedure used in this work 

is implemented using BoTorch3, a open-source package in Python. 

 

Demonstration of Single Tree Structure in Gradient Boosting Regression Tree 

Since the gradient boosting regression tree is an ensemble method that combines the 

predictions from many basic decision tree estimators, the 100th tree in the model is shown in Figure 

S4 to demonstrate the tree structure. 
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Figure S4. Demonstration of a single tree structure in gradient boosting regression tree. 
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