Supporting Information

Single Atoms Anchored on Cobalt-based Catalysts Derived from Hydrogel Containing Phthalocyanine towards the Oxygen Reduction Reaction

Yuanyuan Fu,[†] Dawei Xu,[†] Yefei Wang,[†] Xuhui Li,[†] Zhengbo Chen,^{*, †} Kai Li,[†]

Zhongfeng Li,[†] Lirong Zheng, [‡] Xia Zuo.^{*,†}

[†]Department of Chemistry, Capital Normal University, Beijing, 100048, China

[‡]Dr. L. Zheng Department Beijing Synchrotron Radiation Facility Institute of High

Energy Physics, Chinese Academy of Sciences Beijing 100049 (P. R. China)

E-mail: czb979216@sina.com, zuoxia@mail.cnu.edu.cn

Number of pages: 14 Number of tables: 3 Number of figures: 7

Table of content

Figure S1. FT-IR spectra of FPPhT, CoPc, CS and CoPc/CS/GO gel-like composite.

Figure S2. SEM image of CoPc/CS/GO gel-like composite.

Figure S3. SEM images of a) $CoO_X/Co-N-C$ (700), b) Co-N-C (700), c) $CoO_X/Co-N-C$ (900) and d) Co-N-C (900).

Figure S4. TEM images of a) $CoO_X/Co-N-C$ (700), b) Co-N-C (700), c) $CoO_X/Co-N-C$ (900) and d) Co-N-C (900).

Figure S5. LSV curves (scan rate: 5 mV s⁻¹ and the rotation rate of 1600 rpm) of $CoO_X/Co-N-C$ (800), $CoO_X/Co-N-C$ (800)-none GO and CS/CoPc/GO.

Figure S6. Cyclic voltammograms in the region without faradaic processes with different scan rates of a) $CoO_X/Co-N-C$ (700), b) $CoO_X/Co-N-C$ (800), c) $CoO_X/Co-N-C$ (900), d) Co-N-C (700), e) Co-N-C (800) and f) Co-N-C (900).

Table S1. Detailed data of electrocatalytic properties for the all as-prepared samples

 compared with 20% Pt/C.

 Table S2. Comparison of the ORR electrocatalytic data in 0.1 M KOH with catalysts

 using phthalocyanine as precursor reported previously.

Table S3. The explanation of the synergistic effect of different species.

Figure S7. The i-t chronoamperometric curves of stability evaluation for Co/N/C (800) in O_2 -saturated 0.5 M H_2SO_4 electrolyte with a rotation rate of 1600 rpm for 20000 s.

Figure S1. FT-IR spectra of FPPhT, CoPc, CS and CoPc/CS/GO gel-like composite.

Figure S2. SEM image of CoPc/CS/GO gel-like composite.

Figure S3. SEM images of a) CoO_X/Co-N-C (700), b) Co-N-C (700), c)

 $CoO_X/Co-N-C$ (900) and d) Co-N-C (900).

Figure S4. TEM images of a) CoO_X/Co-N-C (700), b) Co-N-C (700), c)

 $CoO_X/Co-N-C$ (900) and d) Co-N-C (900).

Figure S5. LSV curves (scan rate: 5 mV s⁻¹ and the rotation rate of 1600 rpm) of

CoO_X/Co-N-C (800), CoO_X/Co-N-C (800)-none GO and CS/CoPc/GO.

Figure S6. Cyclic voltammograms in the region without faradaic processes with

different scan rates of a) CoO_X/Co-N-C (700), b) CoO_X/Co-N-C (800), c)

CoO_X/Co-N-C (900), d) Co-N-C (700), e) Co-N-C (800) and f) Co-N-C (900).

Table	S1 .	Detailed	data	of	electrocatalytic	properties	for	the	all	as-prepared	samples
compa	red	with 20%	o Pt/C								

Catalysts	Eonset	E _{1/2}	J	Tafel plots
	(V vs. RHE)	(V vs.	$(mA cm^{-2})$	(mV dec ⁻¹)
		RHE)		
CoO _X /Co-N-C (700)	0.84	0.71	2.23	97.5
CoO _X /Co-N-C (800)	0.95	0.88	4.81	61.7
CoO _X /Co-N-C (900)	0.91	0.83	4.74	69.5
Co-N-C (700)	0.83	0.67	1.72	111.4
Co-N-C (800)	0.90	0.82	2.92	74.8
Co-N-C (900)	0.89	0.81	2.82	79.8
20% Pt/C	0.89	0.85	5.40	88.3

Table S2. Comparison of the ORR electrocatalytic data in 0.1 M KOH with catalysts

 using phthalocyanine as precursor reported previously.

