Supporting Information

Asymmetric Total Syntheses of (-)-Fennebricin A,
 (-)-Renieramycin J, (-)-Renieramycin G, (-)-Renieramycin M, and (-)- Jorunnamycin A via C-H Activation

Yu Zheng, Xue-Dan Li, Peng-Zhen Sheng, Hong-Dou Yang, Kun Wei, and Yu-Rong Yang*
State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences
Lanhei 132\#, Kunming 650201, China
yangyurong@mail.kib.ac.cn

Table of Contents

General Information S3

1. Experimental Procedures and characterization data S4
(1) Synthesis of amine $\mathbf{1 0}$ S4
(2) Synthesis of amine $\mathbf{8}$ S8
(3) Synthesis of acid $\mathbf{9}$ S11
(4) Synthesis of pentacyclic intermediate 5 S13
(5) Synthesis of Renieramycin G (25) and Jorunnamycin A (3) S18
(6) Synthesis of Renieramacin M (28) and Renieramacin J (2) S23
(7) Synthesis of Fennebricin (1) S27
2. NMR data comparison of synthetic and natural products S31
3. X-ray crystallographic data S36
4. Copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra S42
References S71

General Information

Unless otherwise stated, all oxygen or moisture sensitive reactions were conducted in flame-dried glassware under an atmosphere of nitrogen. All solvents were purified and dried according to standard methods prior to use. The compound $\mathbf{1 2}^{[1]}$, compound $\mathbf{1 4}^{[2]}$ and compound $\mathbf{2 0}{ }^{[3]}$ were prepared according to the reported procedure. Reagents were purchased from commercial sources and were used without further purification.

Chromatographic purification of products was accomplished using forced-flow chromatography on 200-300 mesh silica gel. The TLC glass plates were performed on 0.20 mm or 1.0 mm (preparative) silica gel GF254 plates. Visualization was performed using ultraviolet light (254 nm), iodine vapor or potassium permanganate $\left(\mathrm{KMnO}_{4}\right)$ in water.
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were acquired on Bruker Avance III- 400 or 600 spectrometer (Bruker Corp., Germany), and TMS was used as internal standard. Chemical shifts were given in parts per million (ppm) with reference to residual solvent signals $\left[{ }^{1} \mathrm{H} \mathrm{NMR}: \mathrm{CDCl}_{3}\right.$ (7.26), $\mathrm{CD}_{3} \mathrm{OD}$ (3.31), $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ (5.32); ${ }^{13} \mathrm{C}$ NMR: CDCl_{3} (77.0), $\mathrm{CD}_{3} \mathrm{OD}$ (49.0), $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ (53.8)]. Peak multiplicities were recorded as follows: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{m}=$ multiplet or unresolved, br s = broad singlet. Structural assignments were made with additional information from gCOSY, gHSQC, and gHMBC experiments. In the ${ }^{13} \mathrm{C}$ NMR analysis, peaks that correspond to those of the polyfluoroarylamide auxiliary appeared as nearly invisible, complex sets of multiplets; they are omitted in the following spectroscopic analysis ${ }^{[1]}$. Infrared (IR) spectra were recorded on a Bruker Tensor-27 Fourier-Transform Infrared spectrometer (Bruker Corp., Germany) with KBr pellets or a Nicolet iS10 Infrared spectrometer (Nicolet Corp., USA). High resolution mass spectral (HRMS) data were obtained at the mass spectrometry service operated at a Agilent 1290 UPLC/6540 Q-TOF (Agilent Corp., USA) for electrospray ionization (ESI) and were reported as (m/z). X-ray analysis was obtained at the X-ray single crystal diffractometer (Bruker Corp., Germany). Optical rotations were measured on a Autopol VI Polarimeter (Rudolph Research Analytical Corp., USA). Melting points were measured on a WRX-5Amelting point apparatus.

1. Experimental Procedures

(1) Synthesis of amine 10

Scheme S1. Synthesis of amine 10

Synthesis of Compound 11

Compound 11. To a solution of compound 14 ($30.0 \mathrm{~g}, 106.4 \mathrm{mmol}, 1.0$ equiv) in MeCN (210 mL) was added N -iodosuccinimide ($31.1 \mathrm{~g}, 138.3 \mathrm{mmol}, 1.3$ equiv) and trifluoroacetic acid ($1.2 \mathrm{~mL}, 16.0 \mathrm{mmol}, 0.15$ equiv) sequentially at room temperature. After stirring 6 h , the reaction was quenched with saturated $a q . \mathrm{NaHCO}_{3}(200 \mathrm{~mL})$ and saturated aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(200$ $\mathrm{mL})$, extracted with ethyl acetate $(3 \times 200 \mathrm{~mL})$. The combined organic extracts were washed with brine (50 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The crude residue was purified by column chromatography (petroleum ether/ethyl acetate $80: 1$) to give compound 11 ($35.2 \mathrm{~g}, 81 \%$ yield) as a colorless oil.

Compound 11. $\mathbf{R}_{f}=0.33$ (n-hexane/ethyl acetate 50:1); IR (ATR) $\lambda_{\max }$ 2991, 2955, 2931, $2895,2858,1579,1471,1418,1396,1309,1254,1233,1208,1173,1095,1050,1010,885$, 862, 849, $784 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.11(\mathrm{~s}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H})$, $2.24(\mathrm{~s}, 3 \mathrm{H}), 1.00(\mathrm{~s}, 9 \mathrm{H}), 0.18(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 152.7(\mathrm{~s}), 150.5(\mathrm{~s})$, 146.0 (s), 127.4 (d), 126.2 (s), 83.9 (s), 60.4 (q), $59.8(q), 25.6(q), 18.2(\mathrm{~s}), 10.6(\mathrm{q}),-4.7(\mathrm{q}) ;$ HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{15} \mathrm{H}_{25} \mathrm{IO}_{3} \mathrm{SiNa} 431.0510$; Found 431.0512 .

Synthesis of compound 15 and 16

Compound 15 and 16. According to the procedure reported by Yu's group ${ }^{[1]}$. Compound 12 $(8.7 \mathrm{~g}, 20.0 \mathrm{mmol}, 1.0$ equiv $), \mathrm{Pd}(\mathrm{TFA})_{2}(664.9 \mathrm{mg}, 2.0 \mathrm{mmol}, 10 \mathrm{~mol} \%)$, and $\mathrm{Ag}_{2} \mathrm{CO}_{3}(8.3 \mathrm{~g}$, $30.0 \mathrm{mmol}, 1.5$ equiv) were weighed out open to the air and placed in 150 mL a sealable pressure flask with a magnetic stir bar. The aryl iodide $11(12.2 \mathrm{~g}, 30.0 \mathrm{mmol}, 1.5$ equiv $)$, 2-picoline ($395.0 \mu \mathrm{~L}, 4.0 \mathrm{mmol}, 20 \mathrm{~mol} \%$) and $\mathrm{DCE}(40 \mathrm{~mL}$) were added, followed by $\mathrm{CF}_{3} \mathrm{COOH}(297.1 \mu \mathrm{~L}, 4.0 \mathrm{mmol}, 20 \mathrm{~mol} \%$). The reaction vessel was sealed and the mixture was first stirred at room temperature for 10 min and then placed in a preheated oil bath at 100 ${ }^{\circ} \mathrm{C}$. After vigorous stirring for 96 h , the reaction mixture was cooled to room temperature and filtered through a short pad of silica gel with ethyl acetate, concentrated in vacuo. The crude residue was purified by column chromatography (petroleum ether/ethyl acetate $8: 1$ to $4: 1$ to $2: 1)$ to give compound $15[4.41 \mathrm{~g}, 31 \%$ yield, (38% yield based on recovered $\mathbf{1 2}$)] as a colorless oil, compound 16 [$5.37 \mathrm{~g}, 45 \%$ yield, (54% yield based on recovered 12)] as a colorless oil.

Compound 15. $\mathbf{R}_{f}=0.42$ (n-hexane/ethyl acetate $4: 1$); $[\boldsymbol{\alpha}]^{26.5}{ }_{\mathrm{D}}-57.7^{\circ}\left(c \quad 0.3, \mathrm{CHCl}_{3}\right) ; \mathbf{I R}$ (ATR) $\lambda_{\max } 3269,2995,2932,2859,1780,1723,1657,1616,1588,1510,1481,1422,1382$, 1341, 1281, 1237, 1187, 1148, 1064, 1009, 994, 875, 837, 811, 784, 757, $716 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H} \mathbf{~ N M R}$
$\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.85(\mathrm{~s}, 1 \mathrm{H}), 7.83(\mathrm{ddd}, J=4.5,3.1,1.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.73(\mathrm{ddd}, J=4.5,3.1$, $1.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.50(\mathrm{~s}, 1 \mathrm{H}), 5.28(\mathrm{dd}, J=8.4,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 3.58(\mathrm{dd}, J$ $=14.2,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.30(\mathrm{dd}, J=14.2,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.08(\mathrm{~s}, 3 \mathrm{H}), 0.94(\mathrm{~s}, 9 \mathrm{H}), 0.05(\mathrm{~d}, J=8.8$ $\mathrm{Hz}, 6 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (150 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 167.8$ (s), 166.7 (s), 150.8 (s), 149.7 (s), 145.5 (s), 134.4 (d), 131.6 (s$), 125.9$ (s), 124.1 (s$), 123.6$ (d), 119.6 (d), 61.0 (q), 59.8 (q), 55.6 (d), 30.5 (t), 25.6 (q), 18.1 (s), 9.6 (q), -4.78 (q), -4.82 (q) ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-53.0(\mathrm{t}, J=$ $22.1 \mathrm{~Hz}, 3 \mathrm{~F}),-140.8(\mathrm{~m}, 2 \mathrm{~F}),-142.3(\mathrm{~m}, 2 \mathrm{~F})$; HRMS (ESI) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{33} \mathrm{H}_{33} \mathrm{~F}_{7} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{SiNa} 737.1888$; Found 737.1911.

Compound 16. $\mathbf{R}_{f}=0.61$ (n-hexane/ethyl acetate $1: 1$); $[\boldsymbol{\alpha}]^{27.1}{ }_{\mathrm{D}}-51.8^{\circ}\left(c \quad 0.3, \mathrm{CHCl}_{3}\right)$; $\mathbf{I R}$ (ATR) $\lambda_{\max } 3291,2995,2944,2834,1779,1716,1657,1615,1509,1479,1420,1382,1340$, $1281,1235,1187,1147,1111,1086,1048,1000,953,889,875,840,818,756,716 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 8.94(\mathrm{~s}, 1 \mathrm{H}), 7.78(\mathrm{dd}, J=5.6,3.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.70(\mathrm{dd}, J=5.6,3.2$ Hz, 2H), $6.64(\mathrm{~s}, 1 \mathrm{H}), 5.54(\mathrm{~s}, 1 \mathrm{H}), 5.24(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 3.59$ $(\mathrm{dd}, J=14.2,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.28(\mathrm{dd}, J=14.2,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.08(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (150 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 167.8(\mathrm{~s}), 166.7(\mathrm{~s}), 149.8$ (s), 145.7 (s$), 145.3$ (s$), 134.3$ (d), 131.5 (s), 125.2 (s$)$, 124.7 (s), 123.5 (d), 114.1 (d), 61.0 (q), 60.7 (q), 55.4 (d), 30.3 (t), 9.6 (q); ${ }^{19}$ F NMR (376 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-56.1(\mathrm{t}, J=22.1 \mathrm{~Hz}, 3 \mathrm{~F}),-140.9(\mathrm{~m}, 2 \mathrm{~F}),-142.3(\mathrm{~m}, 2 \mathrm{~F}) ;$ HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{27} \mathrm{H}_{19} \mathrm{~F}_{7} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{Na}$ 623.1024; Found 623.1041.

Synthesis of Compound 17

Compound 17. A 350 mL sealable pressure flask was charged with MeOH (100 mL), compound 15 ($4.50 \mathrm{~g}, 6.30 \mathrm{mmol}, 1.0$ equiv), and compound $16(4.50 \mathrm{~g}, 7.50 \mathrm{mmol}, 1.0$ equiv). $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ ($17.42 \mathrm{~mL}, 138.0 \mathrm{mmol}, 10.0$ equiv) was added dropwise via syringe at room temperature, and the reaction vessel was sealed. The mixture was placed in a preheated oil bath at $100{ }^{\circ} \mathrm{C}$ and stirred for 16 h . Upon complete consumption of the starting material,
the reaction was cooled to room temperature. $\mathrm{Et}_{3} \mathrm{~N}(19.10 \mathrm{~mL}, 138.0 \mathrm{mmol}, 10.0$ equiv) was carefully added via syringe, and stirring for 10 min . The solvent was concentrated in vacuo, and the crude residue was purified by column chromatography (petroleum ether/ethyl acetate 2:1) to give compound $17(4.63 \mathrm{~g}, 84 \%$ yield) as a colorless oil, and recovered 2,3,5,6-tetrafluoro-4-aminobenzotrifluoride ($2.37 \mathrm{~g}, 74 \%$ yield).

Compound 17. $\mathbf{R}_{f}=0.64$ (n-hexane/ethyl acetate $1: 1$); $[\boldsymbol{\alpha}]^{27.2}{ }_{\mathrm{D}}-150.0^{\circ}\left(c 0.3, \mathrm{CHCl}_{3}\right) ; \mathbf{I R}$ (ATR) $\lambda_{\max } 3443,2999,2953,2834,1775,1744,1717,1596,1485,1470,1456,1437,1418$, $1390,1339,1280,1253,1198,1176,1109,1088,1048,1008,917,885,871,836,785,755$, $721 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.77(\mathrm{dd}, J=5.5,3.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.67(\mathrm{dd}, J=5.5,3.1$ $\mathrm{Hz}, 2 \mathrm{H}), 6.51(\mathrm{~s}, 1 \mathrm{H}), 5.38(\mathrm{~s}, 1 \mathrm{H}), 5.20(\mathrm{dd}, J=11.2,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H})$, $3.66(\mathrm{~s}, 3 \mathrm{H}), 3.51(\mathrm{dd}, J=14.2,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.38(\mathrm{dd}, J=14.2,11.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.10(\mathrm{~s}, 3 \mathrm{H}) ;$ ${ }^{13} \mathbf{C}$ NMR (100 MHz, CDCl_{3}) $\delta 169.6$ (s), 167.4 (s), 150.7 (s), 144.9 (s), 144.8 (s), 133.9 (d), 131.8 (s), 125.9 (s), 124.3 (s), 123.3 (d), 114.0 (d), 60.63 (q), $60.60(q), 52.8$ (q), 52.3 (d), 29.8 (t), 9.7 (q); HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{NO}_{7} \mathrm{Na} 422.1210$; Found 422.1217.

