Supporting Information

An organocatalytic approach for assembling flavanones via a cascade
1,4-conjugate addition/oxa-Michael addition between
propargylamines with water
Xinwei He, ${ }^{*, \dagger, \ddagger}$ Mengqing Xie, ${ }^{\dagger}$ Ruxue Li, ${ }^{\dagger}$ Pui Ying Choy, ${ }^{\ddagger}$ Qiang Tang, ${ }^{\dagger}$ Yongjia Shang, ${ }^{\dagger}$ and Fuk Yee Kwong ${ }^{*, \ddagger}$$\dagger$ Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory ofMolecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry andMaterials Science, Anhui Normal University, Wuhu 241002, P.R. China
\ddagger State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The ChineseUniversity of Hong Kong, Shatin, New Territories, Hong Kong SAR, P.R. China
E-mail: xinweihe@mail.ahnu.edu.cn , fykwong@cuhk.edu.hk
Table of contents

1. General consideration. S2
2. General procedures for the synthesis of propargylamines S2
3. General procedures for the synthesis of flavanones 2 S3
4. General procedures for the synthesis of chroman-4-ols 3. S3
5. General procedures for the synthesis of chroman-4-one oximes 4 S4
6. General procedures for the synthesis of 2’-hydroxychalcone (5a) S4
7. Gram-scale synthesis of compound $\mathbf{2 a}$ S5
8. Characterization data for all compounds S5
9. X-ray crystallographic data of compound $\mathbf{2 p}$ S21
10. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for all compounds S23

1. General consideration

Unless otherwise specified, all reagents and starting materials were purchased from commercial sources and used as received, and the solvents were purified and dried using standard procedures. The chromatography solvents were technical grade and distilled prior to use. Flash chromatography was performed using 200-300 mesh silica gel with the indicated solvent system according to standard techniques. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data were recorded on 400 MHz or 500 MHz and 100 MHz or 125 MHz NMR spectrometers, unless otherwise specified. Chemical shifts (δ) in parts per million are reported relative to the residual signals of chloroform (7.26 ppm for ${ }^{1} \mathrm{H}$ and 77.16 ppm for ${ }^{13} \mathrm{C}$), and all ${ }^{13} \mathrm{C}$ NMR were recorded with proton broadband decoupling and indicated as ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR. Multiplicities are described as s (singlet), d (doublet), t (triplet), q (quartet), or m (multiplet), and the coupling constants (J) are reported in Hertz. HRMS analysis with a quadrupole time-of-flight mass spectrometer yielded ion mass/charge (m / z) ratios in atomic mass units. IR spectra were measured as dry films (KBr), and the peaks are reported in terms of wave number $\left(\mathrm{cm}^{-1}\right)$. The melting points were measured using SGWX-4 melting point apparatus.

2. General procedures for the synthesis of propargylamines

To a 25 mL round-bottom flask equipped with a magnetic stir bar were added amine (1.2 mmol), aldehyde (1.0 mmol), acetylene (1.2 mmol), copper (I) iodide ($10 \mathrm{~mol} \%$) and toluene (3 mL). The mixture was degassed and backfilled with nitrogen, and then stirred in an oil bath preheated to $100^{\circ} \mathrm{C}$ for 5 h (monitored by TLC). After the reaction completed (as determined using TLC), the reaction mixture was cooled to room temperature, diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ and filtered through a thin pad of silica gel. The filter cake was washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the combined filtrate was concentrated in vacuum. The crude product was purified by flash column chromatography on silica gel to afford the corresponding propargylamines.

3. General procedures for the synthesis of flavanones 2

A mixture of propargylamines $\mathbf{1}(0.2 \mathrm{mmol})$, water (0.6 mmol), and DBU ($15 \mathrm{~mol} \%$) in acetonitrile (2 mL) were heated to $80^{\circ} \mathrm{C}$ in an oil bath for 1 h under air. After the reaction completed (as determined by TLC), the reaction mixture was cooled to room temperature, extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$, and washed with brine. The organic layers were combined, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and then evaporated under vacuum. The residue was purified using flash column chromatography with silica gel (200-300 mesh), using ethyl acetate and petroleum ether ($1: 40, \mathrm{v} / \mathrm{v}$) as the elution solvent to give desired products 2.

4. General procedures for the synthesis of chroman-4-ols 3

Following a reported procedure, ${ }^{1}$ to a solution of flavanones 2 (0.2 mmol), in methanol (2 mL) was added solid sodium borohydride (1.5 equiv.) at $0^{\circ} \mathrm{C}$ under air atmosphere. The mixture was stirred for 30 minutes at the same temperature, before it was quenched with 10 mL of saturated aqueous NaHCO_{3}. The aqueous layer was extracted with DCM $(3 \times 10 \mathrm{~mL})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was purified by recrystallization in ethyl acetate/petroleum ether ($1: 10, \mathrm{v} / \mathrm{v}$) as the solvent to afford products 3.

5. General procedures for the synthesis of chroman-4-one oximes 4

2a, 2q, 2s

4a, 4q, 4s

Following a reported procedure, ${ }^{2}$ a mixture of flavanones 2 (0.2 mmol), sodium acetate ($0.24 \mathrm{mmol}, 1.2$ equiv.) and hydroxylamine hydrochloride ($0.24 \mathrm{mmol}, 1.2$ equiv) was heated to reflux in an oil bath. After 2 h , the reaction was allowed to cool to room temperature and evaporated to dryness in vacuo. EtOAc and an aqueous 2N NaOH solution were added to the residue. The organic layer was extracted with EtOAc $(3 \times 10 \mathrm{~mL})$, washed with brine and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel (200-300 mesh) with EtOAc and petroleum ether (1:5, v/v) as the eluting solvents to produce the products 4.

6. General procedures for the synthesis of 2’-hydroxychalcone

(5aa)

Following a reported procedure, ${ }^{3} 2^{2}$-hydroxyacetophenone (1 mmol) and benzaldehyde (1 mmol) were dissolved in methanol (3 mL) in a round bottom flask. The solution was cooled in an ice-water bath and 50% aq. $\mathrm{KOH}(0.6 \mathrm{~mL})$ was added into the solution dropwise. After stirring at room temperature for 24 hours, the orangered mixture was poured into an ice-water mixture (10 mL) and the solution was neutralized by 4N HCl solution. The yellow precipitate was filtered out, re-dissolved in DCM, dried by anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The resulting solid was purified by either recrystalization to give the corresponding 2'-hydroxychalcone (5aa) in 75% yield (168 mg) as a yellow amorphous solid.