Catalysts	E _{onset}	E _{1/2}	n	Tafel	references
	(V vs.	(V vs.		plots	
	RHE)	RHE)		(mV	
				dec ⁻¹)	
CoO _X /Co-N-C	0.95	0.88	3.97	61.7	This work
Co@G/N-GCNs	0.95	0.86	3.96	69.66	(1)
PcCu-O8-Co/CNT	-	0.83	3.93	≈60	(2)
FePcZnPor-CMP	0.936	0.866	≈4	33.3	(3)
FeCoPc-C	-	0.85	≈4	72	(4)
HS-Phth-Fe-900	0.964	0.823	3.86	-	(5)
SAFe-NDC-H	-	0.86	≈3.9	61.0	(6)
Cu-N ₄ -C	-	0.85	3.95	≈48	(7)
CAN-Pc(Fe/Co)	1.04	0.84	3.94	54	(8)
UiO-66-NO ₂ @CoCNT	-	0.86	3.90	-	(9)

Sample		Elec	trocataly	Conclusion		
	Hypothetical	Eonset	E _{1/2}	J	Tafel	
	synergistic effect	(V vs.	(V vs.	(mA	plots	
		RHE)	RHE)	<i>cm</i> ⁻²)	(mV	
					dec ⁻¹)	
CoO _X /Co-N-C	CoOx and Co	0.84	0.71	2.23	97.5	Poor
(700)	nanoparticles					
Co-N-C (900)	Co nanoparticles	0.89	0.81	2.82	79.8	Poor
	and single Co					
	atoms					
CoO _X /Co-N-C	CoOx	0.95	0.88	4.81	61.7	Excellent
(800)	nanoparticles and					(Better than 20%
	single Co atoms					Pt / C)
CoO _X /Co-N-C	CoOx& Co	0.91	0.83	4.74	69.5	Good
(900)	nanoparticles and					(Worse than 20%
	single Co atoms					Pt / C)

 Table S3. The explanation of the synergistic effect of different species.

We attribute the excellent catalytic performance to the following speculations:

- If we assume that the synergistic effect of CoOx and Co nanoparticles play a dominate role in ORR, it is easy to deduce <u>CoOx/Co-N-C (700)</u> should have the best performance. Because XRD confirms the existence of CoOx and Co nanoparticles, but there is no peak corresponding to Co-N in XANES.
- 2) If we assume that the synergistic effect of single Co atoms and Co nanoparticles play a dominate role in ORR, it is easy to deduce <u>Co-N-C (900)</u> should have the best performance. Because XRD confirms the existence of CoOx and Co nanoparticles and there is a peak corresponding to Co-N in XANES.
- 3) If we assume that the synergistic effect of single Co atoms and CoOX nanoparticles play a dominate role in ORR, it is easy to deduce <u>CoOx/Co-N-C</u> (800) should have the best performance. Because the HAADF-STEM, XANES and XPS results ironclad proves that the Co atoms anchor on the surface of the carbon layer. And XRD confirms the existence of CoOx.
- 4) If we assume that the synergistic effect of single Co atoms, CoO_X and Co nanoparticles make the contribution to the ORR in common, it is easy to deduce <u>CoOx/Co-N-C (900)</u> should have the best performance. Because the XRD and TEM proved that as the pyrolysis temperature increased, more crystalline CoO_X and Co nanoparticles appeared in the CoOx/Co-N-C (900) than CoOx/Co-N-C (800).

Obviously, it is only possible to attribute the good electrocatalytic performance to the synergistic effect of CoOx nanoparticles and single Co atom.

Figure S7. The i-t chronoamperometric curves of stability evaluation for Co/N/C (800) in O_2 -saturated 0.5 M H₂SO4 electrolyte with a rotation rate of 1600 rpm for 20000 s.

