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Figure S1. XRD patterns of differently loaded Rh/ZrO2 catalysts. 
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Figure S2. XRD patterns of ZrO2 and 0.05Rh/ZrO2 catalysts after catalytic test. 

  

10 20 30 40 50 60 70 80

In
te

n
s
it
y
 (

a
.u

.)

2 (degree)

ZrO2

0.05Rh/ZrO2

Crystallite size : 9.4 nm

Crystallite size : 9.0 nm



 7 

 

 

Figure S3. SAXS measurements of Rh NPs suspension. (a) scattering curves of Rh NPs in 

colloidal solution as a function of the scattering vector (I(q)). Measured data points and curve 

simulation are represented by open circle and red line respectively. (b) volume weighted particle 

size distribution (Dv(R)) as a result of SAXS curve simulation in arbitrary units. 
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Figure S4. Survey scan XP spectra for differently loaded Rh/ZrO2 catalysts. 

  



 9 

 

 

Figure S5. (a) H2-TPR profiles of 0.2Rh/SiO2 and 0.2Rh/ZrO2 catalysts. (b) The ratio of H2/Rh 
determined from the amount of H2 consumed in H2-TPR tests with Rh/ZrO2 and the total amount 
of Rh. 
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Figure S6. The most stable geometries of Rh1(a), Rh4(b, c and d), Rh10(e and f) supported on 

clean ZrO2(-111) surface (without Ov). Energy values listed in Table S2 are calculated with 

respect to the most stable structure.  
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Figure S7. Structures of the most stable Rh1/ZrO2 with one Ov(a), two Ov (b) and three Ov (c), 

Rh4/ZrO2 with one Ov (d), two Ov (e) and three Ov (f), Rh10/ZrO2 with one Ov (g), two Ov (h), 

three Ov (i), four Ov (j), five Ov (k) and six Ov (l). The dashed-dot green circles represent the Ov 

site.  
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Figure S8. Reaction energies of H2 oxidation (Er, eV) of multiple oxygen vacancies at various 

positions over the Rhx/ZrO2(-111) (x=1, 4 and 10) surfaces, respectively. The dash line (grey) is 

the reaction energy of one Ov formation over the bare ZrO2 surface. 
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Figure S9. The relationship between the selectivity to coke and amount of NH3 desorbed during 
NH3-TPD for different Rh/ZrO2 catalyst. Initial propane conversion was about 30% for all 
catalysts.  
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Figure S10. (a) The highest space time yield of propene (STY(C3H6)) and (b) corresponding 
selectivity to propene (S(propene)) obtained over () 0.05Rh/ZrO2 and () K-CrOx/Al2O3 
within each 38 min PDH cycle in a series of 60 PDH/oxidative regeneration cycles at 550, 600, 

and 625oC with WHSV of 1.57, 6.28 and 9.42 h -1 respectively. The initial propane conversion 
over the catalysts at 550, 600, 625oC are kept in the range of 30-35%, 32-50% and 26-40% 
respectively. 
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Figure S11. Time on stream stability results of (●) 0.05Rh/ZrO2 and (○) K-CrOx/Al2O3 

catalysts with respect to (a) propane conversion, (b) propene selectivity and (c) space time yield 
of propene for each PDH stage in a series of first 20 PDH/regeneration cycles at 550oC. 
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Figure S12. (a) Turn over frequency (TOF) of propane conversion over differently loaded 

Rh/ZrO2 (●) and bare monoclinic ZrO2 () with respect to the amount of CO determined from 

CO-TPD tests. The bare ZrO2 catalysts with different size of crystallites are from our previous 
study.[ Nat. Commun. 2018, 9, 3794.] The numbers in circles are explained in the corresponding 
supporting information. Rh loading in Rh/ZrO2 increases from the left to the right and is given in 

Table 1 in the main manuscript. (b) Turn over frequency (TOF) of propene formation over 
differently loaded Rh/ZrO2 catalysts with respect to surface Rh atoms as a function of Rh 
loading. 
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Figure S13. The effects of (a) reduction time and (b) reduction temperature on the rate of 

propene formation over ZrO2 and 0.05Rh/ZrO2 catalysts. For the former the reaction temperature 
is kept at 550oC and for the latter reduction time is 1 h. 
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Figure S14. CO-TPD profiles of differently loaded (a) Rh/ZrO2 and (b) Rh/SiO2 samples. 
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Figure S15. CO-TPD profiles of bare monoclinic ZrO2 catalysts with different size of crystallites 

are from our previous study.[ Nat. Commun. 2018, 9, 3794.] The numbers in circles are 
explained in the corresponding supporting information. The numbers above the CO desorption 
curve stand for the density of adsorbed CO. 
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Table S1. Surface element composition for differently loaded Rh/ZrO2 catalysts calculated from 
survey scan XP spectra. 

Catalysts Zr / at.% O / at.% C / at.% F / at.% 

ZrO2 31.6 56.6 8.5 3.3 

0.01Rh/ZrO2 31.9 61.3 6.8 - 

0.05Rh/ZrO2 32.0 56.5 7.6 3.9 

0.2Rh/ZrO2 30.0 57.5 10.3 2.2 
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Table S2. The cohesive energy per Rh atom of the Rhx/ZrO2(-111) (x=1, 4 and 10). 

x Ecoh /eV Rhx Sites 

1 -3.17 Figure S6(a) 

4 

-3.83 Figure S6(b) 

-3.92 Figure S6(c) 

-3.67 Figure S6(d) 

10 
-4.40 Figure S6(e) 

-4.37 Figure S6(f) 
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Table S3. The lowest reaction energies of H2 oxidation (Er, eV) with a formation of multiple 
oxygen vacancies at various positions over the Rhx/ZrO2(-111) (x=1,4 and 10) surfaces, 
respectively. 

x N of Ov Er /eV 

0 1Ov 3.17 

1 

1Ov 0.85 

2Ov 1.45 

3Ov 3.14 

4 

1Ov -0.16 

2Ov 0.90 

3Ov 1.33 

10 

1Ov 0.43 

2Ov 1.07 

3Ov 1.21 

4Ov 1.38 

5Ov 2.00 

6Ov 2.04 

 