7. Gram-scale synthesis of compound 2a

A mixture of propargylamines 1 ($2.32 \mathrm{~g}, 8 \mathrm{mmol}$), water ($432 \mathrm{mg}, 24 \mathrm{mmol}$), and DBU ($182 \mathrm{mg}, 1.2 \mathrm{mmol}$) in acetonitrile (10 mL) were heated to $80^{\circ} \mathrm{C}$ in an oil bath for 1 h under air. After the reaction completed (as determined by TLC), the reaction mixture was cooled to room temperature, extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$, and washed with brine. The organic layers were combined, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and then evaporated under a vacuum. The residue was purified using flash column chromatography with silica gel (200-300 mesh), using ethyl acetate and petroleum ether $(1: 40, \mathrm{v} / \mathrm{v})$ as the elution solvent to give desired products $\mathbf{2 a}$ in 64% yield.

8. Characterization data for all compounds

2-Phenylchroman-4-one (Scheme 2, compound 2a)

This compound was purified by column chromatography (ethyl acetate/petroleum ether $=1: 40$) to afford a white solid in 84% yield (38 mg). m.p. $75-76{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.00-7.88(\mathrm{~m}, 1 \mathrm{H}), 7.54-7.51(\mathrm{~m}, 1 \mathrm{H}), 7.50-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.46-7.42$ (m, 2H), 7.41-7.37 (m, 1H), 7.08-7.04 (m, 2H), 5.49 (dd, $J=13.6,2.8 \mathrm{~Hz}, 1 \mathrm{H}$), 3.10 (dd, $J=16.8,13.2 \mathrm{~Hz}, 1 \mathrm{H}$), 2.90 (dd, $J=17.2,3.2 \mathrm{~Hz}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta$ 192.1, 161.6, 138.8, 136.3, 128.9, 128.8, 127.1, 126.2, 121.7, 121.0, 118.2, 79.7, 44.7; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{O}_{2}$ 225.0910; Found 225.0903.

6-Methyl-2-phenylchroman-4-one (Scheme 2, compound 2b)

This compound was purified by column chromatography (ethyl acetate/petroleum ether $=1: 40$) to afford a yellow solid in 83% yield (40 mg). m.p. $103-104{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.76-7.75(\mathrm{~m}, 1 \mathrm{H}), 7.53-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.48-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.44-7.40$ (m, 1H), 7.37-7.34 (dd, $J=10.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.00$ (d, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}$), 5.48 (dd, $J=$ $13.0,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.10(\mathrm{dd}, J=16.5,13.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.91(\mathrm{dd}, J=17.0,3.0 \mathrm{~Hz}, 1 \mathrm{H})$, 2.36 (s, 3H); ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 192.3, 159.7, 138.9, 137.3, 131.1, 128.9, 128.8, 126.7, 126.2, 120.6, 118.0, 79.6, 44.8, 20.5; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{O}_{2}$ 239.1067; Found 239.1064

6-Methoxy-2-phenylchroman-4-one (Scheme 2, compound 2c)

This compound was purified by column chromatography (ethyl acetate/petroleum ether $=1: 40)$ to afford a yellow solid in 90% yield (46 mg). m.p. $138-139^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}) $\delta 7.50-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.46-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.38(\mathrm{~m}, 1 \mathrm{H}), 7.36(\mathrm{~d}, \mathrm{~J}=$ $3.2 \mathrm{~Hz}, 1 \mathrm{H}$), 7.13 (dd, $J=12.4,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.45$ (dd, $J=13.2$, $2.8 \mathrm{~Hz}, 1 \mathrm{H}$), 3.82 (s, 3H), 3.08 (dd, $J=18.0,13.6 \mathrm{~Hz}, 1 \mathrm{H}$), 2.88 (dd, $J=17.2,3.2 \mathrm{~Hz}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 192.2, 156.3, 154.3, 138.9, 128.9, 128.8, 126.2, 125.5, 120.8, 119.5, 107.3, 79.8, 55.9, 44.6; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$ Calcd for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{O}_{3}$ 255.1016; Found 255.1017.

6-Fluoro-2-phenylchroman-4-one (Scheme 2, compound 2d)

This compound was purified by column chromatography (ethyl acetate/petroleum ether $=1: 40$) to afford a yellow solid in 68% yield (33 mg). m.p. $72-73^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.59-7.57$ (dd, $J=8.0,3.2 \mathrm{~Hz}, 1 \mathrm{H}$), 7.50-7.44 (m, 4H), 7.42-7.39 (m, 1H), 7.24-7.21 (m, 1H), 7.07-7.02 (dd, $J=8.8,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.47$ (dd, $J=13.2,2.8 \mathrm{~Hz}$, 1H), 3.08 (dd, $J=16.8,13.2 \mathrm{~Hz}, 1 \mathrm{H}$), 2.91 (dd, $J=16.8,2.8 \mathrm{~Hz}, 1 \mathrm{H}),{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 191.3,157.8,157.4\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=241.0 \mathrm{~Hz}\right), 138.5,128.9,126.2,123.9$, 123.6, $121.4\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=6.8 \mathrm{~Hz}\right), 119 .\left(\mathrm{d}, J_{\mathrm{C}-\mathrm{F}}=7.3 \mathrm{~Hz}\right), 112.1\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=23.2 \mathrm{~Hz}\right), 79.9$, 44.4; HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{FO}_{2}$ 243.0816; Found 243.0811.

6-Chloro-2-phenylchroman-4-one (Scheme 2, compound 2e)

This compound was purified by column chromatography (ethyl acetate/petroleum ether $=1: 40$) to afford a yellow solid in 70% yield (36 mg). m.p. $89-90{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.88(\mathrm{~s}, 1 \mathrm{H}), 7.48-7.45(\mathrm{~m}, 3 \mathrm{H}), 7.44-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.41-7.38(\mathrm{~m}, 1 \mathrm{H})$, 7.02 (d, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}$), 5.47 (dd, $J=13.5,3.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.08 (dd, $J=17.0,13.0 \mathrm{~Hz}$, 1H), 2.91 (dd, $J=17.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 191.3,160.4$, 138.6, 136.5, 129.4, 129.3, 127.6, 126.8, 126.6, 122.1, 120.3, 80.2, 44.7; HRMS (ESITOF) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{ClO}_{2}$ 259.0520; Found 259.0516.

6-Bromo-2-phenylchroman-4-one (Scheme 2, compound 2f)

This compound was purified by column chromatography (ethyl acetate/petroleum ether $=1: 40$) to afford a yellow solid in 63% yield (38 mg). m.p. $118-119{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.04(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{dd}, J=11.2,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.49-7.46(\mathrm{~m}$, 3H), 7.44-7.43 (m, 1H), 7.42-7.38 (m, 1H), 6.97 (d, $J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.48$ (dd, $J=13.2$, $3.2 \mathrm{~Hz}, 1 \mathrm{H}$), 3.09 (dd, $J=16.8,13.2 \mathrm{~Hz}, 1 \mathrm{H}$), 2.91 (dd, $J=16.7,2.8 \mathrm{~Hz}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 190.8,160.5,138.9,138.2,129.6,129.1,129.0,126.2,122.2$,
120.3, 114.4, 79.8, 44.3; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{BrO}_{2}$ 303.0015; Found 303.0013.

