## **Supporting Information**

## Structure-Activity-Selectivity Relationships in Propane Dehydrogenation over Rh/ZrO<sub>2</sub> Catalysts

Yaoyuan Zhang<sup>1,2†</sup>, Yun Zhao<sup>1†</sup>, Tatiana Otroshchenko<sup>1</sup>, Anna Perechodjuk<sup>1</sup>, Vita A.

Kondratenko<sup>1</sup>, Stephan Bartling<sup>1</sup>, Uwe Rodemerck<sup>1</sup>, David Linke<sup>1</sup>, Haijun Jiao<sup>1,\*</sup>, Guiyuan

Jiang<sup>2,\*</sup>, Evgenii V. Kondratenko<sup>1,\*</sup>

<sup>1</sup>Leibniz-Institut für Katalyse e.V. an der Universität Rostock, Albert-Einstein-Straße 29a,

Rostock, 18059, Germany

<sup>2</sup>State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, Beijing,

102249, China

\*Correspondence to: evgenii.kondratenko@catalysis.de (E.V.K.); jianggy@cup.edu.cn (G.J.); hajiun.jiao@catalysis.de (H.J.)

*†*These authors contributed equally to this work.

## **Table of Content:**

Figure S1. XRD patterns of differently loaded Rh/ZrO<sub>2</sub> catalysts.

Figure S2. XRD patterns of ZrO<sub>2</sub> and 0.05Rh/ZrO<sub>2</sub> catalysts after catalytic test.

**Figure S3.** SAXS measurements of Rh NPs suspension. (a) scattering curves of Rh NPs in colloidal solution as a function of the scattering vector (I(q)). Measured data points and curve simulation are represented by open circle and red line respectively. (b) volume weighted particle size distribution (Dv(R)) as a result of SAXS curve simulation in arbitrary units.

Figure S4. Survey scan XP spectra for differently loaded Rh/ZrO<sub>2</sub> catalysts.

**Figure S5.** (a)  $H_2$ -TPR profiles of 0.2Rh/SiO<sub>2</sub> and 0.2Rh/ZrO<sub>2</sub> catalysts. (b) The ratio of  $H_2$ /Rh determined from the amount of  $H_2$  consumed in  $H_2$ -TPR tests with Rh/ZrO<sub>2</sub> and the total amount of Rh.

**Figure S6.** The most stable geometries of  $Rh_1(a)$ ,  $Rh_4(b, c \text{ and } d)$ ,  $Rh_{10}(e \text{ and } f)$  supported on clean  $ZrO_2(-111)$  surface (without  $O_v$ ). Energy values listed in Table S2 are calculated with respect to the most stable structure.

**Figure S7.** Structures of the most stable  $Rh_1/ZrO_2$  with one  $O_v(a)$ , two  $O_v(b)$  and three  $O_v(c)$ ,  $Rh_4/ZrO_2$  with one  $O_v(d)$ , two  $O_v(e)$  and three  $O_v(f)$ ,  $Rh_{10}/ZrO_2$  with one  $O_v(g)$ , two  $O_v(h)$ , three  $O_v(i)$ , four  $O_v(j)$ , five  $O_v(k)$  and six  $O_v(l)$ . The dashed-dot green circles represent the  $O_v$  site.

**Figure S8.** Reaction energies of H<sub>2</sub> oxidation ( $E_r$ , eV) of multiple oxygen vacancies at various positions over the Rh<sub>x</sub>/ZrO<sub>2</sub>(-111) (x=1, 4 and 10) surfaces, respectively. The dash line (grey) is the reaction energy of one O<sub>v</sub> formation over the bare ZrO<sub>2</sub> surface.

**Figure S9.** The relationship between the selectivity to coke and amount of  $NH_3$  desorbed during  $NH_3$ -TPD for different Rh/ZrO<sub>2</sub> catalyst. Initial propane conversion was about 30% for all catalysts.

**Figure S10.** (a) The highest space time yield of propene (STY(C<sub>3</sub>H<sub>6</sub>)) and (b) corresponding selectivity to propene (S(propene)) obtained over ( $\bullet$ ) 0.05Rh/ZrO<sub>2</sub> and (O) K-CrO<sub>x</sub>/Al<sub>2</sub>O<sub>3</sub> within each 38 min PDH cycle in a series of 60 PDH/oxidative regeneration cycles at 550, 600, and 625°C with WHSV of 1.57, 6.28 and 9.42 h<sup>-1</sup> respectively. The initial propane conversion over the catalysts at 550, 600, 625°C are kept in the range of 30-35%, 32-50% and 26-40% respectively.

**Figure S11.** Time on stream stability results of ( $\bullet$ ) 0.05Rh/ZrO<sub>2</sub> and ( $\bigcirc$ ) K-CrO<sub>x</sub>/Al<sub>2</sub>O<sub>3</sub> catalysts with respect to (a) propane conversion, (b) propene selectivity and (c) space time yield of propene for each PDH stage in a series of first 20 PDH/regeneration cycles at 550°C.