References

(1) Niu, H. J.; Zhang, L.; Feng, J. J.; Zhang, Q. L.; Huang, H.; Wang, A. J. Graphene-Encapsulated Cobalt Nanoparticles Embedded in Porous Nitrogen-Doped Graphitic Carbon Nanosheets as Efficient Electrocatalysts for Oxygen Reduction Reaction. *J. Colloid Interf. Sci.* **2019**, 552, 744-775.DOI: 10.1016/j.jcis.2019.05.099.

(2) Zhong, H.; Ly, K. H.; Wang, M.; Krupskaya, Y.; Han, X.; Zhang, J.; Zhang, J.; Kataev, V.; Buchner, B.; Weidinger, I. M.; Kaskel, S.; Liu, P.; Chen, M.; Dong, R.; Feng, X. A Phthalocyanine-Based Layered Two-Dimensional Conjugated Metal-Organic Framework as a Highly Efficient Electrocatalyst for the Oxygen Reduction Reaction. *Angew. Chem. Int. Ed.* 2019, 58, 10677-10682.DOI: 10.1002/anie.201907002.

(3) Liu, W.; Wang, K.; Wang, C.; Liu, W.; Pan, H.; Xiang, Y.; Qi, D.; Jiang, J. Mixed Phthalocyanine-Porphyrin-Based Conjugated Microporous Polymers towards Unveiling the Activity Origin of Fe-N₄ Catalysts for the Oxygen Reduction Reaction. *J. Mater. Chem. A* 2018, 6, 22851-22857.DOI: 10.1039/c8ta08173e.

(4) Lee, S.; Kwak, D.-H.; Han, S. B.; Hwang, E. T.; Kim, M. C.; Lee, J. Y.; Lee, Y. W.; Park, K. W. Synthesis of Hollow Carbon Nanostructures as a Non-Precious Catalyst for Oxygen Reduction Reaction. *Electrochim. Acta* 2016, 191, 805-812.DOI: 10.1016/j.electacta.2016.01.135.

(5) Xue, Q.; Xu, Z.; Jia, D.; Li, X.; Zhang, M.; Bai, J.; Li, W.; Zhang, W.; Zhou, B. Solid-Phase Synthesis Porous Organic Polymer as Precursor for Fe/Fe₃C-Embedded Hollow Nanoporous Carbon for Alkaline Oxygen Reduction Reaction. ChemElectroChem 2019, 6, 4491-4496.DOI: 10.1002/celc.201901209.

(6) Ni, W.; Gao, Y.; Zhang, Y.; Younus, H. A.; Guo, X.; Ma, C.; Zhang, Y.; Duan, J.;
Zhang, J.; Zhang, S. O-Doping Boosts the Electrochemical Oxygen Reduction
Activity of a Single Fe Site in Hydrophilic Carbon with Deep Mesopores. *ACS Appl. Mater. Inter.* 2019, 11, 45825-45831.DOI: 10.1021/acsami.9b18510.

(7) Li, W.; Min, C.; Tan, F.; Li, Z.; Zhang, B.; Si, R.; Xu, M.; Liu, W.; Zhou, L.; Wei, Q.; Zhang, Y.; Yang, X. Bottom-Up Construction of Active Sites in a Cu-N₄-C Catalyst for Highly Efficient Oxygen Reduction Reaction. *ACS nano* **2019**, 13, 3177-3187.DOI: 10.1021/acsnano.8b08692.

(8) YangS.; YuY.; DouM.; ZhangZ., DaiL.; WangF.; Two-Dimensional Conjugated Aromatic Networks as High-Sitedensity and Single-Atom Electrocatalysts towards Oxygen Reduction Reaction, *Angew. Chem. Int. Ed.* 2019, 58, 14724-14730. DOI: 10.1002/anie.201908023.

(9) Zeng, S.; Lyu, F.; Sun, L.; Zhan, Y.; Ma, F.X.; Lu, J.; Li, Y. Y. UiO-66-NO₂ as an Oxygen "Pump" for Enhancing Oxygen Reduction Reaction Performance. *Chem. Mater.* **2019**, 31, 1646-1654.DOI: 10.1021/acs.chemmater.8b04934.