2-(p-Tolyl)chroman-4-one (Scheme 2, compound 2g)

This compound was purified by column chromatography (ethyl acetate/petroleum ether $=1: 40$) to afford a yellow solid in 73% yield (35 mg). m.p. $60-62{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.94-7.92$ (dd, $\left.J=8.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.53-7.48(\mathrm{~m}, 1 \mathrm{H}), 7.39(\mathrm{~d}, J=8.0$ Hz, 2H), 7.26 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$), 7.08-7.02 (m, 2H), 5.46 (dd, $J=13.2,2.8 \mathrm{~Hz}, 1 \mathrm{H}$), 3.11 (dd, $J=16.8,13.2 \mathrm{~Hz}, 1 \mathrm{H}$), 2.88 (dd, $J=16.8,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 192.3, 161.7, 138.8, 136.2, 135.8, 129.6, 127.1, 126.3, 121.6, 120.9, 118.2, 79.6, 44.6, 21.3; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{O}_{2}$ 239.1067; Found 239.1074.

2-(4-Ethylphenyl)chroman-4-one (Scheme 2, compound 2h)

This compound was purified by column chromatography (ethyl acetate/petroleum ether $=1: 40$) to afford a yellow solid in 78% yield (39 mg). m.p. $62-63{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.94-7.92(\mathrm{dd}, J=8.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.52-7.48(\mathrm{~m}, 1 \mathrm{H}), 7.41(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 2 \mathrm{H}$), 7.28 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$), 7.07-7.03 (m, 2H), 5.46 (dd, $J=13.2,2.8 \mathrm{~Hz}, 1 \mathrm{H}$), 3.11 (dd, $J=16.8,13.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.88(\mathrm{dd}, J=16.8,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.69(\mathrm{q}, J=7.6 \mathrm{~Hz}$, $2 \mathrm{H}), 1.26(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 192.3,161.7,145.1$, 136.2, 136.0, 128.4, 127.1, 126.3, 121.6, 121.0, 118.2, 79.6, 44.6, 28.6, 15.6; HRMS (ESI-TOF) m/z: [M+H] Calcd for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{O}_{2}$ 253.1223; Found 253.1228.

This compound was purified by column chromatography (ethyl acetate/petroleum ether $=1: 40$) to afford a yellow solid in 81% yield (41 mg). m.p. $82-83{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.94-7.92(\mathrm{dd}, J=8.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.52-7.48(\mathrm{~m}, 1 \mathrm{H}), 7.42(\mathrm{~d}, J=8.8$ Hz, 2H), 7.08-7.02 (m, 2H), 6.97 (d, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.44$ (dd, $J=13.6,2.8 \mathrm{~Hz}, 1 \mathrm{H})$, $3.84(\mathrm{~s}, 3 \mathrm{H}), 3.11(\mathrm{dd}, J=16.9,13.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.87(\mathrm{dd}, J=16.8,2.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta$ 192.3, 161.7, 160.0, 136.2, 130.8, 127.8, 127.1, 121.6, 121.0, 118.2, 114.2, 79.4, 55.4, 44.5; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{O}_{3}$ 255.1016; Found 255.1017.

2-(4-Fluorophenyl)chroman-4-one (Scheme $\mathbf{2}$, compound $\mathbf{2 j}$)

This compound was purified by column chromatography (ethyl acetate/petroleum ether $=1: 40)$ to afford a yellow solid in 63% yield (30 mg). m.p. $74-75^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.49-7.92(\mathrm{~d}, \mathrm{~J}=8.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.55-7.50(\mathrm{~m}, 1 \mathrm{H}), 7.49-7.44(\mathrm{~m}$, 2H), 7.16-7.10 (m, 2H), 7.09-7.03 (m, 2H), 5.47 (dd, $J=13.6,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.07$ (dd, $J=16.8,13.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.88(\mathrm{dd}, J=17.2,3.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 191.8,162.8\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=246.2 \mathrm{~Hz}\right), 161.4,136.3,134.6,134.6,128.1,128.0$, 127.1, 121.8, 120.9, 118.1, $115.9\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=21.4 \mathrm{~Hz}\right), 78.9,44.7$; HRMS (ESI-TOF) m / z : $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{FO}_{2}$ 243.0816; Found 243.0814.

2-(4-Chlorophenyl)chroman-4-one (Scheme 2, compound 2k)

This compound was purified by column chromatography (ethyl acetate/petroleum ether $=1: 40)$ to afford a yellow solid in 66% yield (52 mg). m.p. $79-80{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (400
$\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.94-7.92(\mathrm{dd}, J=7.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.54-7.50(\mathrm{~m}, 1 \mathrm{H}), 7.44-7.40(\mathrm{~m}$, 4H), 7.09-7.04 (m, 2H), 5.47 (dd, $J=13.2,3.2 \mathrm{~Hz}, 1 \mathrm{H}$), 3.05 (dd, $J=16.8,13.2 \mathrm{~Hz}$, 1 H), 2.88 (dd, $J=16.8,3.2 \mathrm{~Hz}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 191.6, 161.3, 137.3, 136.4, 134.6, 129.1, 127.6, 127.1, 121.9, 120.9, 118.1, 78.9, 44.6; HRMS (ESITOF) m / z : $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{ClO}_{2}$ 259.0520; Found 259.0520 .

2-(4-Bromophenyl)chroman-4-one (Scheme 2, compound 21)

This compound was purified by column chromatography (ethyl acetate/petroleum ether $=1: 40$) to afford a yellow solid in 65% yield (39 mg). m.p. $111-113{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.94-7.91$ (dd, $J=8.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}$), 7.58 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$), $7.52-7.50$ (m, 1H), 7.37 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$), 7.09-7.04 (m, 2H), 5.46 (dd, $J=13.2,3.2 \mathrm{~Hz}, 1 \mathrm{H}$), 3.04 (dd, $J=17.6,12.8 \mathrm{~Hz}, 1 \mathrm{H}$), 2.88 (dd, $J=17.6,3.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 191.6, 161.3, 137.8, 136.4, 132.1, 127.8, 127.1, 122.8, 121.9, 120.9, 118.1, 78.9, 44.6; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{BrO}_{2}$ 303.0015; Found 303.0020.

