Supporting Information

Robust InNCo_{3-x}Mn_x Nitride Supported Pt Nanoparticles as High Performance Bifunctional Electrocatalysts for Zn-Air Batteries

Li Du,^{†a} Mengyuan Lv,^{†a} Jiaxi Zhang,^a Huiyu Song,^a Dai Dang,^b Quanbing Liu,^{b,*}

Zhiming Cui^{a,*} and Shijun Liao^a

- a. The Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China.
- b. School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
- [†] Both authors contributed equally to this work.

Corresponding Author:

E-mail address: a*.zmcui@scut.edu.cn; b*. liuqb@gdut.edu.cn

Table of contents

S1. X-Ray Powder Diffraction

S2. OER polarization curves for InNCo₃ and Mn-doped samples

Table S1. OER activity comparison

S3. Tafel slope

S4. Electrochemical impedance spectroscopy (EIS)

S5. ECSA normalized polarization curves

References

S1. X-Ray Powder Diffraction

Figure. S1. The doping of Mn atoms results in XRD peaks shift towards higher angles, suggesting the partial substitution of Co by the smaller atom Mn. In addition, the 2θ values have more positive shift with further increasing the amount of Mn.

S2. OER polarization curves for InNCo₃ and Mn-doped

samples

Figure. S2. OER polarization curves for InNCo₃ and all the Mn-doped samples tests in 1M KOH solution. The OER plots have been zoomed to compare the overpotentials at 10 mA cm⁻². The linear-sweep voltammograms (LSV) were after IR correction. It shows that doping Mn can greatly enhance the OER activity, which $InNCo_{2.7}Mn_{0.3}$ demonstrated the lowest overpotential of 300 mV to reach the current density at 10 mA cm⁻², followed by $InNCo_{2.6}Mn_{0.4}$ (323 mV), $InNCo_{2.5}Mn_{0.5}$ (327 mV), $InNCo_{2.9}Mn_{0.1}$ (322 mV), $InNCo_{2.8}Mn_{0.2}$ (344 mV) and $InNCo_3$ (360 mV).

Table S1. OER activity comparison

Catalyst	Overpotentials (mV)	Tafel slop (mV dec ⁻	Electrolyte	Reference
InNCo ₃	360	85	1M KOH	this work
InNCo _{2.5} Mn _{0.5}	327	115	1M KOH	this work
InNCo _{2.6} Mn _{0.4}	323	87	1M KOH	this work
InNCo _{2.7} Mn _{0.3}	300	84	1M KOH	this work
InNCo _{2.8} Mn _{0.2}	344	91	1M KOH	this work
InNCo _{2.9} Mn _{0.1}	322	148	1M KOH	this work
CoN	290	70	1M KOH	1
Co ₄ N/CNW/CC	310	81	1M KOH	2
CoP/CN	300	68	1M KOH	3
CoSn ₂ /FTO	299	89	1M KOH	4
Ni ₃ Ge ₂ O ₅ (OH) ₄	320	67.5	1M KOH	5
MnO ₂ -0.5IL	394	49	1M KOH	6
P-Co-NC-4	315	75.7	1M KOH	7
Ni-MnO/rGO	370	67	0.1M KOH	8
BCFSn-721	300	69	0.1M KOH	9

Table S1. (OER activity comparison of as-prepared anti-perovskite InNCo₃ and Mndoped samples with other superior non-noble OER catalysts previously reported.

NiCo-LDH-G	337	52	0.1M KOH	10
Co-N, B-CSs	430	-	0.1M KOH	11
LCF-700	293	67	0.1M KOH	12

S3. Tafel slope

Figure. S3. Tafel slops of as-prepared anti-perovskite nitride samples and commercial Ir/C. This comparison clearly showed that doping Mn can significantly improve the OER performance and electronic conductivity as well, thus leading to a faster reaction. InNCo₃ yields a competitively high Tafel slop of 85 mV dec⁻¹ while InNCo_{2.7}Mn_{0.3} shows a similarly Tafel slop of 84 mV dec⁻¹. The Tafel slop of InNCo_{2.6}Mn_{0.4}, InNCo_{2.8}Mn_{0.2} InNCo_{2.5}Mn_{0.5} and InNCo_{2.9}Mn_{0.1} are 87 mV dec⁻¹, 91 mV dec⁻¹, 115 mV dec⁻¹ and 148 mV dec⁻¹, respectively.

S4. Electrochemical impedance spectroscopy (EIS)

Figure. S4. The Nyquist plots of as-prepared anti-perovskite nitride samples and commercial Ir/C. The resistance of the solution was around 5.36, which can be observed from the X intercept. The radius of the semicircles represented the charge-transfer resistance R_{ct} . The R_{ct} of InNCo₃ was 10.33, much smaller than InNCo_{2.7}Mn_{0.3} (18.5), InNCo_{2.95}Mn_{0.05} (18.7) and InNCo_{2.9}Mn_{0.1} (37.5), indicating a lower resistance.

S5. ECSA normalized polarization curves

Figure. S5. (a) The C_{dl} values of InNCo_{3-x}Mn_x measured by the CV scan between 1.3 V and 1.4 V (vs. RHE) under different scan rate of 10 mV s⁻¹, 30 mV s⁻¹, 50 mV s⁻¹, 70 mV s⁻¹ and 100 mV s⁻¹. (b) ECSA normalized polarization curves for the as-prepared anti-perovskite nitrides samples.