**Figure S12.** (a) Turn over frequency (TOF) of propane conversion over differently loaded Rh/ZrO<sub>2</sub>( $\bullet$ ) and bare monoclinic ZrO<sub>2</sub>( $\bigcirc$ ) with respect to the amount of CO determined from CO-TPD tests. The bare ZrO<sub>2</sub> catalysts with different size of crystallites are from our previous study.[Nat. Commun. 2018, 9, 3794.] The numbers in circles are explained in the corresponding supporting information. Rh loading in Rh/ZrO<sub>2</sub> increases from the left to the right and is given in Table 1 in the main manuscript. (b) Turn over frequency (TOF) of propene formation over differently loaded Rh/ZrO<sub>2</sub> catalysts with respect to surface Rh atoms as a function of Rh loading.

**Figure S13.** The effects of (a) reduction time and (b) reduction temperature on the rate of propene formation over  $ZrO_2$  and  $0.05Rh/ZrO_2$  catalysts. For the former the reaction temperature is kept at 550°C and for the latter reduction time is 1 h.

Figure S14. CO-TPD profiles of differently loaded (a) Rh/ZrO<sub>2</sub> and (b) Rh/SiO<sub>2</sub> samples.

**Figure S15.** CO-TPD profiles of bare monoclinic  $ZrO_2$  catalysts with different size of crystallites are from our previous study.[Nat. Commun. 2018, 9, 3794.] The numbers in circles are explained in the corresponding supporting information. The numbers above the CO desorption curve stand for the density of adsorbed CO.

 Table S1. Surface element composition for differently loaded Rh/ZrO2 catalysts calculated from survey scan XP spectra.

**Table S2.** The cohesive energy per Rh atom of the  $Rh_x/ZrO_2(-111)$  (*x*=1, 4 and 10).

**Table S3.** The lowest reaction energies of  $H_2$  oxidation ( $E_r$ , eV) with a formation of multiple oxygen vacancies at various positions over the  $Rh_x/ZrO_2(-111)$  (x=1,4 and 10) surfaces, respectively.



Figure S1. XRD patterns of differently loaded Rh/ZrO<sub>2</sub> catalysts.



Figure S2. XRD patterns of  $ZrO_2$  and  $0.05Rh/ZrO_2$  catalysts after catalytic test.



**Figure S3.** SAXS measurements of Rh NPs suspension. (a) scattering curves of Rh NPs in colloidal solution as a function of the scattering vector (I(q)). Measured data points and curve simulation are represented by open circle and red line respectively. (b) volume weighted particle size distribution (Dv(R)) as a result of SAXS curve simulation in arbitrary units.



Figure S4. Survey scan XP spectra for differently loaded  $Rh/ZrO_2$  catalysts.



**Figure S5.** (a)  $H_2$ -TPR profiles of 0.2Rh/SiO<sub>2</sub> and 0.2Rh/ZrO<sub>2</sub> catalysts. (b) The ratio of  $H_2/Rh$  determined from the amount of  $H_2$  consumed in  $H_2$ -TPR tests with Rh/ZrO<sub>2</sub> and the total amount of Rh.



**Figure S6.** The most stable geometries of  $Rh_1(a)$ ,  $Rh_4(b, c \text{ and } d)$ ,  $Rh_{10}(e \text{ and } f)$  supported on clean  $ZrO_2(-111)$  surface (without  $O_v$ ). Energy values listed in Table S2 are calculated with respect to the most stable structure.



**Figure S7.** Structures of the most stable  $Rh_1/ZrO_2$  with one  $O_v(a)$ , two  $O_v(b)$  and three  $O_v(c)$ ,  $Rh_4/ZrO_2$  with one  $O_v(d)$ , two  $O_v(e)$  and three  $O_v(f)$ ,  $Rh_{10}/ZrO_2$  with one  $O_v(g)$ , two  $O_v(h)$ , three  $O_v(i)$ , four  $O_v(j)$ , five  $O_v(k)$  and six  $O_v(l)$ . The dashed-dot green circles represent the  $O_v$  site.



**Figure S8.** Reaction energies of H<sub>2</sub> oxidation ( $E_r$ , eV) of multiple oxygen vacancies at various positions over the Rh<sub>x</sub>/ZrO<sub>2</sub>(-111) (x=1, 4 and 10) surfaces, respectively. The dash line (grey) is the reaction energy of one O<sub>v</sub> formation over the bare ZrO<sub>2</sub> surface.



**Figure S9.** The relationship between the selectivity to coke and amount of  $NH_3$  desorbed during  $NH_3$ -TPD for different  $Rh/ZrO_2$  catalyst. Initial propane conversion was about 30% for all catalysts.