Synthesis of Compound 10

Compound 10. To a solution of compound $17(2.50 \mathrm{~g}, 6.27 \mathrm{mmol}, 1.0$ equiv $)$ in $\mathrm{DCM} / \mathrm{MeOH}$ $(30 \mathrm{~mL} / 30 \mathrm{~mL})$ was added ethylenediamine $(3.34 \mathrm{~mL}, 50.12 \mathrm{mmol}, 8.0$ equiv) at room temperature. The mixture was placed in a preheated oil bath at $40^{\circ} \mathrm{C}$ and stirred for 12 h . Upon complete consumption of the starting material, the reaction mixture was cooled to room temperature and filtered through a short pad of silica gel with ethyl acetate, concentrated in vacuo. The crude residue was purified by column chromatography (petroleum ether/ethyl acetate $1: 1$ to chloroform/methanol $10: 1$) to give compound $\mathbf{1 0}(1.55 \mathrm{~g}, 5.76 \mathrm{mmol}, 92 \%$ yield $)$ as a pale yellow solid.

Compound 10. $\mathbf{R}_{f}=0.41$ (chloroform/methanol 10:1); $[\boldsymbol{\alpha}]^{24.8}{ }_{\mathrm{D}}+6.6^{\circ}(c \quad 0.2, \mathrm{MeOH})$; $\mathbf{I R}$ (ATR) $\lambda_{\max } 3339,3285,2997,2952,2933,2844,2676,2637,2590,1742,1594,1509,1457$, $1436,1415,1390,1378,1369,1351,1329,1308,1273,1239,1202,1180,1137,1104,1051$, $1044,1007,986,963,869,858,821,796,759,729,693 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $6.56(\mathrm{~s}, 1 \mathrm{H}), 3.76(\mathrm{dd}, J=8.6,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.64(\mathrm{~s}, 3 \mathrm{H}), 3.02(\mathrm{dd}, J$ $=13.6,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.74(\mathrm{dd}, J=13.6,8.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.19(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 175.4(\mathrm{~s}), 150.4(\mathrm{~s}), 145.4(\mathrm{~s}), 145.0(\mathrm{~s}), 125.9(\mathrm{~s}), 124.6(\mathrm{~s}), 114.6$ (d), $60.5(\mathrm{q})$, 60.3 (q), 54.8 (d), $52.0(\mathrm{q}), 35.4$ (t), $9.8(\mathrm{q}) ;$ HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{NO}_{5}$ 270.1336; Found 270.1335; m.p. $82-84^{\circ} \mathrm{C}$.

(2) Synthesis of amine 8

Scheme S2. Synthesis of amine $\mathbf{8}$

Synthesis of Compound 21

Compound 10. To a solution of compound $10(2.20 \mathrm{~g}, 8.18 \mathrm{mmol}, 1.0$ equiv) in DCM (80 $\mathrm{mL})$ was added $4 \AA$ molecular sieves $(2.20 \mathrm{~g})$ and acetic acid ($514.1 \mu \mathrm{~L}, 9.00 \mathrm{mmol}, 1.1$ equiv)
sequentially at room temperature. The resulting solution was degassed by three freeze-pump-thaw cycles with argon. A solution of benzyloxyacetaldehyde $22(1.35 \mathrm{~g}, 9.00$ mmol, 1.1 equiv) in DCM (40 mL) was added slowly via springe pump to the degassed solution over 12 h . After stirring 24 h at room temperature (including the addition period), the reaction mixture was flitered though a short pad of celite, and quenched with saturated $a q$. $\mathrm{NaHCO}_{3}(100 \mathrm{~mL})$, extracted with DCM $(3 \times 100 \mathrm{~mL})$. The combined organic extracts were washed with brine $(50 \mathrm{~mL})$, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The crude residue was purified by column chromatography (chloroform/acetone $20: 1$) to give compound 21 ($2.51 \mathrm{~g}, 77 \%$ yield, major isomer, less polar) as a colorless oil and compound 21' ($0.41 \mathrm{~g}, 12 \%$ yield, minor isomer, more polar) as a colorless oil.

Compound 21. $\mathbf{R}_{f}=0.45$ (n-hexane/ethyl acetate $1: 1$); $[\boldsymbol{\alpha}]^{24.8}{ }_{\mathrm{D}}-85.0^{\circ}(c \quad 0.2, \mathrm{MeOH}) ; \mathbf{I R}$ (ATR) $\lambda_{\max } 3306,2991,2950,2939,2860,1740,1609,1511,1496,1456,1436,1413,1361$, $1334,1313,1279,1245,1212,1196,1179,1111,1060,1029,1004,861,738,700 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.39-7.22(\mathrm{~m}, 5 \mathrm{H}), 6.32(\mathrm{~s}, 1 \mathrm{H}), 4.55(\mathrm{dd}, J=12.0,19.2 \mathrm{~Hz}, 2 \mathrm{H})$, $4.51(\mathrm{~m}, 1 \mathrm{H}), 4.09(\mathrm{dd}, J=9.2,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.74(\mathrm{dd}, J=11.1,3.2$ $\mathrm{Hz}, 1 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 3.52(\mathrm{dd}, J=11.2,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.23(\mathrm{dd}, J=15.8,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.61$ (dd, $J=15.8,11.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.22(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 173.5$ (s), $149.2(\mathrm{~s})$, 144.1 (s), 142.8 (s), 138.0 (s), 128.3 (d), 127.6 (d), 127.6 (d), 124.8 (s), 122.2 (s), 120.1 (s), 73.4 (t), 73.2 (t), 60.6 (q), 60.4 (q), 54.8 (d), 53.5 (d), 52.1 (q), 27.7 (t), 9.5 (q); HRMS (ESI) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{NO}_{6}$ 402.1911; Found 402.1923.

Synthesis of Compound 21-1

Compound 21-1. To a solution of compound 21 ($5.00 \mathrm{~g}, 12.47 \mathrm{mmol}, 1.0$ equiv) in DMF (40 $\mathrm{mL})$ was added imidazole $(5.09 \mathrm{~g}, 74.81 \mathrm{mmol}, 6.0$ equiv) and tert-butyldimethylsilyl chloride ($5.64 \mathrm{~g}, 37.41 \mathrm{mmol}, 3.0$ equiv) sequentially at room temperature. After stirring 12 h ,
the reaction was quenched with saturated $a q . \mathrm{NaHCO}_{3}(80 \mathrm{~mL})$, and extracted with ethyl acetate $(3 \times 80 \mathrm{~mL})$. The combined organic extracts were washed with water $(5 \times 40 \mathrm{~mL})$ and brine (40 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The crude residue was purified by column chromatography (petroleum ether/acetone 10:1) to give compound 21-1 ($5.78 \mathrm{~g}, 90 \%$ yield) as a colorless oil.

Compound 21-1. $\mathbf{R}_{f}=0.43$ (n-hexane/ethyl acetate 4:1); $[\boldsymbol{\alpha}]^{24.7}{ }_{\mathrm{D}}-76.5^{\circ}(c 0.2, \mathrm{MeOH}) ;$ IR (ATR) $\lambda_{\text {max }} 3063,3030,2952,2932,2896,2884,2857,1742,1496,1454,1436,1410,1391$, 1346, 1282, 1253, 1197, 1176, 1113, 1103, 1070, 1030, 1005, 971, 939, 880, 834, 782, 737, $699,673 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.35-7.22(\mathrm{~m}, 5 \mathrm{H}), 4.51(\mathrm{t}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H})$, 4.48 (dd, $J=19.1,11.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.13$ (dd, $J=7.9,2.9 \mathrm{~Hz}, 1 \mathrm{H}$), 3.78 ($\mathrm{s}, 3 \mathrm{H}$), 3.69 ($\mathrm{s}, 3 \mathrm{H}$), $3.62(\mathrm{~s}, 3 \mathrm{H}), 3.60(\mathrm{dd}, J=15.8,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.50(\mathrm{dd}, J=11.1,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.20(\mathrm{dd}, J=$ 15.8, $3.2 \mathrm{~Hz}, 1 \mathrm{H}$), 2.63 (dd, J = 15.8, 11.1 Hz, 1H), 2.19 (s, 3H), 0.95 (s, 9H), 0.23 ($\mathrm{s}, 3 \mathrm{H}$), $0.06(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.6$ (s , 150.4 (s , 148.1 (s , 142.3 (s ,, 138.4 (s), 128.2 (d), 127.6 (d), 127.4 (d), 125.0 (s$), 124.9$ (s$), 123.1$ (s$), 73.3$ (t), 73.0 (t), 60.2 (q), 59.9 (q), 54.9 (d), 54.0 (d), 52.1 (q), 28.0 (t), 26.1 (q), 18.5 (s$), 9.4$ (q), -3.8 (q), -4.5 (q); HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{28} \mathrm{H}_{42} \mathrm{NO}_{6} \mathrm{Si} 516.2776$; Found 516.2793.

Synthesis of Compound 8

Compound 8. To a solution of compound 32 ($5.78 \mathrm{~g}, 11.22 \mathrm{mmol}, 1.0$ equiv) in THF (100 mL) was added lithium aluminum hydride ($853.0 \mathrm{mg}, 22.45 \mathrm{mmol}, 2.0$ equiv) carefully at 0 ${ }^{\circ} \mathrm{C}$. After stirring 30 min at the same temperature, the reaction was quenched by the cautious addition of ice-water (20 mL), and extracted with ethyl acetate $(3 \times 100 \mathrm{~mL})$. The combined organic extracts were washed with brine (50 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The crude residue was purified by column chromatography (chloroform/methanol $15: 1$) to give compound $\mathbf{8}(4.81 \mathrm{~g}, 88 \%$ yield) as a pale yellow solid.

Compound 8. $\mathbf{R}_{f}=0.26$ (ethyl acetate); $[\boldsymbol{\alpha}]^{27.0}{ }_{\mathrm{D}}-74.0^{\circ}(c 0.3, \mathrm{MeOH}) ; \mathbf{I R}(\mathbf{A T R}) \lambda_{\max } 2951$, $2931,2884,2857,1496,1454,1410,1391,1361,1346,1312,1278,1251,1194,1112,1064$, 1027, 1005, 938, 885, 835, 816, 781, 752, 698, $674 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.33$ $-7.22(\mathrm{~m}, 5 \mathrm{H}), 4.47(\mathrm{dd}, J=25.7,12.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.47(\mathrm{~m}, 1 \mathrm{H}), 4.04(\mathrm{dd}, J=8.9,3.1 \mathrm{~Hz}, 1 \mathrm{H})$, $3.76(\mathrm{dd}, J=10.6,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 3.62(\mathrm{~s}, 3 \mathrm{H}), 3.61(\mathrm{~m}, 1 \mathrm{H}), 3.54(\mathrm{dd}, J=10.8$, 6.7 Hz, 1H), $2.90-2.78(\mathrm{~m}, 2 \mathrm{H}), 2.33(\mathrm{dd}, J=15.5,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.19(\mathrm{~s}, 3 \mathrm{H}), 0.96(\mathrm{~s}, 9 \mathrm{H})$, $0.23(\mathrm{~s}, 3 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 150.4(\mathrm{~s}), 147.9(\mathrm{~s}), 142.2(\mathrm{~s})$, 138.4 (s), 128.2 (d), 127.7 (d), 127.5 (d), 125.7 ($s), 125.7$ ($s), 122.9(\mathrm{~s}), 73.3$ (t), 66.1 (t), 60.2 (q), 59.9 (q), 53.8 (d), 53.6 (d), 26.7 (t), 26.1 (q), 18.6 (s), 9.4 (q), -3.8 (q), -4.4 (q); HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{27} \mathrm{H}_{42} \mathrm{NO}_{5} \mathrm{Si} 488.2827$; Found 488.2830; m.p. $105-107{ }^{\circ} \mathrm{C}$.
(3) Synthesis of acid 9

Scheme S3. Synthesis of acid 9

Synthesis of Compound 18

Compound 18. To a solution of compound $10(3.00 \mathrm{~g}, 11.15 \mathrm{mmol}, 1.0$ equiv) in DCM (60
mL) was added triethylamine ($4.63 \mathrm{~mL}, 33.46 \mathrm{mmol}, 3.0$ equiv) and di-tert-butyl dicarbonate ($2.92 \mathrm{~g}, 13.38 \mathrm{mmol}, 1.2$ equiv) sequentially at room temperature. After stirring 6 h , the reaction was quenched with saturated $a q . \mathrm{NH}_{4} \mathrm{Cl}(100 \mathrm{~mL})$, and extracted with ethyl acetate (3 $\times 80 \mathrm{~mL})$. The combined organic extracts were brine $(40 \mathrm{~mL})$, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The crude residue was purified by column chromatography (petroleum ether/ethyl acetate $10: 1$ to $2: 1$) to give compound $\mathbf{1 8}(3.74 \mathrm{~g}, 91 \%$ yield) as a colorless oil.

Compound 18. $\mathbf{R}_{f}=0.64$ (n-hexane/ethyl acetate $1: 1$); $[\boldsymbol{\alpha}]^{24.6}{ }_{\mathrm{D}}-20.7^{\circ}(c \quad 0.2, \mathrm{MeOH}) ; \mathbf{I R}$ (ATR) $\lambda_{\max } 3369,2978,2952,2939,2833,1741,1710,1595,1504,1486,1455,1438,1419$, $1392,1367,1248,1234,1197,1168,1112,1051,1010,850,837,779,764,737,706 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 6.51(\mathrm{~s}, 1 \mathrm{H}), 4.33(\mathrm{dd}, J=8.7,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.68(\mathrm{~s}$, $3 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 3.03(\mathrm{dd}, J=13.7,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.80(\mathrm{dd}, J=13.7,8.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.19(\mathrm{~s}, 3 \mathrm{H})$, 1.39 (s, 9H); ${ }^{13} \mathbf{C}$ NMR (100 MHz, $\mathrm{CD}_{3} \mathrm{OD}$) $\delta 174.4$ (s), 157.7 (s), 151.3 (s), 147.3 (s), 146.9 (s$), 126.4$ (s$), 125.9$ (s$), 116.3$ (d), 80.6 (s), 61.2 (q), $60.5(\mathrm{q}), 56.0(\mathrm{~d}), 52.6(\mathrm{q}), 33.4(\mathrm{t}), 28.6$ (q), 9.9 (q); HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{18} \mathrm{H}_{27} \mathrm{NO}_{7} \mathrm{Na}$ 392.1680; Found 392.1691.

Synthesis of Compound 19

Compound 19. Compound 18 ($4.20 \mathrm{~g}, 11.38 \mathrm{mmol}, 1.0$ equiv) was dissolved in MeOH (40 $\mathrm{mL})$, then a solution of lithium hydroxide monohydrate $(1.91 \mathrm{~g}, 45.53 \mathrm{mmol}, 4.0$ equiv) in $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$ was added the reaction mixture at room temperature. After stirring 10 h , methanol was removed under reduced pressure. The resulting mixture was diluted with water $(40 \mathrm{~mL})$, acidified to pH 4 with 1 N HCl , extracted with ethyl acetate $(5 \times 40 \mathrm{~mL})$. The combined organic extracts were brine (40 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The resulting residue ($3.76 \mathrm{~g}, 93 \%$ yield) was used directly in the next step without purification.