2-(4-Ethylphenyl)-6-methylchroman-4-one (Scheme 2, compound 2m)

This compound was purified by column chromatography (ethyl acetate/petroleum ether $=1: 40)$ to afford a yellow solid in 85% yield (45 mg). m.p. $160-162{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.72(\mathrm{~s}, 1 \mathrm{H}), 7.41(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.33-7.30(\mathrm{dd}, J=8.4,2.0 \mathrm{~Hz}$, 1H), 7.28 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), 6.96 (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.42$ (dd, $J=13.2,2.8 \mathrm{~Hz}, 1 \mathrm{H}$), 3.09 (dd, $J=16.8,13.6 \mathrm{~Hz}, 1 \mathrm{H}$), 2.86 (dd, $J=16.8,2.8 \mathrm{~Hz}, 1 \mathrm{H}$), 2.68 (q, $J=7.6 \mathrm{~Hz}$, 2H), 2.33 ($\mathrm{s}, 3 \mathrm{H}$), $1.26(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 192.6$, 159.8, 145.1, 137.3, 136.1, 131.0, 128.4, 126.6, 126.3, 120.5, 118.0, 79.6, 44.6, 28.7, 20.5, 15.6; HRMS (ESI-TOF) m/z: $\begin{gathered}{[\mathrm{M}+\mathrm{H}]^{+}} \\ \mathrm{S} 10\end{gathered}$ Calcd for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{O}_{2}$ 267.1380; Found

2-(4-Fluorophenyl)-6-methylchroman-4-one (Scheme 2, compound 2n)

This compound was purified by column chromatography (ethyl acetate/petroleum ether $=1: 40)$ to afford a yellow solid in 77% yield (39 mg). m.p. $105-107^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.72$ (s, 1H), 7.48-7.44 (m, 2H), 7.34-7.31 (dd, $J=8.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}$), 7.14-7.10 (m, 2H), 6.96 (d, $J=8.8 \mathrm{~Hz}, 1 \mathrm{H}$), 5.43 (dd, $J=13.2,2.8 \mathrm{~Hz}, 1 \mathrm{H}$), 3.04 (dd, $J=16.8,13.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.85(\mathrm{dd}, J=16.8,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 192.1,162.8\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=246.1 \mathrm{~Hz}\right), 159.5,137.4,134.8,131.3,128.1$, 128.0, 126.7, 120.5, 117.9, 115.8 (d, JC-F $=21.6 \mathrm{~Hz}$), 78.9, 44.7, 20.5; HRMS (ESI-TOF) m / z : $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{FO}_{2}$ 257.0972; Found 257.0974.

2-(4-Chlorophenyl)-6-methylchroman-4-one (Scheme 2, compound 2o)

This compound was purified by column chromatography (ethyl acetate/petroleum ether $=1: 40)$ to afford a yellow solid in 73% yield (40 mg). m.p. $128-129^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.71$ (s, 1H), 7.44-7.38 (m, 4H), 7.35-7.31 (dd, $J=8.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}$), $6.95(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.43$ (dd, $J=12.8,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.02$ (dd, $J=16.8,13.2 \mathrm{~Hz}$, 1H), 2.86 (dd, $J=17.2,3.2 \mathrm{~Hz}, 1 \mathrm{H}$), 2.33 (s, 3H); ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 191.9, 159.4, 137.5, 137.42, 134.6, 131.4, 129.1, 127.6, 126.7, 120.5, 117.9, 78.8, 44.7, 20.5; HRMS (ESI-TOF) m/z: [M+H] Calcd for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{ClO}_{2}$ 273.0677; Found 273.0673.

2-(4-Bromophenyl)-6-methylchroman-4-one (Scheme 2, compound 2p)

This compound was purified by column chromatography (ethyl acetate/petroleum ether $=1: 40$) to afford a yellow solid in 80% yield (51 mg). m.p. $144-145^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.71(\mathrm{~s}, 1 \mathrm{H}), 7.58-7.54(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.31(\mathrm{~m}, 1 \mathrm{H})$, 6.95 (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.41$ (dd, $J=13.2,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.01$ (dd, $J=16.8,12.8 \mathrm{~Hz}$, 1 H), 2.85 (dd, $J=17.2,3.2 \mathrm{~Hz}, 1 \mathrm{H}$), 2.33 (s, 3H); ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 191.9, 159.4, 138.0, 137.4, 132.0, 131.4, 127.8, 126.7, 122.7, 120.5, 117.9, 78.8, 44.6, 20.5; HRMS (ESI-TOF) m/z: [M+H] ${ }^{+}$Calcd for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{BrO}_{2}$ 317.0172; Found 317.0171.

6-Methyl-2-(4'-propyl-[1,1'-biphenyl]-4-yl)chroman-4-one (Scheme 2, compound 2q)

This compound was purified by column chromatography (ethyl acetate/petroleum ether $=1: 40$) to afford a white solid in 66% yield (47 mg). m.p. $160-161{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.74(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.55(\mathrm{~d}, J=7.6 \mathrm{~Hz}$, $2 \mathrm{H}), 7.53$ (d, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.35-7.32$ (dd, $J=11.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.28$ (d, $J=8.0 \mathrm{~Hz}$, 2H), 6.98 (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}$), 5.49 (dd, $J=13.2,2.8 \mathrm{~Hz}, 1 \mathrm{H}$), 3.12 (dd, $J=16.8,13.2$ Hz, 1H), 2.91 (dd, $J=16.8,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.67-2.61(\mathrm{~m}, 2 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 1.73-1.65$ (m, 2H), $0.98(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 192.3, 159.7, 142.3, 141.8, 137.9, 137.5, 137.3, 131.1, 129.0, 127.4, 127.0, 126.7, 120.6, 118.0, 79.5, 44.6, 37.7, 24.6, 20.5, 13.9; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{O}_{2}$ 357.1849; Found 357.1846.

This compound was purified by column chromatography (ethyl acetate/petroleum ether $=1: 40$) to afford a yellow solid in 63% yield (32 mg). m.p. $80-82{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.74-7.73(\mathrm{~m}, 1 \mathrm{H}), 7.67-7.62(\mathrm{~m}, 1 \mathrm{H}), 7.39-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.22$ (m, 1H), 7.14-7.08 (m, 1H), 6.97 (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.75(\mathrm{dd}, J=13.2,3.2 \mathrm{~Hz}, 1 \mathrm{H})$, 3.04 (dd, $J=16.8,13.3 \mathrm{~Hz}, 1 \mathrm{H}$), 2.91 (dd, $J=16.8,3.2 \mathrm{~Hz}, 1 \mathrm{H}$), $2.34(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 191.9,159.7$ (d, $J_{C-F}=250.0 \mathrm{~Hz}$), 159.6, 137.3, 131.3, $130.2\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=8.0 \mathrm{~Hz}\right), 127.5\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=3.0 \mathrm{~Hz}\right), 126.7,126.4\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=13.0 \mathrm{~Hz}\right), 124.6$ $\left(\mathrm{d}, J_{\mathrm{C}-\mathrm{F}}=3.0 \mathrm{~Hz}\right), 120.6,117.9,115.8\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=21.0 \mathrm{~Hz}\right), 73.8\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=3.0 \mathrm{~Hz}\right), 43.8$, 20.5; HRMS (ESI-TOF) m/z: [M+H] Calcd for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{FO}_{2}$ 257.0972; Found 257.0979.