References

 Zhang, Y. Q.; Ouyang, B.; Xu, J.; Jia, G. C.; Chen, S.; Rawat, R. S.; Fan, H. J., Rapid Synthesis of Cobalt Nitride Nanowires: Highly Efficient and Low-Cost Catalysts for Oxygen Evolution. *Angew. Chem., Int. Edit.* **2016**, *55*, 8670-8674.

2. Meng, F. L.; Zhong, H. X.; Bao, D.; Yan, J. M.; Zhang, X. B., In Situ Coupling of Strung Co₄N and Intertwined N-C Fibers toward Free-Standing Bifunctional Cathode for Robust, Efficient, and Flexible Zn Air-Batteries. *J. Am. Chem. Soc.* **2016**, *138*, 10226-10231.

3. Weng, B. C.; Wei, W.; Yiliguma; Wu, H.; Alenizi, A. M.; Zheng, G. F., Bifunctional CoP and CoN porous nanocatalysts derived from ZIF-67 in situ grown on nanowire photoelectrodes for efficient photoelectrochemical water splitting and CO₂ reduction. *J. Mater. Chem. A* **2016**, *4*, 15353-15360.

4. Menezes, P. W.; Panda, C.; Garai, S.; Walter, C.; Guiet, A.; Driess, M., Structurally Ordered Intermetallic Cobalt Stannide Nanocrystals for High-Performance Electrocatalytic Overall Water-Splitting. *Angew. Chem., Int. Edit.* **2018**, *57*, 15237-15242.

5. Zhang, N.; Yang, B. P.; He, Y. Q.; He, Y. L.; Liu, X. H.; Liu, M.; Song, G. Y.; Chen, G.; Pan, A. Q.; Liang, S. Q.; Ma, R. Z.; Venkatesh, S.; Roy, V. A. L., Serpentine Ni₃Ge₂O₅(OH)₄ Nanosheets with Tailored Layers and Size for Efficient Oxygen Evolution Reactions. *Small* **2018**, *14*, 8.

Yan, G. B.; Lian, Y. B.; Gu, Y. D.; Yang, C.; Sun, H.; Mu, Q. Q.; Li, Q.; Zhu, W.;
Zheng, X. S.; Chen, M. Z.; Zhu, J. F.; Deng, Z.; Peng, Y., Phase and Morphology

Transformation of MnO₂ Induced by Ionic Liquids toward Efficient Water Oxidation. ACS Catal. **2018**, *8*, 10137-10147.

Liang, Z. Z.; Zhang, C. C.; Yuan, H. T.; Zhang, W.; Zheng, H. Q.; Cao, R., PVP-assisted transformation of a metal-organic framework into Co-embedded N-enriched meso/microporous carbon materials as bifunctional electrocatalysts. *Chem. Commun.* 2018, *54*, 7519-7522.

 Fu, G. T.; Yan, X. X.; Chen, Y. F.; Xu, L.; Sun, D. M.; Lee, J. M.; Tang, Y. W., Boosting Bifunctional Oxygen Electrocatalysis with 3D Graphene Aerogel-Supported Ni/MnO Particles. *Adv. Mater.* 2018, *30*, 1704609.

9. Xu, X. M.; Su, C.; Zhou, W.; Zhu, Y. L.; Chen, Y. B.; Shao, Z. P., Co-doping Strategy for Developing Perovskite Oxides as Highly Efficient Electrocatalysts for Oxygen Evolution Reaction. *Adv. Sci.* **2016**, *3* (2), 1500187.

Yang, J.; Yu, C.; Hu, C.; Wang, M.; Li, S. F.; Huang, H. W.; Bustillo, K.; Han, X.
T.; Zhao, C. T.; Guo, W.; Zeng, Z. Y.; Zheng, H. M.; Qiu, J. S., Surface-Confined
Fabrication of Ultrathin Nickel Cobalt-Layered Double Hydroxide Nanosheets for
High-Performance Supercapacitors. *Adv. Funct. Mater.* 2018, 28 (44), 1803272.

Guo, Y. Y.; Yuan, P. F.; Zhang, J. N.; Hu, Y. F.; Amiinu, I. S.; Wang, X.; Zhou, J. G.; Xia, H. C.; Song, Z. B.; Xu, Q.; Mu, S. C., Carbon Nanosheets Containing Discrete Co-N-x-B-y-C Active Sites for Efficient Oxygen Electrocatalysis and Rechargeable Zn-Air Batteries. *Acs Nano* 2018, *12*, 1894-1901.

Song, S. Z.; Zhou, J.; Su, X. Z.; Wang, Y.; Li, J.; Zhang, L. J.; Xiao, G. P.; Guan,
C. Z.; Liu, R. D.; Chen, S. G.; Lin, H. J.; Zhang, S.; Wang, J. Q., Operando X-ray

spectroscopic tracking of self-reconstruction for anchored nanoparticles as highperformance electrocatalysts towards oxygen evolution. *Energy Environ. Sci.* **2018**, *11*, 2945-2953.