Synthesis of Compound 9

Compound 9. To a solution of compound 19 ($3.76 \mathrm{~g}, 10.59 \mathrm{mmol}, 1.0$ equiv) in DMF (35 mL) was added imidazole $(4.33 \mathrm{~g}, 63.55 \mathrm{mmol}, 6.0$ equiv) and tert-butyldimethylsilyl chloride ($4.79 \mathrm{~g}, 31.77 \mathrm{mmol}, 3.0$ equiv) sequentially at room temperature. After stirring 12 h , the reaction was quenched with saturated $a q . \mathrm{NaHCO}_{3}(60 \mathrm{~mL})$, and extracted with ethyl acetate $(3 \times 60 \mathrm{~mL})$. The combined organic extracts were washed with water $(5 \times 30 \mathrm{~mL})$ and brine $(30 \mathrm{~mL})$, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The crude residue was purified by column chromatography (chloroform/methanol $50: 1$ to $10: 1$) to give compound $9(4.57 \mathrm{~g}, 92 \%$ yield) as a colorless oil.

Compound 9. $\mathbf{R}_{f}=0.58$ (chloroform/methanol 10:1); $[\boldsymbol{\alpha}]^{26.6}{ }_{\mathrm{D}}-28.9^{\circ}\left(c \quad 0.3, \mathrm{CHCl}_{3}\right) ; \mathbf{I R}$ (ATR) $\lambda_{\max } 3342,2956,2932,2898,2859,1716,1588,1484,1454,1419,1392,1366,1351$, $1251,1239,1221,1167,1119,1064,1014,869,839,816,783,757,688,665 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H} \mathbf{N M R}$ (400 MHz, $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 6.64(\mathrm{~s}, 1 \mathrm{H}), 4.24(\mathrm{dd}, J=9.9,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H})$, $3.14(\mathrm{dd}, J=14.1,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.76(\mathrm{dd}, J=14.1,9.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.18(\mathrm{~s}, 3 \mathrm{H}), 1.37(\mathrm{~s}, 9 \mathrm{H})$, $1.02(\mathrm{~s}, 9 \mathrm{H}), 0.17(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($\left.150 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 178.2(\mathrm{~s}), 157.8$ (s), $152.9(\mathrm{~s})$, 150.2 (s), 146.0 (s), 127.3 (s), 126.3 (s), 121.3 (d), 80.3 (s), 61.2 (q), 60.3 (q), 56.9 (d), 33.2 (t), 28.8 (q), $26.3(\mathrm{q}), 19.1(\mathrm{~s}), 10.0(\mathrm{q}),-4.3(\mathrm{q}) ;$ HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{23} \mathrm{H}_{39} \mathrm{NO}_{7} \mathrm{SiNa} 492.2388$; Found 492.2400.

(4) Synthesis of pentacyclic intermediate 5

Scheme S4. Synthesis of pentacyclic intermediate 5

Synthesis of Compound 7

Compound 7. Compound $\mathbf{8}(2.00 \mathrm{~g}, 4.11 \mathrm{mmol}, 1.0$ equiv) and triethylamine ($1.42 \mathrm{~mL}, 10.27$ mmol, 2.5 equiv) was dissolved in $\operatorname{DCM}(80 \mathrm{~mL})$, and a solution of compound $9(2.12 \mathrm{~g}, 4.52$ mmol, 1.1 equiv) in $\operatorname{DCM}(10 \mathrm{~mL})$ and $\operatorname{BOPCl}(1.15 \mathrm{~g}, 4.52 \mathrm{mmol}, 1.1$ equiv) was added the reaction mixture sequentially at $0^{\circ} \mathrm{C}$. After stirring 12 h at the same temperature, the reaction was quenched with saturated $a q . \mathrm{NH}_{4} \mathrm{Cl}(100 \mathrm{~mL})$, and extracted with ethyl acetate $(3 \times 100$ mL). The combined organic extracts were washed with brine (50 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The crude residue was purified by column chromatography (petroleum ether/ethyl acetate 2:1) to give compound 9 ($3.47 \mathrm{~g}, 90 \%$ yield) as a colorless oil.

Compound 7. $\mathbf{R}_{f}=0.76$ (n -hexane/ethyl acetate 1:1); $[\boldsymbol{\alpha}]^{26.3}{ }_{\mathrm{D}}+2.9^{\circ}\left(c 0.3, \mathrm{CHCl}_{3}\right) ; \mathbf{I R}(\mathbf{K B r})$ $\lambda_{\text {max }} 3436,2955,2932,2896,2858,1714,1642,1483,1472,1464,1455,1415,1391,1365$,

1349, 1252, 1240, 1218, 1171, 1117, 1064, 1011, 873, 838, 783, 737, 698, $676 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ (multiple and broadened resonances due to carbamate rotamers) 7.35 - 7.19 (m, 5H), 6.47 (s, 1H), 6.20 (q, $J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.41$ (d, $J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.09(\mathrm{~m}$, $1 \mathrm{H}), 4.71(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.58-4.36(\mathrm{~m}, 2 \mathrm{H}), 3.89-3.76(\mathrm{~m}, 2 \mathrm{H}), 3.73-3.56(\mathrm{~m}$, 12H), $3.45(\mathrm{~s}, 1 \mathrm{H}), 2.93-2.70(\mathrm{~m}, 3 \mathrm{H}), 2.60(\mathrm{~m}, 1 \mathrm{H}), 2.18(\mathrm{~s}, 6 \mathrm{H}), 1.99(b r \mathrm{~s}, 1 \mathrm{H}), 1.32(\mathrm{~s}$, $9 \mathrm{H}), 1.01(\mathrm{~s}, 9 \mathrm{H}), 0.97(\mathrm{~s}, 9 \mathrm{H}), 0.29-0.08(\mathrm{~m}, 12 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ (multiple and broadened resonances due to carbamate rotamers) 173.2 (s), 155.3 (s), 151.5 (s), 150.3 (s), 149.1 (s), 148.1 (s), 144.6 (s$), 141.5$ (s$), 138.0$ (s$), 128.2$ (d), 127.5 (d), 127.4 (d), $125.2(\mathrm{~s}), 124.6(\mathrm{~s}), 123.84(\mathrm{~s}), 123.76(\mathrm{~s}), 121.6(\mathrm{~s}), 120.4(\mathrm{~d}), 79.3(\mathrm{~s}), 73.1(\mathrm{t}), 71.0(\mathrm{t}), 65.6$ (t), $60.5(\mathrm{q}), 60.1(\mathrm{q}), 60.0(\mathrm{q}), 59.7(\mathrm{q}), 52.4$ (d), 51.6 (d), 47.8 (d), $35.0(\mathrm{t}), 28.2$ (q), 26.2 (q), 25.7 (q), $23.1(\mathrm{t}), 18.6(\mathrm{~s}), 18.1(\mathrm{~s}), 9.8(\mathrm{q}), 9.5(\mathrm{q}),-3.7(\mathrm{q}),-4.4(\mathrm{q}),-4.6(\mathrm{q}) ;$ HRMS (ESI) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{50} \mathrm{H}_{78} \mathrm{~N}_{2} \mathrm{O}_{11} \mathrm{Si}_{2} \mathrm{Na} 961.5036$; Found 961.5055.

Synthesis of Compound 22

Compound 22. To a solution of compound $7(1.50 \mathrm{~g}, 1.60 \mathrm{mmol}, 1.0$ equiv) in DCM (32 mL) was added Dess-Martin periodinane ($1.02 \mathrm{~g}, 2.40 \mathrm{mmol}, 1.5$ equiv) at $0^{\circ} \mathrm{C}$, and the reaction was allowed to warm to room temperature. After stirring 30 min , white precipitate was formed. The reaction mixture was filtered through a short pad of silica gel with ethyl acetate, concentrated in vacuo. The crude residue was purified by column chromatography (petroleum ether/ethyl acetate 5:1) to give compound $22(1.30 \mathrm{~g}, 87 \%$ yield) as a colorless oil.

Compound 22. $\mathbf{R}_{f}=0.31$ (n -hexane/ethyl acetate 4:1); $[\boldsymbol{\alpha}]^{27.8}{ }_{\mathrm{D}}-85.5^{\circ}\left(c 0.4, \mathrm{CHCl}_{3}\right) ; \mathbf{I R}$ (ATR) $\lambda_{\text {max }} 3413,2953,2931,2896,2858,1699,1650,1587,1470,1462,1414,1392,1363$, 1351, 1332, 1291, 1251, 1217, 1164, 1118, 1102, 1065, 1007, 965, 939, 890, 866, 836, 782, $734,697 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ (multiple and broadened resonances due to
carbamate rotamers) $7.31-7.09(\mathrm{~m}, 5 \mathrm{H}), 6.74(\mathrm{~d}, J=30.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.03-5.66(\mathrm{~m}, 2 \mathrm{H}), 4.90$ $-4.71(\mathrm{~m}, 1 \mathrm{H}), 4.63-4.34(\mathrm{~m}, 3 \mathrm{H}), 3.94-3.82(\mathrm{~m}, 1 \mathrm{H}), 3.77-3.55(\mathrm{~m}, 12 \mathrm{H}), 3.46-3.20$ $(\mathrm{m}, 3 \mathrm{H}), 3.14-2.97(\mathrm{~m}, 2 \mathrm{H}), 2.27-2.13(\mathrm{~m}, 6 \mathrm{H}), 1.27-1.09(\mathrm{~m}, 9 \mathrm{H}), 1.02(\mathrm{~d}, J=12.8 \mathrm{~Hz}$, 18 H), $0.27-0.08(\mathrm{~m}, 12 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ (multiple and broadened resonances due to carbamate rotamers) 167.4 (s), 152.9 (s), 151.3 (s), 149.5 (s), 148.8 (s), 148.3 (s), 145.2 ($s), 142.0$ (s), 138.8 (s), 128.0 (d), 127.1 (d), 127.1 (d), 125.4 (s), 124.9 (s), $124.8(\mathrm{~s}), 124.5(\mathrm{~s}), 124.0(\mathrm{~s}), 121.5(\mathrm{~d}), 80.6(\mathrm{~s}), 74.6(\mathrm{~d}), 73.1(\mathrm{t}), 72.0(\mathrm{t}), 61.0(\mathrm{q}), 60.7(\mathrm{q})$, 59.9 (q), 59.6 (q), 57.5 (d), 56.9 (d), 49.8 (d), 36.3 (t), 27.7 (q), 26.1 (q), 25.7 (s), 25.6 (q), 25.4 (t), 18.6 (s), 9.9 (q), 9.6 (q), -3.9 (q), -4.6 (q), -4.6 (q); HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$ Calcd for $\mathrm{C}_{50} \mathrm{H}_{76} \mathrm{~N}_{2} \mathrm{O}_{11} \mathrm{Si}_{2} \mathrm{Na} 959.4880$; Found 959.4883.

Synthesis of Compound 23

Compound 23. To a solution of compound $22(1.30 \mathrm{~g}, 1.39 \mathrm{mmol}, 1.0$ equiv) in THF (28 mL) was added tetrabutylammonium fluoride (1.0 M in THF, $4.17 \mathrm{~mL}, 4.17 \mathrm{mmol}, 3.0$ equiv) at $0^{\circ} \mathrm{C}$. After stirring 2 h at the same temperature, the reaction was quenched with saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}(30 \mathrm{~mL})$, and extracted with ethyl acetate $(3 \times 30 \mathrm{~mL})$. The combined organic extracts were washed with brine (20 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The crude residue was used directly in the next step without further purification. A flame-dried round-bottom flask equipped with a magnetic stirring bar was charged with trifluoromethanesulfonic acid ($9.83 \mathrm{~mL}, 111.1 \mathrm{mmol}, 80.0$ equiv), and a solution of crude compound $\mathbf{2 2 - 1}$ in dry $\mathrm{DCM}(1 \mathrm{~mL})$ was added to the reaction mixture sequentially at $0{ }^{\circ} \mathrm{C}$. After stirring 2 h at the same temperature, the mixture was poured into ice-water $(20 \mathrm{~mL})$, quenched by the cautious addition of saturated $a q . \mathrm{NaHCO}_{3}(50 \mathrm{~mL})$, and extracted with ethyl acetate $(5 \times 50 \mathrm{~mL})$. The combined organic extracts were washed with
brine (50 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The crude residue was purified by column chromatography (chloroform/methanol 20:1) to give compound 23 ($430.6 \mathrm{mg}, 62 \%$ yield, over two steps) as a white solid.

Compound 23. $\mathbf{R}_{f}=0.25$ (chloroform/methanol 10:1); $[\boldsymbol{\alpha}]^{25.3}{ }_{\mathrm{D}}-61.4^{\circ}\left(c 0.3, \mathrm{CHCl}_{3}\right)$; $\mathbf{I R}$ (KBr) $\lambda_{\max }$ 3266, 2995, 2938, 2881, 2832, 1626, 1464, 1452, 1410, 1367, 1305, 1275, 1251, 1230, 1192, 1110, 1063, 1033, 1007, 995, 892, 869, 838, 799, $643 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H} \mathbf{N M R}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 5.83(\mathrm{dd}, J=6.8,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.78(\mathrm{~s}, 1 \mathrm{H}), 4.60(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.07(\mathrm{~d}, J=6.4$ $\mathrm{Hz}, 1 \mathrm{H}), 3.88(\mathrm{dt}, J=12.7,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.763(\mathrm{~s}, 3 \mathrm{H}), 3.758(\mathrm{~s}, 3 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 3.65(\mathrm{~s}$, $3 \mathrm{H}), 3.51(\mathrm{dd}, J=15.5,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.45(\mathrm{dd}, J=10.8,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.32(\mathrm{dd}, J=10.8,6.7$ $\mathrm{Hz}, 1 \mathrm{H}), 3.20(\mathrm{dd}, J=17.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.03(\mathrm{dd}, J=17.6,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H}), 2.21(\mathrm{~s}$, $3 \mathrm{H}), 2.14(\mathrm{dd}, J=15.4,12.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.8(\mathrm{~s}), 150.0(\mathrm{~s})$,
 $118.4(\mathrm{~s}), 117.9(\mathrm{~s}), 68.2(\mathrm{t}), 62.2(\mathrm{~d}), 61.0(\mathrm{q}), 60.9(\mathrm{q}), 60.8(\mathrm{q}), 60.3(\mathrm{q}), 53.5(\mathrm{~d}), 52.1(\mathrm{~d})$, 49.0 (d), 30.1 (t$), 25.8$ (t), 9.64 (q), 9.61 (q); HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{26} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{8} 501.2231$; Found 501.2234; m.p. $271-273{ }^{\circ} \mathrm{C}$.