6-Methoxy-2-(p-tolyl)chroman-4-one (Scheme 2, compound 2s)

This compound was purified by column chromatography (ethyl acetate/petroleum ether $=1: 40$) to afford a yellow solid in 90% yield (48 mg). m.p. $118-119{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}) $\delta 7.38$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$), $7.34(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, 2H), 7.14-7.09 (dd, $J=9.2,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.99$ (d, $J=8.8 \mathrm{~Hz}, 1 \mathrm{H}$), 5.41 (dd, $J=13.2$, $2.8 \mathrm{~Hz}, 1 \mathrm{H}$), 3.82 (s, 3H), 3.08 (dd, $J=17.2,13.6 \mathrm{~Hz}, 1 \mathrm{H}$), 2.86 (dd, $J=16.8,2.8 \mathrm{~Hz}$, 1H), 2.38 (s, 3H); ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 192.4, 156.4, 154.2, 138.7, 135.9, 129.5, 126.2, 125.5, 120.8, 119.5, 107.3, 79.7, 55.8, 44.5, 21.3; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{O}_{3}$ 269.1172; Found 269.1166.

2-(4-Ethylphenyl)-6-methoxychroman-4-one (Scheme 2, compound 2t)

This compound was purified by column chromatography (ethyl acetate/petroleum ether
$=1: 40$) to afford a yellow solid in 88% yield ($50 \mathrm{mg}, 0.2 \mathrm{mmol}$). m.p. $99-101{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.41$ (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), 7.35 (d, $J=3.2 \mathrm{~Hz}, 1 \mathrm{H}$), 7.26 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), 7.14-7.09 (dd, $J=8.8,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.41$ (dd, $J=13.6,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.09(\mathrm{dd}, J=17.2,13.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.86(\mathrm{dd}, J=16.8$, $2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.68(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.25(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 192.4,156.4,154.2,145.1,136.1,128.4,126.32,125.5,120.8,119.5,107.3$, 79.7, 55.9, 44.5, 28.7, 15.6; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{O}_{3}$ 283.1329; Found 283.1335.

6-Methoxy-2-(4-methoxyphenyl)chroman-4-one (Scheme 2, compound 2u)

This compound was purified by column chromatography (ethyl acetate/petroleum ether $=1: 40)$ to afford a yellow solid in 86% yield (49 mg). m.p. $156-158{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.41(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.37-7.33(\mathrm{~m}, 1 \mathrm{H})$, $7.14-7.08$ (dd, $J=9.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.96(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H})$, 5.39 (dd, $J=13.2,2.8 \mathrm{~Hz}, 1 \mathrm{H}$), 3.83 (s, 3H), 3.82 (s, 3H), 3.08 (dd, $J=16.8,13.2 \mathrm{~Hz}$, 1H), 2.85 (dd, $J=17.6,2.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 192.4,160.0$, 156.4, 154.2, 130.9, 127.7, 125.4, 120.8, 119.5, 114.2, 107.4, 79.5, 55.8, 55.4, 44.4; HRMS (ESI-TOF) m/z: [M+H] Calcd for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{O}_{4}$ 285.1121; Found 285.1118.

6,8-Di-tert-butyl-2-phenylchroman-4-one (Scheme 2, compound 2v)

This compound was purified by column chromatography (ethyl acetate/petroleum ether $=1: 40)$ to afford a yellow solid in 83% yield (56 mg). m.p. $134-136{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.86(\mathrm{~d}, \mathrm{~J}=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.53-7.50(\mathrm{~m}, 2 \mathrm{H})$, 7.47-7.43 (m, 2H), 7.41-7.37 (m, 1H), 5.44 (dd, $J=14.0,2.8 \mathrm{~Hz}, 1 \mathrm{H}$), $3.03(\mathrm{dd}, J=$
$16.8,13.6 \mathrm{~Hz}, 1 \mathrm{H}$), 2.88 (dd, $J=17.2,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.41(\mathrm{~s}, 9 \mathrm{H}), 1.33(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 193.2,158.7,143.7,139.5,138.6,131.0,128.9,128.5,125.9$, 121.2, 121.1, 79.6, 45.3, 35.1, 34.6, 31.4, 29.8; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{O}_{2}$ 337.2162; Found 337.2153.

6-Bromo-2-(4-methoxyphenyl)chroman-4-one (Scheme 2, compound 2w)

This compound was purified by column chromatography (ethyl acetate/petroleum ether $=1: 40$) to afford a yellow solid in 68% yield (45 mg). m.p. $109-11{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.03$ (s, 1H), $7.58-7.56$ (dd, $\left.J=11.0,2.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.40(\mathrm{~d}, J=8.8 \mathrm{~Hz}$, 2H), 6.97-6.903(m, 3H), 5.42 (dd, $J=13.2,2.8 \mathrm{~Hz}, 1 \mathrm{H}$), 3.84 (s, 3H), 3.10 (dd, $J=$ 16.8, $13.2 \mathrm{~Hz}, 1 \mathrm{H}$), 2.88 (dd, $J=16.8,2.8 \mathrm{~Hz}, 1 \mathrm{H}$) ; ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 191.0,160.5,160.1,138.8,130.2,129.5,127.8,122.2,120.3,114.3,79.6,55.4,44.0 ;$ HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{BrO}_{3}$ 333.0121; Found 333.0128.

2-(4-Bromophenyl)-6-chlorochroman-4-one (Scheme 2, compound 2x)

This compound was purified by column chromatography (ethyl acetate/petroleum ether $=1: 40)$ to afford a yellow solid in 60% yield (40 mg). m.p. $145-146{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.88(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.46-7.44(\mathrm{dd}, J=$ 8.5, $3.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.35 (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}$), 7.02 (d, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}$), 5.44 (dd, $J=12.5$, $3.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.02 (dd, $J=17.0,13.0 \mathrm{~Hz}, 1 \mathrm{H}$), 2.89 (dd, $J=17.0,3.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 190.7,160.1,137.7,136.5,132.5,128.2,127.8,126.8,123.3$, 122.1, 120.2, 79.5, 44.5; HRMS (ESI-TOF) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{BrClO}_{2}$ 336.9625; Found 336.9627.