**Figure S10.** (a) The highest space time yield of propene (STY( $C_3H_6$ )) and (b) corresponding selectivity to propene (S(propene)) obtained over ( $\bigcirc$ ) 0.05Rh/ZrO<sub>2</sub> and ( $\bigcirc$ ) K-CrO<sub>x</sub>/Al<sub>2</sub>O<sub>3</sub> within each 38 min PDH cycle in a series of 60 PDH/oxidative regeneration cycles at 550, 600, and 625°C with WHSV of 1.57, 6.28 and 9.42 h<sup>-1</sup> respectively. The initial propane conversion over the catalysts at 550, 600, 625°C are kept in the range of 30-35%, 32-50% and 26-40% respectively.



**Figure S11.** Time on stream stability results of ( $\bullet$ ) 0.05Rh/ZrO<sub>2</sub> and ( $\bigcirc$ ) K-CrO<sub>x</sub>/Al<sub>2</sub>O<sub>3</sub> catalysts with respect to (a) propane conversion, (b) propene selectivity and (c) space time yield of propene for each PDH stage in a series of first 20 PDH/regeneration cycles at 550°C.



**Figure S12.** (a) Turn over frequency (TOF) of propane conversion over differently loaded  $Rh/ZrO_2$  ( $\bigcirc$ ) and bare monoclinic  $ZrO_2$  ( $\bigcirc$ ) with respect to the amount of CO determined from CO-TPD tests. The bare  $ZrO_2$  catalysts with different size of crystallites are from our previous study.[ Nat. Commun. 2018, 9, 3794.] The numbers in circles are explained in the corresponding supporting information. Rh loading in Rh/ZrO<sub>2</sub> increases from the left to the right and is given in Table 1 in the main manuscript. (b) Turn over frequency (TOF) of propene formation over differently loaded Rh/ZrO<sub>2</sub> catalysts with respect to surface Rh atoms as a function of Rh loading.



**Figure S13.** The effects of (a) reduction time and (b) reduction temperature on the rate of propene formation over  $ZrO_2$  and  $0.05Rh/ZrO_2$  catalysts. For the former the reaction temperature is kept at 550 °C and for the latter reduction time is 1 h.



Figure S14. CO-TPD profiles of differently loaded (a) Rh/ZrO<sub>2</sub> and (b) Rh/SiO<sub>2</sub> samples.



**Figure S15.** CO-TPD profiles of bare monoclinic ZrO<sub>2</sub> catalysts with different size of crystallites are from our previous study.[ Nat. Commun. 2018, 9, 3794.] The numbers in circles are explained in the corresponding supporting information. The numbers above the CO desorption curve stand for the density of adsorbed CO.

| Catalysts              | Zr / at.% | O / at.% | C / at.% | F / at.% |
|------------------------|-----------|----------|----------|----------|
| ZrO <sub>2</sub>       | 31.6      | 56.6     | 8.5      | 3.3      |
| $0.01 Rh/ZrO_2$        | 31.9      | 61.3     | 6.8      | -        |
| $0.05 Rh/ZrO_2$        | 32.0      | 56.5     | 7.6      | 3.9      |
| 0.2Rh/ZrO <sub>2</sub> | 30.0      | 57.5     | 10.3     | 2.2      |

**Table S1.** Surface element composition for differently loaded Rh/ZrO<sub>2</sub> catalysts calculated from survey scan XP spectra.

| x  | $E_{\rm coh}/{\rm eV}$ | Rh <sub>x</sub> Sites |  |
|----|------------------------|-----------------------|--|
| 1  | -3.17                  | Figure S6(a)          |  |
| 4  | -3.83                  | Figure S6(b)          |  |
|    | -3.92                  | Figure S6(c)          |  |
|    | -3.67                  | Figure S6(d)          |  |
| 10 | -4.40                  | Figure S6(e)          |  |
|    | -4.37                  | Figure S6(f)          |  |

**Table S2.** The cohesive energy per Rh atom of the  $Rh_x/ZrO_2(-111)$  (*x*=1, 4 and 10).

| x  | N of O <sub>v</sub> | $E_{\rm r}/{\rm eV}$ |
|----|---------------------|----------------------|
| 0  | $1O_v$              | 3.17                 |
|    | $1O_{\rm v}$        | 0.85                 |
| 1  | $2O_{\rm v}$        | 1.45                 |
|    | 30 <sub>v</sub>     | 3.14                 |
|    | $1O_v$              | -0.16                |
| 4  | $2O_{\rm v}$        | 0.90                 |
|    | 30 <sub>v</sub>     | 1.33                 |
|    | $1O_{\rm v}$        | 0.43                 |
|    | $2O_{\rm v}$        | 1.07                 |
| 10 | $3O_{\rm v}$        | 1.21                 |
| 10 | $4O_{\rm v}$        | 1.38                 |
|    | $5O_{\rm v}$        | 2.00                 |
|    | 6O <sub>v</sub>     | 2.04                 |

**Table S3.** The lowest reaction energies of H<sub>2</sub> oxidation ( $E_r$ , eV) with a formation of multiple oxygen vacancies at various positions over the Rh<sub>x</sub>/ZrO<sub>2</sub>(-111) (x=1,4 and 10) surfaces, respectively.