Synthesis of Compound 5

Compound 5. To a solution of compound $23(420.0 \mathrm{mg}, 0.84 \mathrm{mmol}, 1.0$ equiv) in MeOH (42 mL) was added 37% aqueous formaldehyde (7.0 mL , substrate concentration $\sim 0.12 \mathrm{M}$), sodium cyanoborohydride ($527.9 \mathrm{mg}, 8.40 \mathrm{mmol}, 10.0$ equiv), and acetic acid (10.5 mL , substrate concentration $\sim 0.08 \mathrm{M})$ sequentially at room temperature. After stirring 4 h , the solvent was removed under reduced pressure. The resulting mixture was diluted with ethyl acetate $(20 \mathrm{~mL})$, quenched by the cautious addition of saturated $a q . \mathrm{NaHCO}_{3}(40 \mathrm{~mL})$, and extracted with ethyl acetate $(3 \times 30 \mathrm{~mL})$. The combined organic extracts were brine (20 mL),
dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The crude residue was purified by column chromatography (chloroform/methanol 20:1) to give compound 5 (397.2 $\mathrm{mg}, 92 \%$ yield) as a colorless oil.

Compound 5. $\mathbf{R}_{f}=0.47$ (chloroform/methanol 10:1); $[\boldsymbol{\alpha}]^{25.0}{ }_{\mathrm{D}}-119.7^{\circ}\left(c \quad 0.3, \mathrm{CHCl}_{3}\right) ; \mathbf{I R}$ (KBr) $\lambda_{\max }$ 2994, 2939, 2876, 2834, 1464, 1414, 1363, 1343, 1318, 1304, 1273, 1226, 1193, $1144,1110,1061,1005,980,932,874,836,809,726 \mathrm{~cm}^{-1},{ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta$ $5.67(\mathrm{dd}, J=5.5,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.41(\mathrm{dd}, J=3.7,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{td}, \mathrm{J}=12.9,3.7 \mathrm{~Hz}, 1 \mathrm{H})$, $3.70(\mathrm{~s}, 3 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.68(\mathrm{t}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 3.53(\mathrm{dd}, J=$ $15.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.45(\mathrm{dd}, J=10.6,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.33(\mathrm{dd}, J=10.3,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.16(\mathrm{dd}, J$ $=18.0,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.91(\mathrm{dd}, J=18.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 2.21(\mathrm{~s}, 3 \mathrm{H}), 2.20(\mathrm{dd}, J=$ 20.2, $12.9 \mathrm{~Hz}, 1 \mathrm{H}$), 2.19 ($\mathrm{s}, 3 \mathrm{H}$) ${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 173.4$ (s), 150.1 (s), 149.3 (s), 146.3 (s$), 145.9$ (s$), 145.7$ (s$), 144.5$ (s$), 126.8$ (s$), 124.9$ (s$), 124.4$ (s), 122.9 (s$), 120.4$ (s$),$ $117.6(\mathrm{~s}), 65.6(\mathrm{t}), 61.4(\mathrm{q}), 60.8(\mathrm{q}), 60.8(\mathrm{q}), 60.6(\mathrm{~d}), 60.5(\mathrm{q}), 59.8(\mathrm{~d}), 56.2(\mathrm{~d}), 52.8(\mathrm{~d})$, 40.1 (q), 27.0 (t), 25.2 (t), 9.7 (q); HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{27} \mathrm{H}_{35} \mathrm{~N}_{2} \mathrm{O}_{8} 515.2388$; Found 515.2371.
(5) Synthesis of Renieramycin G (25) and Jorunnamycin A (3)

Scheme S5. Synthesis of Renieramycin G (25) and Jorunnamycin A (3)

Synthesis of Compound 24

Compound 24. To a solution of angelic acid ($21.9 \mathrm{mg}, 0.219 \mathrm{mmol}, 2.5$ equiv) in dry toluene $(2.0 \mathrm{~mL})$ was added 2,4,6-trichlorobenzoyl chloride ($34.2 \mu \mathrm{~L}$ in 1.0 mL of dry toluene, 0.219 mmol, 2.5 equiv) and triethylamine ($30.3 \mu \mathrm{~L}$ in 1.0 mL of dry toluene, $0.219 \mathrm{mmol}, 2.5$ equiv) slowly in sequence at $0{ }^{\circ} \mathrm{C}$ under argon, and the reaction was allowed to warm to room temperature. After stirring 2 h , a solution of compound $5(45 \mathrm{mg}, 0.088 \mathrm{mmol}, 1.0$ equiv $)$ in dry toluene $(4.8 \mathrm{~mL})$ was added to the mixture at room temperature. The reaction mixture was placed in a preheated oil bath at $90^{\circ} \mathrm{C}$ and stirred for 48 h , then cooled to room temperature, concentrated in vacuo. The crude residue was purified by column chromatography (chloroform/methanol 20:1) to give compound 24 ($38.6 \mathrm{mg}, 74 \%$ yield) as a colorless oil.

Compound 24. $\mathbf{R}_{f}=0.51$ (chloroform/methanol 10:1); $[\boldsymbol{\alpha}]^{25.2}{ }_{\mathrm{D}}-132.5^{\circ}\left(c \quad 0.3, \mathrm{CHCl}_{3}\right) ; \mathbf{I R}$ (KBr) $\lambda_{\max } 2938,2872,2857,1716,1463,1414,1363,1302,1274,1247,1232,1193,1146$, $1110,1084,1057,1006,981,940,914,874,836,792,729 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 5.85(b r \mathrm{~s}, 2 \mathrm{H}), 5.77(\mathrm{~m}, 1 \mathrm{H}), 4.39(\mathrm{dd}, J=11.2,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.31(\mathrm{dd}, J=12.6,3.5 \mathrm{~Hz}$, 2H), $3.93(\mathrm{dt}, J=12.3,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.72(\mathrm{~m}, 1 \mathrm{H}), 3.61(\mathrm{~s}, 3 \mathrm{H})$, $3.60(\mathrm{~s}, 3 \mathrm{H}), 3.41(\mathrm{dd}, J=15.3,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.12(\mathrm{dd}, J=18.2,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.92(\mathrm{~d}, J=18.2$ $\mathrm{Hz}, 1 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 2.19(\mathrm{~s}, 6 \mathrm{H}), 1.62(\mathrm{dt}, J=7.2,1.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.32(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (150 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.2(\mathrm{~s}), 166.8(\mathrm{~s}), 149.6(\mathrm{~s}), 148.0(\mathrm{~s}), 143.9(\mathrm{~s}), 143.4$ (s), $143.0(\mathrm{~s}), 142.1$ (s$), 137.8$ (d), 127.3 (s$), 126.0(\mathrm{~s}), 123.0(\mathrm{~s}), 122.9(\mathrm{~s}), 122.6(\mathrm{~s}), 117.7$ (s$), 116.4$ (s$), 64.1$ (t), $60.74(\mathrm{q}), 60.65(\mathrm{q}), 60.63(\mathrm{q}), 60.2(\mathrm{q}), 59.5(\mathrm{~d}), 57.6(\mathrm{~d}), 55.0(\mathrm{~d}), 49.1(\mathrm{~d}), 40.2(\mathrm{q}), 25.8(\mathrm{t})$, 24.3 (t$), 20.0(\mathrm{q}), 15.3(\mathrm{q}), 9.54(\mathrm{q}), 9.49(\mathrm{q}) ;$ HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{32} \mathrm{H}_{40} \mathrm{~N}_{2} \mathrm{O}_{9} \mathrm{Na}$ 619.2626; Found 619.2628.

Synthesis of Renieramycin G (25)

Renieramycin G (25). To a solution of compound $24(30 \mathrm{mg}, 0.050 \mathrm{mmol}, 1.0$ equiv) in acetone $/ \mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL}, \mathrm{v} / \mathrm{v}, 9: 1)$ was added $\mathrm{DDQ}(45.7 \mathrm{mg}, 0.201 \mathrm{mmol}, 4.0$ equiv) in one portion at room temperature. After stirring 2 h , the reaction was quenched with saturated $a q$. $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$, and extracted with ethyl acetate $(5 \times 20 \mathrm{~mL})$. The combined organic extracts were washed with brine (20 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The crude residue was purified by column chromatography (chloroform/methanol 50:1) to give compound 25 ($20.4 \mathrm{mg}, 72 \%$ yield) as a yellow amorphous powder.

Renieramycin $\mathbf{G}(\mathbf{2 5}) . \mathbf{R}_{f}=0.71$ (ethyl acetate); $[\boldsymbol{\alpha}]^{24.7}{ }_{\mathrm{D}}-164.8^{\circ}\left(c 0.1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right), \mathrm{Lit}^{[4 \mathrm{~b}]}$: $[\alpha]^{25.0}{ }_{\mathrm{D}}-162.0^{\circ}\left(c 0.05, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; \mathbf{I R}(\mathbf{K B r}) \lambda_{\max } 2947,2924,2855,1717,1656,1616,1450$, $1424,1373,1351,1309,1262,1230,1151,1121,1084,1047,967,897,847,729 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}$ NMR (400 MHz, $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 5.89(\mathrm{~m}, 1 \mathrm{H}), 5.38(b r \mathrm{~s}, 1 \mathrm{H}), 4.66(\mathrm{dd}, J=11.7,2.8 \mathrm{~Hz}, 1 \mathrm{H})$, $4.31(\mathrm{dd}, J=11.7,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.11(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.00(\mathrm{~s}, 3 \mathrm{H}), 3.97(\mathrm{~s}, 3 \mathrm{H}), 3.84(\mathrm{dt}, J$ $=12.1,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.67(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.00(\mathrm{dd}, J=16.4,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.86(\mathrm{dd}, J=$ $20.7,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.63(\mathrm{~d}, J=20.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 1.92(\mathrm{~s}, 6 \mathrm{H}), 1.67(\mathrm{dq}, J=7.3,1.7$ $\mathrm{Hz}, 3 \mathrm{H}), 1.51(\mathrm{t}, J=1.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.47(\mathrm{ddd}, \mathrm{J}=16.4,12.1,1.7 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (150 MHz , $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 186.6(\mathrm{~s}), 185.5(\mathrm{~s}), 182.8(\mathrm{~s}), 180.7(\mathrm{~s}), 170.6(\mathrm{~s}), 167.2(\mathrm{~s}), 156.4(\mathrm{~s}), 155.8(\mathrm{~s})$,
 61.31 (q), 61.26 (q), 59.4 (d), 56.5 (d), 53.4 (d), 50.4 (d), 40.0 (q), 25.9 (t), 23.8 (t), 20.5 (q), $15.6(q), 8.8(q), 8.7(q) ;$ HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{30} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{9} \mathrm{Na} 587.2000$; Found 587.2008. The physical, spectroscopic, and spectrometric data of compound $\mathbf{2 5}$ are consistent with those of natural ${ }^{[4 a]}$ and synthetic ${ }^{[2 b, 4 b-d]}(-)$-Renieramycin G.

Synthesis of Compound 26

Compound 26. To a solution of compound 5 ($150 \mathrm{mg}, 0.292 \mathrm{mmol}, 1.0$ equiv) in dry THF (3 mL) was added lithium aluminum hydride ($44.4 \mathrm{mg}, 1.167 \mathrm{mmol}, 4.0$ equiv) at $-20^{\circ} \mathrm{C}$ under argon. The reaction mixture was stirred at $-20^{\circ} \mathrm{C}$ for 30 min , and allowed to warm to $0^{\circ} \mathrm{C}$. After stirring 1 h at $0{ }^{\circ} \mathrm{C}$, the reaction was quenched by the cautious addition of ice-water (20 mL), and extracted with ethyl acetate ($3 \times 20 \mathrm{~mL}$). The combined organic extracts were washed with brine $(10 \mathrm{~mL})$, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The crude residue was used directly in the next step without further purification. To a solution of crude product in dry DCM (15 mL) was added trimethylsilyl cyanide ($116.7 \mu \mathrm{~L}, 0.875$ mmol, 3.0 equiv) and boron trifluoride etherate ($25.8 \mu \mathrm{~L}, 0.204 \mathrm{mmol}, 0.7$ equiv) sequentially at $-30^{\circ} \mathrm{C}$ under argon. After stirring 3 h at the same temperature, the reaction was quenched by addition of $10 \% \mathrm{aq} . \mathrm{NaHCO}_{3}(30 \mathrm{~mL})$, and extracted with ethyl acetate $(3 \times 30 \mathrm{~mL})$. The combined organic extracts were washed with brine (20 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The crude residue was purified by column chromatography (petroleum ether/ethyl acetate 1:1) to give compound 26 ($99.6 \mathrm{mg}, 65 \%$ yield, over two steps) as a pale yellow solid. A sample of compound $\mathbf{2 6}$ for X-ray analysis was recrystallized from n-hexane/dichloromethane (10:1) via slow evaporation to afford colorless needles. Crystallographic data for 26 has been deposited with the Cambridge Crystallographic Data Center, Deposition number 1972948.

Compound 26. $\mathbf{R}_{f}=0.50$ (chloroform/methanol 10:1); $[\boldsymbol{\alpha}]^{26.3}{ }_{\mathrm{D}}-68.2^{\circ}\left(c \quad 0.4, \mathrm{CHCl}_{3}\right) ; \mathbf{I R}$ (KBr) $\lambda_{\text {max }}$ 2937, 2870, 2833, 2228, 1631, 1618, 1464, 1414, 1319, 1276, 1252, 1221, 1193, $1150,1109,1062,1005,981,872,830,804,754 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.64(\mathrm{~s}$, $2 \mathrm{H}), 4.21(\mathrm{dd}, J=2.9,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.12(\mathrm{t}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{~s}$, $3 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.65(\mathrm{~m}, 1 \mathrm{H}), 3.60(\mathrm{~s}, 3 \mathrm{H}), 3.48-3.39(\mathrm{~m}, 2 \mathrm{H}), 3.33(\mathrm{dt}, J=$
$11.7,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.21(\mathrm{dd}, J=15.8,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.10(\mathrm{dd}, J=18.6,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.49(\mathrm{~d}, J=$ $18.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 2.22(\mathrm{~s}, 3 \mathrm{H}), 2.18(\mathrm{~s}, 3 \mathrm{H}), 1.90(\mathrm{dd}, J=15.8,12.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (100 MHz, CDCl_{3}) $\delta 148.6$ (s), 148.2 (s), 143.5 (s), 143.4 (s), 143.3 (s), 141.4 (s),
 $60.80(\mathrm{q}), 60.5(\mathrm{q}), 60.3(\mathrm{~d}), 60.0(\mathrm{q}), 58.0(\mathrm{~d}), 56.6(\mathrm{~d}), 56.5(\mathrm{~d}), 55.1(\mathrm{~d}), 41.8(\mathrm{q}), 25.7(\mathrm{t})$, 21.5 (t), 9.6 (q); HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{28} \mathrm{H}_{36} \mathrm{~N}_{3} \mathrm{O}_{7}$ 526.2548; Found 526.2557; m.p. $200-201^{\circ} \mathrm{C}$; crystal data for compound 26 see page S36.

