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Table S1. Detailed data of electrocatalytic properties for the all as-prepared samples 

compared with 20% Pt/C.

Catalysts Eonset

(V vs. RHE)

E1/2

(V vs. 

RHE)

| J |

 (mA cm−2)

Tafel plots

(mV dec-1)

CoOX/Co-N-C (700) 0.84 0.71 2.23 97.5

CoOX/Co-N-C (800) 0.95 0.88 4.81 61.7

CoOX/Co-N-C (900) 0.91 0.83 4.74 69.5

Co-N-C (700) 0.83 0.67 1.72 111.4

Co-N-C (800) 0.90 0.82 2.92 74.8

Co-N-C (900) 0.89 0.81 2.82 79.8

20% Pt/C 0.89 0.85 5.40 88.3
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Table S2. Comparison of the ORR electrocatalytic data in 0.1 M KOH with catalysts 

using phthalocyanine as precursor reported previously.

Catalysts Eonset

(V vs. 

RHE)

E1/2

(V vs. 

RHE)

n Tafel 

plots

(mV 

dec-1)

references

CoOX/Co-N-C 0.95 0.88 3.97 61.7 This work

Co@G/N-GCNs 0.95 0.86 3.96 69.66 (1)

PcCu-O8-Co/CNT - 0.83 3.93 60 (2)

FePcZnPor-CMP 0.936 0.866 4 33.3 (3)

FeCoPc-C - 0.85 4 72 (4)

HS-Phth-Fe-900 0.964 0.823 3.86 - (5)

SAFe-NDC-H - 0.86 3.9 61.0 (6)

Cu-N4-C - 0.85 3.95 48 (7)

CAN-Pc(Fe/Co) 1.04 0.84 3.94 54 (8)

UiO-66-NO2@CoCNT - 0.86 3.90 - (9)
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Table S3. The explanation of the synergistic effect of different species.

Electrocatalytic propertiesSample

Hypothetical 

synergistic effect

Eonset

(V vs. 

RHE)

E1/2

(V vs. 

RHE)

| J |

 (mA 

cm−2)

Tafel 

plots

(mV 

dec-1)

Conclusion

CoOX/Co-N-C 

(700)

CoOx and Co 

nanoparticles

0.84 0.71 2.23 97.5 Poor

Co-N-C (900) Co nanoparticles 

and single Co 

atoms

0.89 0.81 2.82 79.8 Poor

CoOX/Co-N-C 

(800)

CoOx 

nanoparticles and 

single Co atoms

0.95 0.88 4.81 61.7 Excellent

( Better than 20% 

Pt / C )

CoOX/Co-N-C 

(900)

CoOx& Co 

nanoparticles and 

single Co atoms

0.91 0.83 4.74 69.5 Good

(Worse than 20% 

Pt / C )
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We attribute the excellent catalytic performance to the following speculations:

1) If we assume that the synergistic effect of CoOx and Co nanoparticles play a 

dominate role in ORR, it is easy to deduce CoOx/Co-N-C (700) should have the 

best performance. Because XRD confirms the existence of CoOx and Co 

nanoparticles, but there is no peak corresponding to Co-N in XANES.

2) If we assume that the synergistic effect of single Co atoms and Co nanoparticles 

play a dominate role in ORR, it is easy to deduce Co-N-C (900) should have the 

best performance. Because XRD confirms the existence of CoOx and Co 

nanoparticles and there is a peak corresponding to Co-N in XANES.

3) If we assume that the synergistic effect of single Co atoms and CoOX 

nanoparticles play a dominate role in ORR, it is easy to deduce CoOx/Co-N-C 

(800) should have the best performance. Because the HAADF-STEM, XANES 

and XPS results ironclad proves that the Co atoms anchor on the surface of the 

carbon layer. And XRD confirms the existence of CoOx. 

4) If we assume that the synergistic effect of single Co atoms, CoOX and Co 

nanoparticles make the contribution to the ORR in common, it is easy to deduce 

CoOx/Co-N-C (900) should have the best performance. Because the XRD and 

TEM proved that as the pyrolysis temperature increased, more crystalline CoOX 

and Co nanoparticles appeared in the CoOx/Co-N-C (900) than CoOx/Co-N-C 

(800). 

Obviously, it is only possible to attribute the good electrocatalytic performance to the 

synergistic effect of CoOx nanoparticles and single Co atom.  
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Figure S7. The i-t chronoamperometric curves of stability evaluation for Co/N/C (800) 

in O2-saturated 0.5 M H2SO4 electrolyte with a rotation rate of 1600 rpm for 20000 s.
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