2-(3-Chlorophenyl)chroman-4-one (Scheme 2, compound 2y)

This compound was purified by column chromatography (ethyl acetate/petroleum ether $=1: 40)$ to afford a yellow solid in 70% yield (36 mg). m.p. $81-82{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.95-7.92(\mathrm{dd}, J=8.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.56-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.39-7.36(\mathrm{~m}$, 2H), 7.35-7.33 (m, 1H), 7.10-7.05 (m, 2H), 5.47 (dd, $J=13.2,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.04$ (dd, $J=16.8,13.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.90(\mathrm{dd}, J=16.8,2.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 191.4,161.3,140.8,136.4,134.9,130.2,128.9,127.1,126.4,124.2,121.9$, 120.9, 118.1, 78.8, 44.7; HRMS (ESI-TOF) m/z: [M+H] Calcd for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{ClO}_{2}$ 259.0520; Found 259.0510.

2-Phenylchroman-4-ol (Scheme 3, compound 3a)

This compound was purified by column chromatography (ethyl acetate/petroleum ether $=1: 6)$ to afford a white solid in 70% yield (32 mg). m.p. $145-147{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.53(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.47-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.43-7.39(\mathrm{~m}, 2 \mathrm{H}), 7.37-$ 7.35 (m, 1H), 7.23-7.19 (m, 1H), 7.01-6.97 (m, 1H), 6.91-6.89 (m, 1H), 5.19 (dd, $J=$ 11.6, 2.0 Hz, 1H), 5.15-5.08 (m, 1H), 2.64-2.46 (m, 1H), 2.24-2.09 (m, 1H), $1.80(\mathrm{~s}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 154.5, 140.5, 129.2, 128.7, 128.3, 127.0, 126.1, 125.8, 121.0, 116.8, 76.9, 65.9, 40.1; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{2} \mathrm{Na}$ 249.0880; Found 249.0887.

6-Methoxy-2-(4-methoxyphenyl)chroman-4-ol (Scheme 3, compound 3u).

This compound was purified by column chromatography (ethyl acetate/petroleum ether $=1: 6)$ to afford a white solid in 64% yield (37 mg). m.p. $148-149{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400
$\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.38-7.36(\mathrm{~m}, 1 \mathrm{H}), 7.06(\mathrm{~d}, \mathrm{~J}=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.94-6.92(\mathrm{~m}, 2 \mathrm{H}), 6.82-$ 6.76 (m, 2H), 5.13-5.01 (m, 1H), 3.82 (s, 3H), 3.79 (s, 3H), 2.71-2.30 (m, 1H), 2.212.07 (m, 1H), $1.74(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 159.6$, 154.0, 148.6, 132.7, 127.6, 126.1, 117.6, 115.8, 114.1, 111.1, 76.5, 66.2, 55.8, 55.4, 40.0; HRMS (ESI-TOF) m/z: [M+ Na]+ Calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{4} \mathrm{Na}$ 309.1097; Found 309.1098.

6,8-Di-tert-butyl-2-(p-tolyl)chroman-4-ol (Scheme 3, compound 3v)

This compound was purified by column chromatography (ethyl acetate/petroleum ether $=1: 6$) to afford a white solid in 64% yield (43 mg). m.p. $134-135{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.51-7.46 (m, 3H), 7.44-7.41 (m, 2H), 7.37-7.34 (m, 1H), 7.31-7.30 (m, 1H), 5.15 (d, J = $10.8 \mathrm{~Hz}, 2 \mathrm{H}$), 2.63-2.49 (m, 1H), 2.21-2.07 (m, 1H), 1.82 (s, 1H), 1.40 (s, 9H), 1.35 (s, 9H); ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 151.2, 142.8, 141.2, 137.1, 128.6, 127.9, 126.0, 125.2, 123.8, 121.7, 76.9, 66.8, 40.7, 35.2, 34.5, 31.6, 30.0; HRMS (ESI-TOF) m/z: [M+Na] ${ }^{+}$Calcd for $\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{O}_{2} \mathrm{Na}$ 361.2138; Found 361.2142.

2-Phenylchroman-4-one oxime (Scheme 3, compound 4a)

This compound was purified by column chromatography (ethyl acetate/petroleum ether $=1: 5$) to afford a white solid in 90% yield ($43 \mathrm{mg}, 0.2 \mathrm{mmol}$). m.p. $164-166{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}) $\delta 7.87-7.85(\mathrm{~m}, 1 \mathrm{H}), 7.76(\mathrm{~s}, 1 \mathrm{H}), 7.51-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.44-$ 7.41 (m, 2H), 7.39-7.35 (m, 1H), 7.32-7.87 (m, 1H), 7.00-6.96 (m, 2H), 5.11 (dd, $J=$ 12.4, $2.8 \mathrm{~Hz}, 1 \mathrm{H}$), 3.58 (dd, $J=17.2,2.8 \mathrm{~Hz}, 1 \mathrm{H}$), 2.76 (dd, $J=17.2,12.4 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 156.7,150.4,139.8,131.3,128.7,128.5,126.2$,
124.0, 121.7, 118.1, 77.1, 30.4; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{NO}_{2}$ 240.1019; Found 240.1014.

6-Methoxy-2-(p-tolyl)chroman-4-one oxime (Scheme 3, compound 4s)

This compound was purified by column chromatography (ethyl acetate/petroleum ether $=1: 5)$ to afford a white solid in 84% yield (48 mg). m.p. $176-178{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.26$ (s, 1H), 7.38-7.34 (m, 3H), 7.23 (d, $\left.J=8.0 \mathrm{~Hz}, 2 \mathrm{H}\right), 6.93-6.88$ (m, 2H), 5.03 (dd, $J=12.4,3.2 \mathrm{~Hz}, 1 \mathrm{H}$), 3.80 (s, 3H), 3.52 (dd, $J=17.2,2.8 \mathrm{~Hz}, 1 \mathrm{H}$), 2.76 (dd, $J=17.2,12.4 \mathrm{~Hz}, 1 \mathrm{H}$), 2.38 (s, 3H); ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 154.1, 151.3, 150.7, 138.3, 136.9, 129.4, 126.3, 119.4, 119.1, 118.1, 106.2, 77.2, 55.8, 30.4, 21.2; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{NO}_{3}$ 284.1281; Found 284.1285.

