Molecular Selectivity of CO-N₂ Mixed Hydrates: Raman Spectroscopy and GCMC Studies

C. Petuya^{1,4+}, A. Patt^{2,3}, J. M. Simon^{3,*}, S. Picaud², J. M. Salazar³, A. Desmedt^{1,*}

- Groupe Spectroscopie Moléculaire, Institut des Sciences Moléculaires, UMR 5255, CNRS, Université de Bordeaux, 351, cours de la Libération F-33404 TALENCE Cedex, France.
- Institut UTINAM, UMR 6213, CNRS, Université Bourgogne Franche-Comté, F-25000 Besançon, France.
- Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303, CNRS, Université de Bourgogne Franche-Comté, F-21078, Dijon Cedex, France.
- NASA Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, California, 91109, United States.

Corresponding Author <u>*arnaud.desmedt@u-bordeaux.fr; jmsimon@u-bourgogne.fr</u>

+ present address: NASA Jet Propulsion Lab

Content

Figure S1. Phase diagram of pure CO and N₂ gas hydrates.
Figure S2. Guest Raman spectra of the CO and N₂ hydrates.
Table S1. Model parameters used in the GCMC simulations for the H₂O, CO, and N₂ molecules

Figure S1: Phase diagram of pure CO and N_2 gas hydrates. The lines at 150 K and 200 bar represent the thermodynamic histories studied.

Figure S2: Raman signatures of the guest molecules encapsulation at 150 K and 60 bar for 10% of CO (left) and for all gas mixture composition (right).

H ₂ O	r _{OH}	r _{OM}	HÔH	σ	З	q
	0.9572	0.1250	104.52°	-		
0				3.16435	81.90	0.0
Н				0.0	0.0	0.52422
М				0.0	0.0	-1.04844
CO	r _{co}	r _{CQ_{ext1}}	r _{0Qext2}	σ	ε	q
	1.1282	0.4374	0.158	-		
C				3.385	39.89	0.831
0				2.885	61.57	0.0
Q _{ext1}				0.0	0.0	-0.636
Q _{ext2}				0.0	0.0	-0.195
N ₂		r_{NN}	NN	σ	ε	q
		1.10	180°			
N				3.31	36.0	-0.482
CoM				0.0	0.0	0.964

<u>Table S1</u>: Description of the models used in the GCMC simulations for the H₂O, CO, and N₂ molecules. Energy terms ε are in given in K, distances *r* and σ in Å, and charges *q* in atomic units. CoM is the center of mass.