Synthesis of Jorunnamycin A (3)

Renieramycin G (25). To a solution of compound $26(35 \mathrm{mg}, 0.067 \mathrm{mmol}, 1.0$ equiv) in acetone $/ \mathrm{H}_{2} \mathrm{O}(13 \mathrm{~mL}, \mathrm{v} / \mathrm{v}, 9: 1)$ was added $\mathrm{DDQ}(60.5 \mathrm{mg}, 0.267 \mathrm{mmol}, 4.0$ equiv) in one portion at room temperature. After stirring 2 h , the reaction was quenched with saturated $a q$. $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$, and extracted with ethyl acetate $(5 \times 20 \mathrm{~mL})$. The combined organic extracts were washed with brine $(20 \mathrm{~mL})$, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The crude residue was purified by column chromatography (petroleum ether/ethyl acetate $1: 1$) to give compound $\mathbf{3}(28.3 \mathrm{mg}, 86 \%$ yield) as a yellow amorphous powder.

Jorunnamycin A (3). $\mathbf{R}_{f}=0.20$ (n-hexane/ethyl acetate 1:1); $[\boldsymbol{\alpha}]^{24.7}{ }_{\mathrm{D}}-124.2^{\circ}\left(c 0.3, \mathrm{CHCl}_{3}\right)$, $\mathrm{Lit}^{[4 \mathrm{~b}]}:[\alpha]^{25.0}{ }_{\mathrm{D}}-122.0^{\circ}\left(c 0.15, \mathrm{CHCl}_{3}\right) ;$ IR (KBr) $\lambda_{\max } 3441,2944,2853,2228,1656,1618$, $1558,1449,1374,1311,1237,1190,1153,1078,963,890,771,730 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.12(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.07(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{~s}, 3 \mathrm{H}), 3.98(\mathrm{~s}, 3 \mathrm{H})$, $3.89(\mathrm{q}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{dd}, J=11.5,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.48(\mathrm{~m}, 1 \mathrm{H}), 3.41(\mathrm{~d}, J=7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 3.17(\mathrm{dt}, J=11.5,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.92(\mathrm{dd}, J=17.5,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.82(\mathrm{dd}, J=21.0,7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}), 2.25(\mathrm{~d}, J=21.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.94(\mathrm{~s}, 3 \mathrm{H}), 1.93(\mathrm{~s}, 3 \mathrm{H}), 1.40(\mathrm{ddd}, J=17.5$,
11.5, 2.7 Hz, 1H); ${ }^{13} \mathbf{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 186.3$ (s), 185.5 (s), 182.3 (s), 181.4 (s), 155.5 (s$), 155.3$ (s$), 141.6$ (s$), 141.4$ (s), 136.0 (s$), 135.6$ (s$), 128.9$ (s), 128.6 (s), 116.9 (s$),$ $64.0(\mathrm{t}), 61.10(\mathrm{q}), 61.08(\mathrm{q}), 59.0(\mathrm{~d}), 57.9(\mathrm{~d}), 54.4(\mathrm{~d}), 54.3(\mathrm{~d}), 54.2(\mathrm{~d}), 41.6(\mathrm{q}), 25.3(\mathrm{t})$, 21.4 (t), 8.8 (q), 8.7 (q); HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{~N}_{3} \mathrm{O}_{7}$ 494.1922; Found 494.1919. The physical, spectroscopic, and spectrometric data of compound $\mathbf{3}$ are consistent with those of natural ${ }^{[5]}$ and synthetic ${ }^{[2 b, 4 b]}$ Jorunnamycin A.

(6) Synthesis of Renieramacin M (28) and Renieramacin J (2)

Scheme S6. Synthesis of Renieramacin M (28) and Renieramacin J (2)

Synthesis of Compound 27

Compound 27. To a solution of angelic acid ($28.6 \mathrm{mg}, 0.286 \mathrm{mmol}, 2.5$ equiv) in dry toluene (3.0 mL) was added 2,4,6-trichlorobenzoyl chloride ($44.6 \mu \mathrm{~L}$ in 1.5 mL of dry toluene, 0.286 mmol, 2.5 equiv) and triethylamine ($39.5 \mu \mathrm{~L}$ in 1.5 mL of dry toluene, $0.286 \mathrm{mmol}, 2.5$ equiv)
slowly in sequence at $0{ }^{\circ} \mathrm{C}$ under argon, and the reaction was allowed to warm to room temperature. After stirring 2 h , a solution of compound 26 ($60.0 \mathrm{mg}, 0.114 \mathrm{mmol}, 1.0$ equiv) in dry toluene (5.4 mL) was added to the mixture at room temperature. The reaction mixture was placed in a preheated oil bath at $90^{\circ} \mathrm{C}$ and stirred for 48 h , then cooled to room temperature, concentrated in vacuo. The crude residue was purified by column chromatography (petroleum ether/ethyl acetate 1:1) to give compound $27(42.3 \mathrm{mg}, 61 \%$ yield) as a colorless oil.

Compound 27. $\mathbf{R}_{f}=0.67$ (n-hexane/ethyl acetate 2:3); $[\boldsymbol{\alpha}]^{25.0}{ }_{\mathrm{D}}-76.3^{\circ}\left(c 0.2, \mathrm{CHCl}_{3}\right) ; \mathbf{I R}$ (KBr) $\lambda_{\max } 3429,2937,2831,2227,1712,1646,1617,1463,1414,1388,1353,1319,1275$, $1253,1232,1192,1154,1109,1062,1004,981,915,870,850,830,754 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.95$ (dddd, $\left.J=8.7,7.2,5.8,1.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.60(\mathrm{~s}, 1 \mathrm{H}), 5.52(\mathrm{~s}, 1 \mathrm{H}), 4.32(\mathrm{dd}$, $J=5.8,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.22-4.12(\mathrm{~m}, 3 \mathrm{H}), 3.95(\mathrm{dd}, J=10.9,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.74(\mathrm{~s}$, $3 \mathrm{H}), 3.59(\mathrm{~s}, 3 \mathrm{H}), 3.58(\mathrm{~s}, 3 \mathrm{H}), 3.38(\mathrm{dt}, J=7.9,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.25(\mathrm{~m}, 1 \mathrm{H}), 3.22(\mathrm{~m}, 1 \mathrm{H})$, $3.04(\mathrm{dd}, J=18.3,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.44(\mathrm{~d}, J=18.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}), 2.19(\mathrm{~s}, 6 \mathrm{H}), 1.97(\mathrm{dd}$, $J=15.1,11.4 \mathrm{~Hz} 1 \mathrm{H}), 1.82(\mathrm{dd}, J=7.2,1.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.56(\mathrm{p}, J=1.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (150 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 167.4(\mathrm{~s}), 148.4(\mathrm{~s}), 148.3$ (s), 143.4 (s), 143.1 (s), 142.9 (s), 141.6 (s), 139.0 (d), 127.1 (s$), 125.5(\mathrm{~s}), 124.2(\mathrm{~s}), 122.3(\mathrm{~s}), 121.9(\mathrm{~s}), 118.3(\mathrm{~s}), 117.3(\mathrm{~s}), 116.9(\mathrm{~s}), 66.9(\mathrm{t})$, 61.1 (d), 60.9 (q), 60.7 (q), 60.5 (q), 59.8 (q), 57.0 (d), 56.6 (d), 56.1 (d), 55.2 (d), 41.7 (q), 25.8 (t), 21.2 (t), 20.4 (q), 15.6 (q), 9.6 (q), $9.4(q) ;$ HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{33} \mathrm{H}_{42} \mathrm{~N}_{3} \mathrm{O}_{8}$ 608.2966; Found 608.2972.

Synthesis of Renieramycin M(28)

Renieramycin M (28). To a solution of compound $27(40.0 \mathrm{mg}, 0.066 \mathrm{mmol}, 1.0$ equiv) in acetone $/ \mathrm{H}_{2} \mathrm{O}(13 \mathrm{~mL}, \mathrm{v} / \mathrm{v}, 9: 1)$ was added $\mathrm{DDQ}(59.8 \mathrm{mg}, 0.264 \mathrm{mmol}, 4.0$ equiv) in one portion at room temperature. After stirring 2 h , the reaction was quenched with saturated $a q$. $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$, and extracted with ethyl acetate $(5 \times 20 \mathrm{~mL})$. The combined organic extracts were washed with brine $(20 \mathrm{~mL})$, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The crude residue was purified by column chromatography (petroleum ether/ethyl acetate 2:1) to give compound $\mathbf{2 8}(30.3 \mathrm{mg}, 80 \%$ yield) as a yellow solid. A sample of compound 28 for X-ray analysis was recrystallized from n-hexane/ethyl acetate/methanol (10:1:1) via slow evaporation to afford pale yellow needles. Crystallographic data for 28 has been deposited with the Cambridge Crystallographic Data Center, Deposition number 1972949.

Renieramycin M(28). $\mathbf{R}_{f}=0.75$ (n-hexane/ethyl acetate $1: 1$); $[\alpha]^{25.1}{ }_{\mathrm{D}}-56.3^{\circ}\left(c 0.2, \mathrm{CHCl}_{3}\right)$, $\mathrm{Lit}^{[6]}:[\boldsymbol{\alpha}]^{20.0}{ }_{\mathrm{D}}-49.5^{\circ}\left(c 1.0, \mathrm{CHCl}_{3}\right) ;$ IR (KBr) $\lambda_{\max } 2943,2927,2852,2235,1709,1697,1651$, $1616,1447,1376,1307,1235,1189,1151,1081,1045,967,959,895,769,727 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 5.96(\mathrm{q}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{dd}, J=11.7,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.09(\mathrm{dd}$, $J=11.7,2.4 \mathrm{~Hz}, 1 \mathrm{H}) 4.07(\mathrm{~d}, \mathrm{~J}=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{~s}, 3 \mathrm{H}), 4.00(\mathrm{~m}, 1 \mathrm{H}), 3.99(\mathrm{~m}, 1 \mathrm{H}), 3.98$ $(\mathrm{s}, 3 \mathrm{H}), 3.39(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.11(\mathrm{dt}, J=11.4,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.89(\mathrm{dd}, J=17.5,3.0 \mathrm{~Hz}$, $1 \mathrm{H}), 2.75(\mathrm{dd}, J=21.0,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.30(\mathrm{~d}, J=21.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}), 1.93(\mathrm{~s}, 3 \mathrm{H}), 1.90$ $(\mathrm{s}, 3 \mathrm{H}), 1.81(\mathrm{dd}, J=7.3,1.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.57(\mathrm{~s}, 3 \mathrm{H}), 1.36(\mathrm{ddd}, J=17.5,11.4,3.0 \mathrm{~Hz}, 1 \mathrm{H}) ;$ ${ }^{13} \mathbf{C}$ NMR (150 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 185.9$ (s), 185.5 (s$), 182.5$ (s), 181.0 (s), 166.5 (s), 155.8 (s), 155.2 (s$), 142.0$ (s$), 141.3$ (s$), 140.6$ (d), 135.7 (s$), 135.0$ (s$), 128.6$ (s$), 128.4$ (s), 126.2 (s$),$ 116.9 (s), 61.9 (t), 61.1 (q), $61.0(\mathrm{q}), 58.5$ (d), 56.2 (d), 54.5 (d), 54.2 (d), 54.1 (d), 41.5 (q), 25.4 (t), 21.1 (t), 20.4 (q), 15.7 (q), 8.7 (q), 8.6 (q); HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{31} \mathrm{H}_{33} \mathrm{~N}_{3} \mathrm{O}_{8} \mathrm{Na} 598.2160$; Found 598.2155; m.p. $195-197{ }^{\circ} \mathrm{C}$; crystal data for compound 28 see page S39. The physical, spectroscopic, and spectrometric data of compound 28 are consistent with those of natural ${ }^{[6]}$ and synthetic ${ }^{[2 b]}$ Renieramycin M.

Synthesis of Renieramycin J (2)

Renieramycin J (2). To a solution of compound 28 ($20.0 \mathrm{mg}, 0.035 \mathrm{mmol}, 1.0$ equiv) in dry acetone (3.5 mL) was added AgNO_{3} ($118.3 \mathrm{mg}, 0.696 \mathrm{mmol}, 20.0$ equiv) in one portion at room temperature. The reaction mixture was placed in a preheated oil bath at $50^{\circ} \mathrm{C}$ and stirred for 1 h . Upon complete consumption of the starting material, the reaction mixture was cooled to room temperature and concentrated. The resulting residue was diluted with water (10 mL), and extracted with ethyl acetate ($3 \times 20 \mathrm{~mL}$). The combined organic extracts were brine (10 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The crude residue was purified by column chromatography (petroleum ether/ethyl acetate 1:1) to give compound 2 ($13.3 \mathrm{mg}, 63 \%$ yield) as a yellow amorphous powder.

Renieramycin J (2). $\mathbf{R}_{f}=0.59$ (n-hexane/ethyl acetate 1:1); $[\boldsymbol{\alpha}]^{24.3}{ }_{\mathrm{D}}-10.9^{\circ}\left(c 0.1, \mathrm{CHCl}_{3}\right)$; IR (KBr) $\lambda_{\max } 2927,2854,1712,1654,1616,1528,1454,1384,1374,1360,1307,1233$, $1150,1082,1045,1005,973,847,772,729 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.93(\mathrm{qq}, J=$ $7.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.17$ (dd, $J=11.1,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{dd}, J=11.1,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.00(\mathrm{~s}, 3 \mathrm{H})$, $3.96(\mathrm{~s}, 3 \mathrm{H}), 3.87(b r \mathrm{~s}, 1 \mathrm{H}), 3.81(b r \mathrm{~s}, 1 \mathrm{H}), 3.44(\mathrm{~m}, 1 \mathrm{H}), 3.41(\mathrm{~m}, 1 \mathrm{H}), 2.95-2.88(\mathrm{~m}, 2 \mathrm{H})$, 2.83 (dd, $J=16.8,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.74(\mathrm{dd}, J=21.0,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.36(\mathrm{~d}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H})$, $2.26(\mathrm{~d}, J=21.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.19(\mathrm{~s}, 3 \mathrm{H}), 2.16(\mathrm{~s}, 3 \mathrm{H}), 1.91(\mathrm{~s}, 6 \mathrm{H}), 1.79(\mathrm{dq}, J=7.2,1.6 \mathrm{~Hz}$, $3 \mathrm{H}), 1.59(\mathrm{~s}, 3 \mathrm{H}), 1.25(\mathrm{ddd}, J=16.8,11.1,2.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 208.3 (s), 186.6 (s), 185.6 (s), 182.9 (s), 181.2 (s), 167.1 (s), 156.0 (s), 155.1 (s), 143.4 (s), 141.5 (s), 139.6 (d), 137.2 (s), 135.0 (s), 128.7 (s), 128.1 (s), 126.7 (s), 64.5 (t), 60.88 (q), 60.87 (q), 58.8 (d), 55.01 (d), 54.99 (d), 53.5 (d), 52.3 (d), 41.7 (q), 38.5 (t), 30.9 (q), 25.4 (t), 23.1 (t), 20.4 (q), $15.5(\mathrm{q}), 8.7(\mathrm{q}), 8.6(\mathrm{q}) ;$ HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{33} \mathrm{H}_{39} \mathrm{~N}_{2} \mathrm{O}_{9}$ 607.2650; Found 607.2654. The physical, spectroscopic, and spectrometric data of compound $\mathbf{2}$ are consistent with those of natural ${ }^{[6]}$ Renieramycin J.