6-Methoxy-2-(4-methoxyphenyl)chroman-4-one oxime (Scheme 3, compound 4u)

This compound was purified by column chromatography (ethyl acetate/petroleum ether $=1: 5$) to afford a white solid in 87% yield (52 mg). m.p. $191-192{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.51(\mathrm{~s}, 1 \mathrm{H}), 7.41-7.39(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.33(\mathrm{~m}, 1 \mathrm{H}), 6.96-6.93(\mathrm{~m}, 2 \mathrm{H})$, 6.92-6.88 (m, 2H), 5.01 (dd, $J=12.8,3.2 \mathrm{~Hz}, 1 \mathrm{H}$), 3.83 (s, 3H), 3.80 (s, 3H), 3.49 (dd, $J=17.2,3.2 \mathrm{~Hz}, 1 \mathrm{H}$), 2.75 (dd, $J=17.3,12.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 159.7,154.1,151.3,150.8,132.0,127.7,119.5,119.1,118.1,114.1,106.1$, 76.9, 55.7, 55.4, 30.2; HRMS (ESI-TOF) m/z: [M+H] ${ }^{+}$Calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{NO}_{4} 300.1230$; Found 300.1235 .
(E)-1-(2-Hydroxyphenyl)-3-phenylprop-2-en-1-one (Scheme 4, compound 5aa)

This compound was synthesized by the reported procedure in 75% (168 mg). Yellow amorphous solid; m.p. $84-86{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 12.82(\mathrm{~s}, 1 \mathrm{H}), 7.95-$ 7.91 (m, 2H), 7.68-7.65 (m, 3H), 7.53-7.48 (m, 1H), 7.45-7.42 (m, 3H), 7.05-7.02 (m, 1H), 6.97-6.93 (m, 1H); ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 193.8, 163.7, 145.5, 136.5, 134.6, 131.0, 129.7, 129.1, 128.7, 120.2, 120.1, 118.9, 118.7; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{O}_{2}$ 225.0910; Found 225.0906.
(E)-1-(2-Hydroxy-5-nitrophenyl)-3-phenylprop-2-en-1-one (Scheme 4, compound 5ab)

This compound was synthesized using the standard procedure for compounds 2, and purified by column chromatography (ethyl acetate/petroleum ether $=1: 20$) to afford a white solid in 75% yield (40 mg). m.p. $67-6{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 13.58$ (s, 1H), $8.90(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.39(\mathrm{dd}, J=9.2,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.07(\mathrm{~d}, J=7.6 \mathrm{~Hz}$, 1H), 7.75-7.72 (m, 2H), 7.70 (d, $J=15.2 \mathrm{~Hz}, 1 \mathrm{H}$), 7.56-7.50-7.49 (m, 2H), 7.48-7.47 (m, 1H), $7.14(\mathrm{~d}, \mathrm{~J}=9.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 192.9, 168.5, 148.2, 139.6, 134.0, 131.8, 131.0, 129.3, 129.2, 126.1, 119.7, 118.9, 118.5, 76.71; HRMS (ESI-TOF) m/z: [M+H] ${ }^{+}$Calcd for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{NO}_{4}$ 270.0766; Found 270.0769.

2-Phenylchroman-4-one (Scheme 4, compound 2a-d $\mathbf{d}_{\text {2 }}$)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.95-7.92$ (dd, $\left.J=8.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.54-7.48(\mathrm{~m}, 3 \mathrm{H})$, 7.46-7.42 (m, 2H), 7.41-7.38 (m, 1H), 7.08-7.04 (m, 2H), 5.56-5.39 (m, 1H), 3.132.87 (m, 1H); HRMS (ESI-TOF) m/z: [M+H] ${ }^{+}$Calcd for $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{D}_{2} \mathrm{O}_{2}$ 227.1036; Found 227.1035

References

1 (a) Yue, G.; Lei, K.; Hirao, H.; Zhou, J. Angew. Chem. Int. Ed. 2015, 54, 65316535. (b) Yahiaoui, S.; Pouget, C.; Buxeraud, J.; Chulia, A. J.; Fagnère, C. Eur. J. Med. Chem. 2011, 46, 2541-2545.

2 (a) Zhao, H.; Vandenbossche, C. P.; Koenig, S. G.; Singh, S. P.; Bakale, R. P. Org. Lett. 2008, 10, 505-507. (b) Pal, S.; Gaumont, A.-C.; Lakhdar, S.; Gillaizeau, I. Org. Lett. 2019, 21, 5621-5625.

3 Thornton, M. T.; Henderson, L. C.; Byrne, N.; Pfeffer, F. M. Curr. Org. Chem. 2012, 16, 121-126.

9. X-ray crystallographic data of compound 2p

Figure S1. ORTEP drawing of compound 2p (30\% probability for the thermal ellipsoid).

The purified compound $\mathbf{2 p}$ is dissolved in a mixed solvent of ethyl acetate and petroleum ether, and placed in a dark cabinet to slowly evaporate. After several days, a colourless bulk crystal is obtained. The X-ray crystal-structure determinations were obtained on a Bruker Smart CCDC APEX-2 diffractometer (graphite- monochromated Mo $K \alpha$ radiation, $\lambda=0.71073 \mathrm{~nm}$) at 293(2) K.

A similar structure to compound 2p was reported in 2010. (enone structure).
Ref: Janeczko, T.; Bialonska, A.; Kostrzewa-Suslow, E. Acta Crystallogr., Sect.E: Struct. Rep. Online, 2010, 66, o966

Table S1. Crystal data and structure refinement for 190513a_0m_a.

CCDC number	1966545
Identification code	190513a_0m_a
Empirical formula	C16 H13 Br O2
Formula weight	317.17
Temperature	293(2) K
Wavelength	0.71073 Å
Crystal system	Monoclinic
Space group	$\mathrm{P} 21 / \mathrm{n}$
Unit cell dimensions	$\begin{array}{ll} a=6.7796(6) \AA & \alpha=90^{\circ} . \\ b=16.3362(14) \AA & \beta=105.720(4)^{\circ} . \\ c=12.5109(10) \AA & \gamma=90^{\circ} . \end{array}$
Volume	1333.8(2) \AA^{3}
Z	4
Density (calculated)	$1.579 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$3.076 \mathrm{~mm}^{-1}$
F(000)	640
Crystal size	$0.210 \times 0.230 \times 0.240 \mathrm{~mm}^{3}$
Theta range for data collection	2.101 to 27.534°.
Index ranges	$-8<=\mathrm{h}<=8,-21<=\mathrm{k}<=21,-16<=\mathrm{l}<=16$
Reflections collected	7401
Independent reflections	2139 [R(int) = 0.0299]
Completeness to theta $=25.242^{\circ}$	63.2 \%
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	2139 / 0 / 173
Goodness-of-fit on F^{2}	1.021
Final R indices [I>2sigma(I)]	$\mathrm{R} 1=0.0394, \mathrm{wR} 2=0.1034$
R indices (all data)	$\mathrm{R} 1=0.0603, \mathrm{wR} 2=0.1101$
Extinction coefficient	n/a
Largest diff. peak and hole	0.494 and -0.319 e. \AA^{-3}

10. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for all listed compounds

2-Phenylchroman-4-one (Table 2, compound 2a)

6-Methyl-2-phenylchroman-4-one (Table 2, compound 2b)

6-Methoxy-2-phenylchroman-4-one (Table 2, compound 2c)

6-Fluoro-2-phenylchroman-4-one (Table 2, compound 2d)

6－Chloro－2－phenylchroman－4－one（Table 2，compound 2e）

	Parancter	Value
1	Data File Name	F：／处理的数据／ 2018－1－hxw－H／26／fid
2	Title	2018－1－hxv－H． 26. fid
3	Connent	IH
4	Origin	Bruker Biospin Gabli
5	Orner	root
6	Site	
7	Instrunent	spect
8	Author	
	Solvent	CDC13
	0 Tenperature	298.4
	1 Pulse Sequence	z830
	2 Experinent	ID
	3 Probe	5 mm PABBO BB／ 19F－IH／D Z－CRD 7119170／ 0117
14 Nunber of Scans 2		
	5 Receiver Gain	66.5
	6 Relaxation Delay	20000
	7 Pulse Width	12．0000
18 Presaturation Frequency		
	9 Acquisition Tine	1． 8175
	0 Acquisition Date	2018－06－12710：03：00
	Wodification Date	2018－06－12T10：03： 48
22 Class		
	3 Spectrameter Frequency	500． 16
	4 Speetral width	9014.4
	5 Lovest Frequency	－1519．4
	6 Nue leus	1H
	7 Acquired Size	16384
	8 Spectral Sizo	

6-Bromo-2-phenylchroman-4-one (Table 2, compound 2f)

2-(p-Tolyl)chroman-4-one (Table 2, compound 2g)

2-(4-Ethylphenyl)chroman-4-one (Table 2, compound 2h)

2-(4-Methoxyphenyl)chroman-4-one (Table 2, compound 2i)

2-(4-Fluorophenyl)chroman-4-one (Table 2 , compound $2 \mathbf{j}$)

2-(4-Chlorophenyl)chroman-4-one (Table 2, compound 2k)

2-(4-Bromophenyl)chroman-4-one (Table 2, compound 2l)

2-(4-Ethylphenyl)-6-methylchroman-4-one (Table 2, compound 2m)

2-(4-Fluorophenyl)-6-methylchroman-4-one (Table 2, compound 2n)

2-(4-Chlorophenyl)-6-methylchroman-4-one (Table 2, compound 2o)

2-(4-Bromophenyl)-6-methylchroman-4-one (Table 2, compound 2p)

Parameter	Value
1 Data File Nane	$\begin{aligned} & \text { H:/ } 400 / 2019-1-\mathrm{hxx}-\mathrm{H} / \\ & 80 / \text { fid } \end{aligned}$
2 Title	2019-1-tixa-H. 80. fid
3 Connent	
4 Origin	Bruker Biospin Guth
5 Omer	narsu
6 Site	
7 Instrument	Arance
8 Author	
9 Solvent	CDC13
10 Tenperature	292.1
11 Pulse Sequence	2 z 30
12 Exper inent	1 D
13 Probe	2163739_0032 (P1 HR-400-S1-BBF/ H/ D-5.0-Z SP)
14 Number of Scans	4
15 Receiver Gain	32.0
16 Relexation Delay	1.0000
17 Pelse Width	10.0000
18 Presaturation Frequency	
19 Aequisition Tine	3.9977
20 Acquisition Date	2019-01-301 16:19:51
21 Modification Date 22Class	2019 01-30116:16:38
23 Spectronet er Freçuency	100.13
24 Spectral Nidth	8196.7
25 Lowest Frequency	-1637.6
26 Nucleus	1H
27 Acquired Size	32768
28 Spectral Size	65536

Cres)

6-Methyl-2-(4'-propyl-[1,1'-biphenyl]-4-yl)chroman-4-one (Table 2, compound 2q)

2-(2-Fluorophenyl)chroman-4-one (Table 2, compound 2r)

6-Methoxy-2-(p-tolyl)chroman-4-one (Table 2, compound 2s)

2-(4-Ethylphenyl)-6-methoxychroman-4-one (Table 2, compound 2t)

6-Methoxy-2-(4-methoxyphenyl)chroman-4-one (Table 2, compound 2u)

6,8-Di-tert-butyl-2-phenylchroman-4-one (Table 2, compound 2v)

6-Bromo-2-(4-methoxyphenyl)chroman-4-one (Table 2, compound 2w)

2-(4-Bromophenyl)-6-chlorochroman-4-one (Table 2, compound 2x)

2-(3-Chlorophenyl)chroman-4-one (Table 2, compound 2y)

2-Phenylchroman-4-ol (Scheme 2, compound 3a)

6-Methoxy-2-(4-methoxyphenyl)chroman-4-ol (Scheme 2, compound 3u)

6,8-Di-tert-butyl-2-phenylchroman-4-ol (Scheme 2, compound 3v)

2-Phenylchroman-4-one oxime (Scheme 2, compound 4a)

6-Methoxy-2-(p-tolyl)chroman-4-one oxime (Scheme 2, compound 4s)

6-Methoxy-2-(4-methoxyphenyl)chroman-4-one oxime (Scheme 2, compound 4u)

(E)-1-(2-Hydroxyphenyl)-3-phenylprop-2-en-1-one (Scheme 3, compound 5aa)

(E)-1-(2-Hydroxy-5-nitrophenyl)-3-phenylprop-2-en-1-one (Scheme 3, compound 5ab)

Parameter	Value
1 Data File Nane	C:/ 2019-2-hxv-H/ 71/ fid
2 Title	2019-2-hxx-H. 71. fid
3 Cumsent	
4 Origin	Bruker BioSpin Cabh
5 Omer	root
6 Site	
7 Instrument	Avance
8 Author	
9 Solvent	C10C13
10 Terperature	296.9
11 Pulse Sequence	7830
12 Experiment	1 D
13 Probe	$\begin{aligned} & \text { Z163739_0032 (P1 HR-400- } \\ & \text { S1-BBF/ H/D-5.0-2 SP) } \end{aligned}$
14 Number of Scans	4
15 Receiver Gain	101.0
16 Relaxation Delay	1.0000
17 Pulse Width	10.0000
18 Presaturation	
19 Acquisition Tibe	3. 9977
20 Acquisition Date	2019-08-22T22:37:27
21 Bodification Date	2019-08-22T22:36:52
23 Spectrometer Frequency	400. 13
24 Spectral Width	8196.7
25 Lonest Frequency	-1637.2
26 Nueleus	1 H
27 Acquired Size	32768
28 Spectral Size	65536

2-Phenylchroman-4-one (Scheme 3, compound 2a-d \mathbf{d}_{2})