(7) Synthesis of Fennebricin (1)

Scheme S7. Synthesis of Fennebricin (1)

Synthesis of Compound 29

Compound 29. To a solution of compound $\mathbf{3}(50.0 \mathrm{mg}, 0.101 \mathrm{mmol}, 1.0$ equiv) in DMF (1.0 mL) was added imidazole ($41.4 \mathrm{mg}, 0.609 \mathrm{mmol}, 6.0$ equiv) and tert-butyldimethylsilyl chloride ($45.9 \mathrm{mg}, 0.304 \mathrm{mmol}, 3.0$ equiv) sequentially at room temperature. After stirring 2 h , the reaction was quenched with saturated $a q . \mathrm{NaHCO}_{3}(5 \mathrm{~mL})$, and extracted with ethyl acetate $(3 \times 10 \mathrm{~mL})$. The combined organic extracts were washed with water $(5 \times 5 \mathrm{~mL})$ and brine (5 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The crude residue was purified by column chromatography (petroleum ether/ ethyl acetate $10: 1$ to $2: 1$) to give compound 29 ($49.9 \mathrm{mg}, 81 \%$ yield) as a yellow oil.

Compound 29. $\mathbf{R}_{f}=0.56$ (n-hexane/ethyl acetate $2: 1$); $[\boldsymbol{\alpha}]^{25.3}{ }_{\mathrm{D}}-69.7^{\circ}\left(c \quad 0.1, \mathrm{CHCl}_{3}\right) ; \mathbf{I R}$ (KBr) $\lambda_{\max } 2952,2931,2856,2228,1656,1618,1463,1449,1375,1311,1253,1235,1190$,
$1151,1111,1093,1081,960,839,778 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.17(\mathrm{~d}, J=2.7$ $\mathrm{Hz}, 1 \mathrm{H}), 4.02(b r \mathrm{~s}, 1 \mathrm{H}), 4.00(\mathrm{~s}, 3 \mathrm{H}), 3.96(\mathrm{~s}, 3 \mathrm{H}), 3.84(\mathrm{dt}, J=4.9,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.63(\mathrm{dd}, J$ $=9.8,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.44(\mathrm{dd}, J=9.8,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.35(\mathrm{dt}, J=7.5,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.09(\mathrm{dt}, J=$ $11.5,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.88(\mathrm{dd}, J=16.9,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.77(\mathrm{dd}, J=20.7,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.28(\mathrm{~s}$, $3 \mathrm{H}), 2.27(\mathrm{~m}, 1 \mathrm{H}), 1.934(\mathrm{~s}, 3 \mathrm{H}), 1.926(\mathrm{~s}, 3 \mathrm{H}), 1.40(\mathrm{ddd}, J=16.9,11.5,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 0.73(\mathrm{~s}$, $9 \mathrm{H}),-0.11(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($\left.150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 186.5(\mathrm{~s}), 185.6$ (s), 182.5 (s), $181.2(\mathrm{~s}), 155.5(\mathrm{~s}), 155.3(\mathrm{~s}), 141.90(\mathrm{~s}), 141.87(\mathrm{~s}), 136.2(\mathrm{~s}), 135.4(\mathrm{~s}), 128.8(\mathrm{~s}), 128.6(\mathrm{~s})$, 117.4 (s$), 66.1$ (t), $61.04(\mathrm{q}), 60.97$ (q), 59.9 (d), 58.2 (d), 54.6 (d), 54.5 (d), 54.4 (d), 41.6 (q), 25.7 (q), 25.4 (t), 21.4 (t), 17.9 (s), 8.7 (q), 8.6 (q), -5.66 (q), -5.71 (q); HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{32} \mathrm{H}_{42} \mathrm{~N}_{3} \mathrm{O}_{7} \mathrm{Si}$ 608.2787; Found 608.2787.

Synthesis of Compound 30

Compound 30. To a solution of compound $30(32.0 \mathrm{mg}, 0.053 \mathrm{mmol}, 1.0$ equiv) in dry acetone (5.0 mL) was added $\mathrm{AgNO}_{3}(89.6 \mathrm{mg}, 0.527 \mathrm{mmol}, 10.0$ equiv) in one portion at room temperature. After stirring 5 h , the reaction mixture was concentrated. The resulting residue was diluted with water $(10 \mathrm{~mL})$, and extracted with ethyl acetate $(3 \times 20 \mathrm{~mL})$. The combined organic extracts were brine $(10 \mathrm{~mL})$, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The crude residue was purified by column chromatography (petroleum ether/ethyl acetate $2: 1$) to give compound $\mathbf{3 0}(24.6 \mathrm{mg}, 73 \%$ yield) as a yellow oil.

Compound 30. $\mathbf{R}_{f}=0.34$ (n-hexane/ethyl acetate $2: 1$); $[\boldsymbol{\alpha}]^{25.0}{ }_{\mathrm{D}}-6.7^{\circ}\left(c 0.1, \mathrm{CHCl}_{3}\right) ; \mathbf{I R}(\mathbf{K B r})$ $\lambda_{\max } 2951,2931,2856,1712,1654,1616,1463,1447,1409,1374,1360,1306,1252,1235$, $1189,1148,1109,1092,1049,1006,974,937,838,777,695,652 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 3.96(\mathrm{~s}, 3 \mathrm{H}), 3.93(\mathrm{~s}, 3 \mathrm{H}), 3.87(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.59(b r \mathrm{~s}, 1 \mathrm{H}), 3.54(\mathrm{dd}, J=9.7$,
$2.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.45(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.42(\mathrm{dd}, J=15.2,9.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.32(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H})$, $2.90(\mathrm{td}, J=8.4,2.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.79(\mathrm{dd}, J=14.0,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.74(\mathrm{dd}, J=20.9,7.2 \mathrm{~Hz}, 1 \mathrm{H})$, $2.33(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.25(\mathrm{~d}, J=20.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.18(\mathrm{~s}, 3 \mathrm{H}), 2.16(\mathrm{~s}, 3 \mathrm{H}), 1.93(\mathrm{~s}, 3 \mathrm{H})$, $1.91(\mathrm{~s}, 3 \mathrm{H}), 1.36(\mathrm{ddd}, J=16.4,11.5,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 0.66(\mathrm{~s}, 9 \mathrm{H}),-0.19(\mathrm{~s}, 3 \mathrm{H}),-0.21(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13}$ C NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 208.6$ (s), 187.0 (s), 185.8 (s), 183.0 (s), 181.6 (s), 155.5 (s), 155.3 (s), 143.2 (s$), 142.8$ (s$), 138.0(\mathrm{~s}), 135.2$ (s$), 128.7$ (s$), 128.6$ (s$), 65.4$ (t), 60.9 (q), 60.8 (q), 59.4 (d), 55.9 (d), 55.1 (d), 55.0 (d), 52.4 (d), 41.7 (q), 38.4 (t), 31.0 (q), 25.7 (t), 25.6 (q), 23.3 (t), 17.9 (s , 8.7 (q), 8.6 (q), $-5.7(\mathrm{q}),-5.8(\mathrm{q})$; HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{34} \mathrm{H}_{47} \mathrm{~N}_{2} \mathrm{O}_{8} \mathrm{Si}$ 639.3096; Found 639.3114.

Synthesis of Fennebricin A (1)

Fennebricin A (1). To a solution of compound $\mathbf{3 0}$ ($22.0 \mathrm{mg}, 0.034 \mathrm{mmol}, 1.0$ equiv) in dry THF (2.4 mL) was added pyridine hydrofluoride (0.3 mL , $\mathrm{HF} 65 \%$ in pyridine) at $0{ }^{\circ} \mathrm{C}$, and the reaction was allowed to warm to room temperature slowly. After stirring 2 h , the reaction was quenched with saturated $a q$. KF (5 mL), and extracted with ethyl acetate ($3 \times 10 \mathrm{~mL}$). The combined organic extracts were washed with brine (5 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The crude residue was purified by column chromatography (petroleum ether/ ethyl acetate 1:1) to give compound $\mathbf{1}(13.6 \mathrm{mg}, 75 \%$ yield) as a yellow amorphous powder.

Fennebricin A (1). $\mathbf{R}_{f}=0.27$ (n-hexane/ethyl acetate 1:1); $[\boldsymbol{\alpha}]^{25.4}{ }_{\mathrm{D}}-96.2^{\circ}\left(c \quad 0.2, \mathrm{CHCl}_{3}\right)$, Lit $^{[7]}:[\alpha]^{25.0}{ }_{\mathrm{D}}-96.2^{\circ}\left(c 0.04, \mathrm{CHCl}_{3}\right) ; \mathbf{I R}(\mathbf{K B r}) \lambda_{\text {max }} 3435,2973,2934,2897,1709,1654$, $1618,1448,1374,1307,1236,1189,1149,1082,1049,968,880,772 \mathrm{~cm}^{-1} ;{ }^{1}$ H NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.98(\mathrm{~s}, 3 \mathrm{H}), 3.97(\mathrm{~m}$, overlapped, 1 H), $3.95(\mathrm{~s}, 3 \mathrm{H}), 3.67(\mathrm{dd}, J=11.2,3.8$
$\mathrm{Hz}, 1 \mathrm{H}), 3.63(\mathrm{~m}, 1 \mathrm{H}), 3.48(\mathrm{dd}, J=17.8,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.38(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.34(\mathrm{~m}$, overlapped, 1H), $3.00(\mathrm{dt}, J=11.5,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.94(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.84(\mathrm{dd}, J=17.4$, $2.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.81(\mathrm{dd}, J=21.0,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.41(\mathrm{~d}, J=17.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.22(\mathrm{~d}, J=21.0 \mathrm{~Hz}$, $1 \mathrm{H}), 2.19(\mathrm{~s}, 3 \mathrm{H}), 2.18(\mathrm{~s}, 3 \mathrm{H}), 1.93(\mathrm{~s}, 3 \mathrm{H}), 1.92(\mathrm{~s}, 3 \mathrm{H}), 1.32(\mathrm{ddd}, J=17.4,11.5,2.4 \mathrm{~Hz}$, 1H); ${ }^{13} \mathbf{C}$ NMR (150 MHz, CDCl_{3}) $\delta 207.9$ (s), 186.3 (s$), 185.6$ (s$), 182.6$ (s), 181.8 (s), 155.5 (s$), 155.4$ (s), 143.0 (s$), 141.8$ (s), 137.5 (s$), 135.7$ (s), 128.9 (s), 128.8 (s), 62.7 (t), 60.99 (q), $60.96(\mathrm{q}), 58.2$ (d), $55.00(\mathrm{~d}), 54.99(\mathrm{~d}), 54.9(\mathrm{~d}), 51.7(\mathrm{~d}), 41.8(\mathrm{q}), 39.0(\mathrm{t}), 30.9(\mathrm{q}), 25.5(\mathrm{t})$, 23.3 (t), 8.8 (q), 8.7 (q); HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{28} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{8} 525.2231$; Found 525.2231. The physical, spectroscopic, and spectrometric data of compound $\mathbf{1}$ are consistent with those of natural ${ }^{[7]}$ Fennebricin A.

2. NMR data comparison of synthetic and natural products

Renieramycin G (25)
Table S1. NMR data comparison of synthetic and natural Renieramycin $\mathrm{G}^{[4 \mathrm{a}]}(\mathbf{2 5})^{\mathrm{a}}$

${ }^{1} \mathrm{H}$ NMR		${ }^{13} \mathrm{C}$ NMR	
Natural ${ }^{\text {b }}$	This work ${ }^{\text {c }}$	Natural ${ }^{\text {d }}$	This work ${ }^{\text {e }}$
5.90, m, 1H	$5.89, \mathrm{~m}, 1 \mathrm{H}$	186.6	186.8
5.40, brs, 1 H	5.38, brs, 1H	185.6	185.7
4.67, dd, 11.7, 2.8, 1H	4.66, dd, 11.7, 2.8, 1H	182.9	183.0
4.32, dd, 11.7, 2.6, 1H	4.31, dd, 11.7, 2.4, 1H	180.8	180.9
4.12, brd, 4.0, 1H	4.11, d, 3.9, 1H	170.7	170.8
4.01, s, 3H	$4.00, \mathrm{~s}, 3 \mathrm{H}$	167.3	167.4
$3.98, \mathrm{~s}, 3 \mathrm{H}$	3.97 , s, 3H	156.6	156.6
$3.85, \mathrm{dt}, 12.2,3.0,1 \mathrm{H}$	$3.84, \mathrm{dt}, 12.1,2.7,1 \mathrm{H}$	156.0	156.0
3.67, d, 7.1, 1H	3.67, d, 6.9, 1H	142.6	142.6
3.01, dd, 16.5, 3.0, 1H	3.00, dd, 16.4, 2.7, 1H	142.2	142.2
2.87, dd, 20.6, 6.1, 1H	2.86, dd, 20.7, 7.1, 1H	139.5	140.0
2.64, d, 20.6, 1H	2.63, d, 20.7, 1H	136.6	136.6
2.36, s, 3H	$2.35, \mathrm{~s}, 3 \mathrm{H}$	135.5	135.4
1.93, s, 6H	$1.92, \mathrm{~s}, 6 \mathrm{H}$	129.6	129.8
$1.68, \mathrm{dq}, 7.3,1.6,3 \mathrm{H}$	$1.67, \mathrm{dq}, 7.3,1.7,3 \mathrm{H}$	128.8	129.0
1.52, t, 1.6, 3H	$1.51, \mathrm{t}, 1.7,3 \mathrm{H}$	127.3	127.2
1.49, ddd, $16.5,12.2,1.6,1 \mathrm{H}$	1.47, ddd, 16.4, 12.1, 1.7, 1H	63.3	63.3
		61.3	61.5
		61.2	61.5
		59.6	59.6
		56.6	56.7
		53.2	53.6
		50.5	50.6
		40.1	40.2
		26.1	26.1
		24.0	24.0
		20.5	20.7
		15.6	15.8
		8.8	9.0
		8.8	8.9

[^0]

Jorunnamycin A (3)
Table S2. NMR data comparison of synthetic and natural Jorunnamycin $\mathrm{A}^{[5 \mathrm{aa}]}(\mathbf{3})^{\mathrm{a}}$

${ }^{1} \mathrm{H}$ NMR		${ }^{13} \mathrm{C}$ NMR	
Natural ${ }^{\text {b }}$	This work ${ }^{\text {c }}$	Natural ${ }^{\text {d }}$	This work ${ }^{\text {e }}$
4.15, d, 2.4, 1H	4.12, d, 2.7, 1H	186.3	186.3
4.07, d, 2.6, 1H	4.07, d, 2.2, 1H	185.5	185.5
4.03, s, 3H	4.02, s, 3H	182.3	182.3
$3.98, \mathrm{~s}, 3 \mathrm{H}$	3.98, s, 3H	181.4	181.4
3.89, ddd, 3.7, 3.1, 2.4, 1H	3.89, q, 3.4, 1H	155.7	155.5
3.71, dd, 11.3, 3.1, 1H	3.71, dd, 11.5, 3.3, 1H	155.4	155.3
3.48, dd, 11.3, 3.7, 1H	$3.48, \mathrm{~m}, 1 \mathrm{H}$	141.7	141.6
3.41, dd, 7.6, 2.4, 1H	3.41, d, 7.5, 1H	141.4	141.4
3.17, ddd, 11.6, 2.6, 2.4, 1H	$3.17, \mathrm{dt}, 11.5,3.3,1 \mathrm{H}$	136.1	136.0
2.92, dd, 17.4, 2.4, 1H	2.92, dd, 17.5, 2.7, 1H	135.6	135.6
2.82, dd, 21.1, 7.6, 1H	2.82, dd, 21.0, 7.5, 1H	128.8	128.9
$2.30, \mathrm{~s}, 3 \mathrm{H}$	$2.30, \mathrm{~s}, 3 \mathrm{H}$	128.6	128.6
2.27, d, 21.1, 1H	$2.25, \mathrm{~d}, 21.0,1 \mathrm{H}$	116.9	116.9
1.93, s, 3H	1.94, s, 3H	64.2	64.0
1.93, s, 3H	1.93, s, 3H	61.1	61.10
1.42, ddd, 17.4, 11.6, 2.4, 1H	1.40, ddd, 17.5, 11.5, 2.7, 1H	61.0	61.08
		59.1	59.0
		58.0	57.9
		54.5	54.4
		54.3	54.3
		54.2	54.2
		41.5	41.6
		25.4	25.3
		21.5	21.4
		8.7	8.8
		8.7	8.7

[^1]

Renieramycin M(28)
Table S3. NMR data comparison of synthetic and natural Renieramycin $\mathrm{M}^{[6]}(\mathbf{2 8})^{\text {a }}$

${ }^{1} \mathrm{H}$ NMR		${ }^{13} \mathrm{C}$ NMR	
Natural ${ }^{\text {b }}$	This work ${ }^{\text {c }}$	Natural ${ }^{\text {d }}$	This work ${ }^{\text {e }}$
$5.96, \mathrm{qq}, 7.3,1.5,1 \mathrm{H}$	5.96, q, 7.3, 1H	185.9	185.9
4.53, dd, 11.6, 3.1, 1H	4.54, dd, 11.7, 3.0, 1H	185.4	185.5
4.10, dd, 11.6, 2.5, 1H	4.09, dd, 11.7, 2.4, 1H	182.5	182.5
4.07, d, 2.5, 1H	4.07, d, 2.2, 1H	180.9	181.0
4.02, s, 3H	4.02, s, 3H	166.5	166.5
4.01, d, 3.1, 1H	$4.00, \mathrm{~m}, 1 \mathrm{H}$ (overlapped)	155.8	155.8
$3.99, \mathrm{~m}, 1 \mathrm{H}$ (overlapped)	$3.99, \mathrm{~m}, 1 \mathrm{H}$ (overlapped)	155.2	155.2
3.99, s, 3H	$3.98, \mathrm{~s}, 3 \mathrm{H}$	142.0	142.0
3.40, ddd, 7.6, 2.5, 1.8, 1 H	$3.39, \mathrm{~d}, 7.5,1 \mathrm{H}$	141.3	141.3
3.11, ddd, 11.3, 3.1, 2.8, 1H	$3.11, \mathrm{dt}, 11.4,3.0,1 \mathrm{H}$	140.5	140.6
2.89, dd, 17.4, 2.8, 1H	2.89, dd, 17.5, 3.0, 1H	135.7	135.7
2.76, dd, 20.6, 7.6, 1H	2.75, dd, 21.0, 7.5, 1H	135.0	135.0
$2.30, \mathrm{~d}, 20.6,1 \mathrm{H}$	2.30, d, 21.0, 1H	128.6	128.6
2.28, s, 3H	$2.28, \mathrm{~s}, 3 \mathrm{H}$	128.6	128.4
$1.94, \mathrm{~s}, 3 \mathrm{H}$	$1.93, \mathrm{~s}, 3 \mathrm{H}$	126.3	126.2
$1.90, \mathrm{~s}, 3 \mathrm{H}$	$1.90, \mathrm{~s}, 3 \mathrm{H}$	116.9	116.9
$1.82, \mathrm{dq}, 7.3,1.5,3 \mathrm{H}$	1.81, dd, 7.3, 1.5, 3H	62.0	61.9
$1.58, \mathrm{~s}, 3 \mathrm{H}$	$1.57, \mathrm{~s}, 3 \mathrm{H}$	61.0	61.1
$1.36,17.4,11.3,2.7,1 \mathrm{H}$	$1.36,17.5,11.4,3.0,1 \mathrm{H}$	60.9	61.0
		58.5	58.5
		56.3	56.2
		54.6	54.5
		54.2	54.2
		54.1	54.1
		41.5	41.5
		25.4	25.4
		21.3	21.1
		20.4	20.4
		15.7	15.7
		8.7	8.7
		8.6	8.6

[^2] $125 \mathrm{MHz}, \delta(\mathrm{ppm}) ;{ }^{\mathrm{d}}$ Measured at $400 \mathrm{MHz}, \delta[\mathrm{ppm}$, mult, $J(\mathrm{~Hz})] ;{ }^{\mathrm{c}}$ Measured at $150 \mathrm{MHz}, \delta(\mathrm{ppm})$.

Table S4. NMR data comparison of synthetic and natural Renieramycin J ${ }^{[6]}$ (2) ${ }^{\text {a }}$

${ }^{1} \mathrm{H}$ NMR		${ }^{13} \mathrm{C}$ NMR	
Natural ${ }^{\text {b }}$	This work ${ }^{\text {c }}$	Natural ${ }^{\text {d }}$	This work ${ }^{\text {e }}$
$5.93, \mathrm{qq}, 7.3,1.6,1 \mathrm{H}$	$5.93, \mathrm{qq}, 7.2,1.6,1 \mathrm{H}$	208.1	208.3
4.16, dd, 11.0, 2.7, 1H	4.17, dd, 11.1, 3.2, 1H	186.7	186.6
4.09, dd, 11.0, 3.4, 1H	4.10, dd, 11.1, 3.3, 1H	185.6	185.6
4.00, s, 3H	4.00, s, 3H	182.9	182.9
3.96, s, 3H	3.96, s, 3H	181.2	181.2
3.86, brs, 1H	3.87, brs, 1H	167.0	167.1
3.81, brs, 1H	3.81, brs, 1H	156.0	156.0
$3.44, \mathrm{~m}, 1 \mathrm{H}$	3.44, m, 1H	155.1	155.1
$3.41, \mathrm{~m}, 1 \mathrm{H}$	3.41, m, 1H	143.4	143.4
2.90-2.93, m, 2H	2.88-2.95, m, 2H	141.6	141.5
2.82, brd, 16.8, 1H	2.83, dd, 16.8, 2.8, 1H	139.4	139.6
2.74, dd, 20.8, 7.3, 1H	2.74, dd, 21.0, 7.2, 1H	137.2	137.2
$2.35, \mathrm{~d}, 16.5,1 \mathrm{H}$	2.36, d, 16.5, 1H	135.0	135.0
2.26, d, 20.8, 1H	2.26, d, 21.0, 1H	128.7	128.7
2.19, s, 3H	2.19, s, 3H	128.0	128.1
2.16, s, 3H	2.16, s, 3H	126.8	126.7
1.90, s, 6H	$1.91, \mathrm{~s}, 6 \mathrm{H}$	64.6	64.5
$1.79, \mathrm{dq}, 7.3,1.6,3 \mathrm{H}$	$1.79, \mathrm{dq}, 7.2,1.6,3 \mathrm{H}$	60.8	60.88
$1.59, \mathrm{dq}, 1.6,3 \mathrm{H}$	$1.59, \mathrm{~s}, 3 \mathrm{H}$	60.8	60.87
1.25, ddd, 16.8, 11.2, 2.0, 1H	1.25, ddd, 16.8, 11.1, 2.0, 1H	58.9	58.8
		55.1	55.01
		55.1	54.99
		53.5	53.5
		52.3	52.3
		41.7	41.7
		38.6	38.5
		30.9	30.9
		25.5	25.4
		23.1	23.1
		20.3	20.4
		15.5	15.5
		8.6	8.7
		8.6	8.6

[^3]

Table S5. NMR data comparison of synthetic and natural Fennebricin ${ }^{[7]}(\mathbf{1})^{\mathrm{a}}$

${ }^{1} \mathrm{H}$ NMR		${ }^{13} \text { C NMR }$	
Natural ${ }^{\text {b }}$	This work ${ }^{\text {c }}$	Natural ${ }^{\text {d }}$	This work ${ }^{\text {e }}$
3.98, s, 3H	$3.98, \mathrm{~s}, 3 \mathrm{H}$	208.0	207.9
$3.97,1 \mathrm{H}$ (overlapped)	3.97 , m, 1H (overlapped)	185.6	186.3
$3.96, \mathrm{~s}, 3 \mathrm{H}$	$3.95, \mathrm{~s}, 3 \mathrm{H}$	185.5	185.6
3.67 , dd, 11.0, 3.5, 1H	3.67, dd, 11.2, 3.8, 1H	183.1	182.6
$3.61, \mathrm{~m}, 1 \mathrm{H}$	$3.63, \mathrm{~m}, 1 \mathrm{H}$	180.8	181.8
3.48, d, 16.5, 1H	3.48, dd, 17.8, 9.0, 1H	155.0	155.5
$3.40, \mathrm{~m}, 1 \mathrm{H}$	$3.38, \mathrm{~d}, 8.9,1 \mathrm{H}$	155.0	155.4
$3.35, \mathrm{dd}, 11.0,3.7,1 \mathrm{H}$	$3.34, \mathrm{~m}, 1 \mathrm{H}$ (overlapped)	143.6	143.0
3.05 , brd, 11.8, 1 H	$3.00, \mathrm{dt}, 11.5,3.2,1 \mathrm{H}$	142.5	141.8
$2.92, \mathrm{~m}, 1 \mathrm{H}$	$2.94, \mathrm{~d}, 7.3,1 \mathrm{H}$	135.8	137.5
2.83, dd, 16.7, 2.2, 1H	2.84, dd, 17.4, 2.3, 1H	135.0	135.7
$2.85, \mathrm{dd}, 20.1,7.3,1 \mathrm{H}$	2.81, dd, 21.0, 7.3, 1H	128.5	128.9
$2.42, \mathrm{~d}, 16.5,1 \mathrm{H}$	2.41, d, 17.8, 1H	126.8	128.8
2.20, d, 20.1, 1H	2.22, d, 21.0, 1H	63.7	62.7
2.19, s, 3H	2.19, s, 3H	61.5	60.99
2.18, s, 3H	2.18, s, 3H	61.5	60.96
$1.95, \mathrm{~s}, 3 \mathrm{H}$	$1.93, \mathrm{~s}, 3 \mathrm{H}$	58.5	58.2
1.92, s, 3H	1.92, s, 3H	55.3	55.00
1.25, dd, 16.7, 11.8, 1H	1.32, ddd, 17.4, 11.5, 2.4, 1H	54.5	54.99
		54.5	54.9
		51.5	51.7
		41.5	41.8
		38.5	39.0
		30.8	30.9
		23.7	25.5
		23.4	23.3
		8.5	8.8
		8.5	8.7

[^4]
3. X-ray crystallographic data

(1) X-ray crystallographic data of compound 26

Crystal data for 26: $\mathrm{C}_{28} \mathrm{H}_{35} \mathrm{~N}_{3} \mathrm{O}_{7} \cdot \mathrm{H}_{2} \mathrm{O}, M=543.60, a=12.5972(5) \AA, b=9.4343(3) \AA, c=$ 12.6471(5) $\AA, \alpha=90^{\circ}, \beta=118.542(2)^{\circ}, \gamma=90^{\circ}, V=1320.38(9) \AA^{3}, T=100$.(2) K, space group $P 1211, Z=2, \mu(\mathrm{Cu} \mathrm{K} \alpha)=0.832 \mathrm{~mm}^{-1}$, 21394 reflections measured, 5185 independent reflections $\left(R_{i n t}=0.0733\right)$. The final R_{l} values were $0.0498(I>2 \sigma(I))$. The final $w R\left(F^{2}\right)$ values were $0.1237(I>2 \sigma(I))$. The final R_{l} values were 0.0573 (all data). The final $w R\left(F^{2}\right)$ values were 0.1325 (all data). The goodness of fit on F^{2} was 1.032 . Flack parameter $=$ $0.20(12)$.

View of the molecules in an asymmetric unit.
Displacement ellipsoids are drawn at the 30\% probability level.

View of a molecule of $\mathbf{2 6}$ with the atom-labelling scheme.
Displacement ellipsoids are drawn at the 30% probability level.

View of the pack drawing of $\mathbf{2 6}$.
Hydrogen-bonds are shown as dashed lines.

Table S5. Crystal data and structure refinement for 26.

Identification code
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions
global
C28 H37 N3 O8
543.60

100(2) K
1.54178 A

Monoclinic
P 1211
$a=12.5972(5) \AA \quad=90^{\circ}$.

Volume
Z
Density (calculated)
Absorption coefficient
F(000)
Crystal size
Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Completeness to theta $=72.51^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices [$\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$]
R indices (all data)
Absolute structure parameter
Largest diff. peak and hole
$\mathrm{b}=9.4343(3) \AA \quad=118.542(2)^{\circ}$.
$\mathrm{c}=12.6471(5) \AA \quad=90^{\circ}$.
$1320.38(9) \AA^{3}$
2
$1.367 \mathrm{Mg} / \mathrm{m}^{3}$
$0.832 \mathrm{~mm}^{-1}$
580
$0.220 \times 0.070 \times 0.010 \mathrm{~mm}^{3}$
3.98 to 72.51°.
$-15<=\mathrm{h}<=15,-11<=\mathrm{k}<=11,-15<=1<=13$
21394
$5185[\mathrm{R}(\mathrm{int})=0.0733]$
99.8 \%

Semi-empirical from equivalents
0.99 and 0.78

Full-matrix least-squares on F^{2}
5185 / 1 / 364
1.032
$\mathrm{R} 1=0.0498, \mathrm{wR} 2=0.1237$
$\mathrm{R} 1=0.0573, \mathrm{wR} 2=0.1325$
0.20(12)
0.579 and -0.326 e. \AA^{-3}

(2) X-ray crystallographic data of compound 28

Crystal data for 28: $\mathrm{C}_{31} \mathrm{H}_{33} \mathrm{~N}_{3} \mathrm{O}_{8}, M=575.60, a=8.6975(2) \AA, b=15.6191(4) \AA, c=$ $21.5360(5) \AA, \alpha=90^{\circ}, \beta=90^{\circ}, \gamma=90^{\circ}, V=2925.60(12) \AA^{3}, T=100 .(2) \mathrm{K}$, space group $P 212121, Z=4, \mu(\mathrm{Cu} \mathrm{K} \alpha)=0.787 \mathrm{~mm}^{-1}, 30751$ reflections measured, 5770 independent reflections $\left(R_{\text {int }}=0.0395\right)$. The final R_{l} values were $0.0348(I>2 \sigma(I))$. The final $w R\left(F^{2}\right)$ values were $0.0942(I>2 \sigma(I))$. The final R_{l} values were 0.0360 (all data). The final $w R\left(F^{2}\right)$ values were 0.0952 (all data). The goodness of fit on F^{2} was 1.031 . Flack parameter $=0.02(6)$.

View of the molecules in an asymmetric unit.
Displacement ellipsoids are drawn at the 30% probability level.

View of a molecule of $\mathbf{2 8}$ with the atom-labelling scheme.
Displacement ellipsoids are drawn at the 30% probability level.

View of the pack drawing of $\mathbf{2 8}$.
Hydrogen-bonds are shown as dashed lines.
Table S6. Crystal data and structure refinement for 28.

Identification code
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions
global
C31 H33 N3 O8
575.60

100(2) K
1.54178 Å

Orthorhombic

$$
\begin{aligned}
\mathrm{P} 2_{1} 2_{1} 2_{1} & \\
\mathrm{a}=8.6975(2) \AA & =90^{\circ} . \\
\mathrm{b}=15.6191(4) \AA & =90^{\circ} . \\
\mathrm{c}=21.5360(5) \AA & =90^{\circ} . \\
\mathrm{S} 40 &
\end{aligned}
$$

Volume

Z
Density (calculated)
Absorption coefficient
F(000)
Crystal size
Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Completeness to theta $=72.30^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices [$\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$]
R indices (all data)
Absolute structure parameter
Largest diff. peak and hole
2925.60(12) \AA^{3}

4
$1.307 \mathrm{Mg} / \mathrm{m}^{3}$
$0.787 \mathrm{~mm}^{-1}$
1216
$0.700 \times 0.340 \times 0.250 \mathrm{~mm}^{3}$
3.50 to 72.30°.
$-10<=\mathrm{h}<=10,-14<=\mathrm{k}<=19,-26<=\mathrm{l}<=26$
30751
$5770[\mathrm{R}(\mathrm{int})=0.0395]$
99.8 \%

Semi-empirical from equivalents
0.83 and 0.72

Full-matrix least-squares on F^{2}
5770 / 186 / 443
1.031
$R 1=0.0348, w R 2=0.0942$
$R 1=0.0360, w R 2=0.0952$
0.02(6)
0.235 and $-0.157 \mathrm{e} . \AA^{-3}$

4．Copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra

${ }^{1} \mathrm{H}$ NMR 400 MHz CDCl 3

ジき

11
${ }^{13} \mathrm{C}$ NMR 100 MHz CDCl 3

${ }^{1} \mathrm{H}$ NMR 400 MHz CDCl 3

15
${ }^{13} \mathrm{C}$ NMR 150 MHz CDCl 3

15
${ }^{19} \mathrm{~F}$ NMR 376 MHz CDCl 3

16
${ }^{1} \mathrm{H}$ NMR 400 MHz CDCl 3

${ }^{13} \mathrm{C}$ NMR 150 MHz CDCl 3

Hill

16
${ }^{19} \mathrm{~F}$ NMR 376 MHz CDCl 3

${ }^{1} \mathrm{H}$ NMR 400 MHz CDCl 3

${ }^{13} \mathrm{C}$ NMR 100 MHz CDCl 3

${ }^{1} \mathrm{H}$ NMR 400 MHz CDCl 3

${ }^{13} \mathrm{C}$ NMR 100 MHz CDCl 3

${ }^{13} \mathrm{C}$ NMR 100 MHz CDCl 3

190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

Figure SI. ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum of compound 21 recorded in CDCl_{3}.

Figure S2. HSQC spectrum of compound 21 recorded in CDCl_{3}.

Figure S3. HMBC spectrum of compound 21 recorded in CDCl_{3}.

Figure S4. ROESY spectrum of compound 21 recorded in CDCl_{3}.

${ }^{1} \mathrm{H}$ NMR 400 MHz CDCl 3

> ヘị
> $\stackrel{+}{i}$
> $\stackrel{\infty}{\sim}$

${ }^{13} \mathrm{C}$ NMR 100 MHz CDCl 3

${ }^{1} \mathrm{H}$ NMR 400 MHz CDCl 3

${ }^{13} \mathrm{C}$ NMR 100 MHz CDCl 3

18
${ }^{1} \mathrm{H}$ NMR 400 MHz CD 3 OD

18
${ }^{13} \mathrm{C}$ NMR $100 \mathrm{MHz} \mathrm{CD}{ }_{3} \mathrm{OD}$

9
${ }^{1} \mathrm{H}$ NMR 400 MHz CD 3 OD

9
${ }^{13} \mathrm{C}$ NMR 150 MHz CD 3 OD

${ }^{1} \mathrm{H}$ NMR 400 MHz CDCl 3

${ }^{13} \mathrm{C}$ NMR 150 MHz CDCl 3

${ }^{1} \mathrm{H}$ NMR 400 MHz CDCl 3

${ }^{13} \mathrm{C}$ NMR 150 MHz CDCl 3

-

24
${ }^{13} \mathrm{C}$ NMR 150 MHz CDCl 3

Renieramycin G(25)
${ }^{13} \mathrm{C}$ NMR $150 \mathrm{MHz} \mathrm{CD} \mathrm{Cl}_{2}$

${ }^{13} \mathrm{C}$ NMR 100 MHz CDCl 3

Jorunnamycin A (3)
${ }^{1} \mathrm{H}$ NMR 400 MHz CDCl 3

 $\stackrel{1}{1}$

Jorunnamycin A (3)
${ }^{13} \mathrm{C}$ NMR 150 MHz CDCl 3

${ }^{1} \mathrm{H}$ NMR 400 MHz CDCl 3

${ }^{13} \mathrm{C}$ NMR 150 MHz CDCl 3

Renieramycin J (2)
${ }^{1} \mathrm{H}$ NMR 400 MHz CDCl 3

29
${ }^{1} \mathrm{H}$ NMR 400 MHz CDCl 3

29
${ }^{13} \mathrm{C}$ NMR 150 MHz CDCl 3

${ }^{1} \mathrm{H}$ NMR 400 MHz CDCl 3

[^5]
Fennebricin A (1)
${ }^{1} \mathrm{H}$ NMR 400 MHz CDCl 3

Fennebricin A (1)
${ }^{13} \mathrm{C}$ NMR 150 MHz CDCl 3

Figure S5. ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum of Fennebricin $\mathrm{A}(\mathbf{1})$ recorded in CDCl_{3}.

Figure S6. HSQC spectrum of Fennebricin A (1) recorded in CDCl_{3}.

Figure $\boldsymbol{S 7}$. HMBC spectrum of Fennebricin A (1) recorded in CDCl_{3}.

Figure S8. ROESY spectrum of Fennebricin A (1) recorded in CDCl_{3}.

Reference

[1] He, J.; Li, S.; Deng, Y.; Fu, H.; Laforteza, B. N.; Spangle, J. E.; Homs, A.; Yu, J.-Q. Science 2014, 343, 1216.
[2] (a) Tenneti, S.; Biswas, S.; Cox, G. A.; Mans, D. J.; Lim, H. J.; RajanBabu, T. V. J. Am. Chem. Soc. 2018, 140, 9868. (b) Wu, Y.-C.; Zhu, J.-P. Org. Lett. 2009, 11, 5558. (c) Wu, Y.-C.; Bernadat, G.; Masson, G.; Couturier, C.; Schlama, T.; Zhu, J.-P. J. Org. Chem. 2009, 74, 2046.
[3] Szcześniak, P.; Staszewska-Krajewska, O.; Furman, B.; Mlynarski, J. Tetrahedron: Asymmetry, 2017, 28, 1765.
[4] (a) Davidson, B. S. Tetrahedron Lett. 1992, 33, 3721. (b) Lane, J. W.; Chen, Y.; Williams, R. M. J. Am. Chem. Soc. 2005, 127, 12684. (c) Liao, X.-W.; Liu, W.; Dong, W.-F.; Guan, B.-H.; Chen, S.-Z.; Liu, Z.-Z. Tetrahedron 2009, 65, 5709. (d) Liu, W.; Dong, W.-F.; Liao, X.-W.; Yan, Z.; Guan, B.-H.; Wang, N.; Liu, Z.-Z. Bioorg. Med. Chem. Lett. 2011, 21, 1419.
[5] (a) Saito, N.; Tanaka, C.; Koizumi, Y.; Suwanborirux, K.; Amnuoypol, S.; Pummangura, S.; Kubo, A. Tetrahedron 2004, 60, 3873. (b) Charupant, K.; Suwanborirux, K.; Amnuoypol, S.; Saito, E.; Kubo, A.; Saito, N. Chem. Pharm. Bull. 2007, 55, 81. (c) Charupant, K.; Daikuhara, N.; Saito, E.; Amnuoypol, S.; Suwanborirux, K.; Owa, T.; Saito, N. Bioorg. Med. Chem. Lett. 2009, 17, 4548.
[6] Suwanborirux, K.; Amnuoypol, S.; Plubrukarn, A.; Pummangura, S.; Kubo, A.; Tanaka, C.; Saito, N. J. Nat. Prod. 2003, 66, 1441.
[7] He, W.-F.; Li, Y.; Feng, M.-T.; Gavagnin, M.; Mollo, E.; Mao, S.-C.; Guo, Y.-W. Fitoterapia, 2014, 96, 109.

[^0]: ${ }^{\text {a }}$ All data were recorded in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ and to the solvent signal (5.32 ppm for ${ }^{1} \mathrm{H}, 53.8 \mathrm{ppm}$ for ${ }^{13} \mathrm{C}$); ${ }^{\mathrm{b}}$ Measured at $500 \mathrm{MHz}, \delta[\mathrm{ppm}$, mult, $J(\mathrm{~Hz})]$; ${ }^{\mathrm{c}}$ Measured at $125 \mathrm{MHz}, \delta(\mathrm{ppm})$; ${ }^{\mathrm{d}}$ Measured at $400 \mathrm{MHz}, \delta[\mathrm{ppm}$, mult, $J(\mathrm{~Hz})]$; ${ }^{\mathrm{e}}$ Measured at $150 \mathrm{MHz}, \delta(\mathrm{ppm})$.

[^1]: ${ }^{\text {a }}$ All data were recorded in CDCl_{3} and to the solvent signal (7.26 ppm for ${ }^{1} \mathrm{H}, 77.0 \mathrm{ppm}$ for ${ }^{13} \mathrm{C}$); ${ }^{\mathrm{b}}$ Measured at $500 \mathrm{MHz}, \delta[\mathrm{ppm}$, mult, $J(\mathrm{~Hz})]$; ${ }^{\mathrm{c}} \mathrm{Measured}$ at $125 \mathrm{MHz}, \delta(\mathrm{ppm}) ;{ }^{\mathrm{d}}$ Measured at $400 \mathrm{MHz}, \delta[\mathrm{ppm}$, mult, $J(\mathrm{~Hz})] ;{ }^{\mathrm{c}}$ Measured at $150 \mathrm{MHz}, \delta(\mathrm{ppm})$.

[^2]: ${ }^{\text {a }}$ All data were recorded in CDCl_{3} and to the solvent signal (7.26 ppm for ${ }^{1} \mathrm{H}, 77.0 \mathrm{ppm}$ for ${ }^{13} \mathrm{C}$); ${ }^{\mathrm{b}}$ Measured at 500 MHz , $\delta\left[\mathrm{ppm}\right.$, mult, $J(\mathrm{~Hz})$]; ${ }^{\mathrm{c}} \mathrm{Measured}$ at

[^3]: ${ }^{\text {a }}$ All data were recorded in CDCl_{3} and to the solvent signal (7.26 ppm for ${ }^{1} \mathrm{H}, 77.0 \mathrm{ppm}$ for ${ }^{13} \mathrm{C}$); ${ }^{\mathrm{b}}$ Measured at $500 \mathrm{MHz}, \delta[\mathrm{ppm}$, mult, $J(\mathrm{~Hz})]$; ${ }^{\mathrm{c}} \mathrm{Measured}$ at $125 \mathrm{MHz}, \delta(\mathrm{ppm}) ;{ }^{\mathrm{d}}$ Measured at $400 \mathrm{MHz}, \delta[\mathrm{ppm}$, mult, $J(\mathrm{~Hz})] ;{ }^{\mathrm{c}}$ Measured at $150 \mathrm{MHz}, \delta(\mathrm{ppm})$.

[^4]: ${ }^{\text {a }}$ All data were recorded in CDCl_{3} and to the solvent signal (7.26 ppm for ${ }^{1} \mathrm{H}, 77.0 \mathrm{ppm}$ for ${ }^{13} \mathrm{C}$); ${ }^{\mathrm{b}}$ Measured at $400 \mathrm{MHz}, \delta\left[\mathrm{ppm}\right.$, mult, $J(\mathrm{~Hz})$]; ${ }^{\mathrm{c}} \mathrm{Measured}$ at $100 \mathrm{MHz}, \delta(\mathrm{ppm}) ;{ }^{\mathrm{d}}$ Measured at $400 \mathrm{MHz}, \delta[\mathrm{ppm}$, mult, $J(\mathrm{~Hz})] ;{ }^{\mathrm{c}}$ Measured at $150 \mathrm{MHz}, \delta(\mathrm{ppm})$.

[^5]:

