Supporting Information For

Osmium-Promoted Transformation of Alkyl Nitriles to

Secondary Aliphatic Amines: Scope and Mechanism

Juan C. Babón, Miguel A. Esteruelas,*Ana M. López, and Enrique Oñate

Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain.

* Corresponding author's e-mail address: maester@unizar.es

The supplemental file om0c00236_si_002.xyz contains the computed Cartesian coordinates of all of the molecules reported in this study. The file may be opened as a text file to read the coordinates, or opened directly by a molecular modeling program such as Mercury (version 3.3 or later, http://www.ccdc.cam.ac.uk/pages/Home.aspx) for visualization and analysis.

Contents:

Experimental Section: General information	S 2
Structural Analysis of complexes 3 , 5 and 6	S2
Computational Details	S 3
Analytical data of the isolated amine hydrochloride salts (¹ H NMR, ¹³ C NMR, and MS data)	S4
¹ H NMR spectra of the reaction crude of the catalytic nitrile hydrogenations and ¹ H and ¹³ C{ ¹ H} APT NMR spectra of the hydrochloride salts	S 9
¹ H, ³¹ P{ ¹ H}, ¹³ C{ ¹ H} APT NMR and IR spectra of a mixture of 2 and 3 in a 35:65 molar ratio and its reaction with hydrogen	S41
Monitoring of the reaction of 1 with 2-methoxyacetonitrile by ${}^{1}H$ and ${}^{31}P{}^{1}H$ NMR	S46
¹ H, ³¹ P{ ¹ H}, and ¹³ C{ ¹ H} APT NMR, and IR spectra of complexes 4-6	S48
Energy of computed structures	S55
References	S64

Experimental Section: General information. All reactions were performed with rigorous exclusion of air at an argon/vacuum manifold using standard Schlenk-tube or glovebox techniques. Solvents were dried by the usual procedures and distilled under argon prior to use or obtained oxygen- and water-free from an MBraun solvent purification apparatus. Complex OsH₆(PⁱPr₃)₂ (1) was prepared according to the published method.¹ Nitriles and amines were purchased from commercial sources and distilled in a Kugelrohr distillation oven. NMR spectra were recorded on a Bruker ARX 300, Bruker Avance 300 MHz, or a Bruker Avance 400 MHz instruments. Chemical shifts (expressed in parts per million) are referenced to residual solvent peaks (¹H, ${}^{13}C{}^{1}H{}$ and external H₃PO₄ (${}^{31}P{}^{1}H{}$). Coupling constants J are given in Hertz. Highresolution (HRMS) and low-resolution (LRMS) electrospray mass spectra were acquired using a MicroTOF-Q hybrid quadrupole time-of-flight spectrometer and an Esquire 3000+ spectrometer, respectively (Bruker Daltonics, Bremen, Germany). C, H, and N analyses were carried out in a Perkin-Elmer 2400-B Series II CHNS-Analyzer. Attenuated total reflection infrared spectra (ATR-IR) of solid samples were run on a Perkin-Elmer Spectrum 100 FT-IR spectrometer.

Structural Analysis of Complexes 3, 5, and 6. X-ray data were collected for the complexes on a Bruker Smart APEX diffractometer equipped with a normal focus, and 2.4 kW sealed tube source (Mo radiation, $\lambda = 0.71073$ Å). Data were collected over the complete sphere covering 0.3° in ω . Data were corrected for absorption by using a multiscan method applied with the SADABS program.² The structures were solved by Patterson or direct methods and refined by full-matrix least squares on F² with SHELXL2016,³ including isotropic and subsequently anisotropic displacement parameters. The hydrogen atoms were observed in the last Fourier Maps or calculated, and refined freely or using a restricted riding model. The hydrides were located but refined with fixed Os-H distances (1.59 Å).

The azavinylidene ligand of complex **3** was observed disordered and was refined with two moieties, complementary occupancy factors, and isotropic displacement parameters. The hydrides (also disordered) were refined with a fixed distance Os-H using the expected geometry as template.

The crystal of 6 is the result of the co-crystallization 0.75/0.25 of amine/imine (5) complexes. The disordered ligands were refined with complementary occupancy factors. The mayor component (6) was refined freely with anisotropic thermal

parameters. The minor component was refined with restricted geometry, and isotropic displacement parameters.

Crystal data for **3** (1993553): C₂₃H₅₅NOsP₂, Mw 597.82, orange, irregular block (0.159 x 0.152 x 0.147 mm³), triclinic, space group P-1, *a*: 9.6213(6) Å, *b*: 11.1004(7) Å, *c*: 14.9218(9) Å, : 76.6170(10)°, : 76.0920(10)°, : 66.6920(10)°, *V* = 1403.97(15)Å³, *Z* = 2, *Z*' = 1, *D*_{calc}: 1.414 g cm⁻³, F(000): 612, *T* = 100(2) K, μ 4.664 mm⁻¹. 24571 measured reflections (2*θ*: 3-57°, ω scans 0.3°), 6696 unique (R_{int} = 0.0268); min./max. transm. Factors 0.654/0.862. Final agreement factors were R¹ = 0.0239 (6117 observed reflections, I > 2 σ (I)) and wR² = 0.0598; data/restraints/parameters 6696/28/263; GoF = 1.001. Largest peak and hole 1.715 (close to osmium atoms) and -0.719 e/ Å³.

Crystal data for **5** (1993555): C₄₀H₉₈N₂OOs₂P₄, M_w 1127.48, colorless, irregular block (0.243 x 0.166 x 0.026 mm³), monoclinic, space group P2₁/n, *a*: 12.1110(10) Å, *b*: 23.0715(19) Å, *c*: 18.6300(15) Å, : 102.2410(10)°, *V* = 5087.2(7) Å³, *Z* = 4, *Z*' = 1, *D*_{calc}: 1.472 g cm⁻³, F(000): 2288, *T* = 100(2) K, μ 5.145 mm⁻¹. 115178 measured reflections (2 θ : 3-57°, ω scans 0.3°), 12470 unique (R_{int} = 0.0893); min./max. transm. Factors 0.520/0.862. Final agreement factors were R¹ = 0.0646 (10083 observed reflections, I > 2 σ (I)) and wR² = 0.1392; data/restraints/parameters 12470/7/494; GoF = 1.191. Largest peak and hole 4.333 (close to osmium atoms) and -2.341 e/ Å³.

Crystal data for **6** (1993554): 0.75(C₄₀H₁₀₀N₂OOs₂P₄), 0.25(C₄₀H₉₈N₂OOs₂P₄), Mw 1128.99, colourless, irregular block (0.219 x 0.041 x 0.041 mm³), triclinic, space group P-1, *a*: 11.5140(13) Å, *b*: 12.9055(14) Å, *c*: 18.259(2) Å, : 108.1990(10)°, : 99.3720(10)°, : 101.0170(10)°, V = 2456.9(5)Å³, Z = 2, Z' = 1, D_{calc} : 1.526 g cm⁻³, F(000): 1147, T = 100(2) K, μ 5.327 mm⁻¹. 35603 measured reflections (2 θ : 3-57°, ω scans 0.3°), 11556 unique (R_{int} = 0.0869); min./max. transm. Factors 0.646/0.862. Final agreement factors were R¹ = 0.0476 (7137 observed reflections, I > 2 σ (I)) and wR² = 0.0705; data/restraints/parameters 11556/12/ 483; GoF = 1.088. Largest peak and hole 1.566 (close to osmium atoms) and -1.806 e/Å³.

Computational Details. All calculations in the mechanistic studies were performed at the DFT level using the B3LYP functional⁴ supplemented with the Grimme's dispersion correction D3⁵ including an ultrafine integration grid, as implemented in Gaussian09.⁶ Os atom was described by means of an effective core potential SDD for the inner electron⁷ and its associated double- basis set for the outer ones, complemented with a set of f-polarization functions.⁸ The 6-31G** basis set was used for the H, C, N and P

atoms.⁹ All geometries were fully optimized in toluene (= 2.37) solvent using the continuum SMD model.¹⁰ Transition states were identified by having one imaginary frequency in the Hessian matrix. It was confirmed that transition states connect with the corresponding intermediates by means of application of an eigenvector corresponding to the imaginary frequency and subsequent optimization of the resulting structures. Gibbs energies were computed at 298.15 K and 1 atmosphere. All values collected in schemes and figures correspond to Gibbs energies in toluene in kcal mol⁻¹. **t**₂ + **H**₂ and **t**₇ + **H**₂ are the **t**₂ and **t**₇ model complexes with an explicit hydrogen molecule necessary to study the reactivity with the gas.

Analytical data of the isolated amine hydrochloride salts

a·HCl:^{11a 1}H NMR (300.13 MHz, CDCl₃, 298 K): δ 9.33 (br, 2H, NH₂), 2.89 (t, ³*J*_{H-H} = 8.1, 4H, NCH₂), 1.94 (m, 4H, C*H*₂CH₃), 1.01 (t, ³*J*_{H-H} = 7.3, 6H, CH₃). ¹³C{¹H} APT NMR (75.48 MHz, CDCl₃, 298 K):

49.5 (NCH₂), 19.6 (*C*H₂CH₃), 11.4 (CH₃). HR-MS (electrospray): m/z calcd for C₆H₁₆N⁺ [M]⁺ 102.1277; found 102.1267.

b·HCl:¹² ¹H NMR (400.16 MHz, CDCl₃, 298 K): δ 9.37 (br, 2H, NH₂), 2.83 (br, 4H, NCH₂), 1.83 (m, 4H, CH₂CH₂N), 1.31-1.23 (br, 12H, CH₃CH₂CH₂CH₂)

0.81 (t, ${}^{3}J_{H-H} = 6.8, 6H, CH_{3}$). ${}^{13}C{}^{1}H}$ APT NMR (100.63 MHz, CDCl₃, 298 K): 47.9 (NCH₂), 31.2 (CH₂), 26.5 (CH₂), 25.9 (CH₂), 22.5 (CH₂), 13.9 (CH₃). HR-MS (electrospray): m/z calcd for C₁₂H₂₈N⁺ [M]⁺ 186.2216; found 186.2213.

c·HCl: ¹H NMR (400.16 MHz, CDCl₃, 298 K): δ 9.35 (br, 2H, NH₂), 7.17 (m, 4H, CH_{Ph}), 7.09 (m, 6H, CH_{Ph}), 2.76 (m, 4H, NCH₂), 2.54 (t, ³*J*_{H-H} = 7.3, 4H,

CH₂), 2.09 (m, 4H, CH₂). ¹³C{¹H} APT NMR (100.63 MHz, CDCl₃, 298 K): 139.8 (C_q), 128.6 (s, CH_{Ph}), 128.4 (CH_{Ph}), 126.4 (CH_{Ph}), 47.2 (NCH₂), 32.7 (CH₂), 27.2 (CH₂). HR-MS (electrospray): m/z calcd for C₁₈H₂₄N⁺ [M]⁺254.1903; found. 254.1936.

d•**HCl:** ¹H NMR (400.16 MHz, CDCl₃, 298 K): δ 9.87 (br, 2H, NH₂), 7.24-7.10 (m, 10 H, CH_{Ar}), 3.26-3.07 (m, 8H, NCH₂). ¹³C{¹H} APT NMR (100.63 MHz, CDCl₃, 298 K):

136.3 (Cq), 128.9 (CHAr), 128.7 (CHAr), 127.2 (CHAr), 49.2 (NCH2), 32.4 (CH2). HR-MS (electrospray): m/z calcd for C₁₆H₂₀N⁺ [M]⁺226.1590; found. 226.1602.

e·HCl: ¹H NMR (400.16 MHz, (CD₃)₂SO, 298 K): δ 8.21 (br, 2H, NH₂), 7.12 (m, 8H, CH_{Ar}), 3.02 (m, 4H, NCH₂), 2.85 (m, 4H, CH₂), 2.27 (s, 6H, CH₃). ${}^{13}C{}^{1}H$

APT NMR (75.48 MHz, (CD₃)₂SO, 298 K): 136.0 (Cq), 129.6 (CH_{Ar}), 128.9 (CH_{Ar}), 49.0 (NCH₂), 32.6 (CH₂), 21.1 (CH₃). HR-MS (electrospray): m/z calcd for C₁₈H₂₄N⁺ [M]⁺ 254.1903; found 254.1922.

f·HCl: ¹H NMR (400.16 MHz, (CD₃)₂SO, 298 H_2 K): δ 9.06 (br, 2H, NH₂), 7.17 (d, ³J_{H-H} = 8.6, CI 4H, CH_{Ar}), 6.89 (d, ${}^{3}J_{H-H} = 8.6$, 4H, CH_{Ar}), 3.73 MeO OMe (s, 6H, CH₃), 3.07 (t, ${}^{3}J_{H-H} = 7.9$, 4H, NCH₂), 2.90 (t, ${}^{3}J_{H-H} = 8.0$, 4H, CH₂). ${}^{13}C{}^{1}H{}$ APT NMR (75.48 MHz, (CD₃)₂SO, 298 K): 158.9 (C_q), 130.1 (C_q), 129.7 (CH_{Ar}), 114.5 (CHarom), 55.5 (OCH₃), 48.9 (NCH₂), 31.3 (CH₂). HR-MS (electrospray): m/z calcd for C₁₈H₂₄NO₂⁺ [M]⁺ 286.1802; found 286.1800.

g·HCl: ¹H NMR (300.13 MHz, (CD₃)₂SO, 298 K): δ H_2 8.84 (br, 2H, CHAr), 8.77 (br, 2H, CHAr), 8.39 (br, 2H, CI CHAr), 8.14 (br, 2H, NH), 7.93 (br, 2H, CHAr), 3.16 (m, 4H, NCH₂), 3.10 (m, 4H, CH₂). ¹³C{¹H} APT NMR (100.63 MHz, (CD₃)₂SO, 298 K): 149.3 (CHAr), 147.4 (CHAr), 136.9 (CHAr), 133.5 (Cq), 124.0 (CHAr), 64.9 (NCH2), 30.0

(CH₂). LR-MS (electrospray): m/z calcd for C₁₄H₁₈N₃⁺ [M]⁺ 228.15; found 228.04.

h·HCl: ¹H NMR (400.16 MHz, CDCl₃, 298 K): δ 5.39 (br, 2H, NH2), 3.73 (m, 4H, CH2O), 3.35 (s, 6H, OCH3), 3.17 (m, 4H, NCH₂). ¹³C{¹H} APT NMR (100.63 MHz, CDCl₃, 298 K):

67.9 (CH₂O), 59.0 (OCH₃), 47.7 (NCH₂). HR-MS (electrospray): m/z calcd for C₆H₁₆NO₂⁺ [M]⁺134.1176; found. 134.1180.

i·HCl:^{11b} ¹H NMR (300.13 MHz, CDCl₃, 298 K): δ 9.05 (br, 2H, NH₂), 2.88 (br, 4H, NCH₂), 2.33 (m, 2H, CH), 1.13 (d, ${}^{3}J_{H-H} = 6.3$, 12H, CH₃). ¹³C{¹H} APT NMR (75.48 MHz, CDCl₃, 298 K): 55.4 (NCH₂), 25.5 (CH), 20.8 (CH₃). HR-MS (electrospray): m/z calcd for C₈H₂₀N⁺ [M]⁺

130.1590; found 130.1592.

j·**HCl** ¹H NMR (400.16 MHz, CDCl₃, 298 K): δ 7.98 (br, 2H, NH₂), 2.75 (br, 4H, NCH₂), 1.82-1.63 (m, 11H, Cy), 1,23-0.9 (m, 11H, Cy). ¹³C{¹H} APT NMR (100.63 MHz, CDCl₃, 298 K): δ 35.9 (CH), 30.4, 25.9, 25.5 (all CH₂), NCH₂ not observed. Secondary amine: HR-MS (electrospray): m/z calcd for C₁₄H₂₈N⁺ [M]⁺ 210.2216; found. 210.2223. Primary amine is also detected: HR-MS (electrospray): m/z calcd for C₇H₁₆N⁺ [M]⁺ 114.1277; found. 114.1293.

k·HCl: ¹H NMR (400.16 MHz, (CD₃)₂SO, 298 K): δ 8.07 (br, 2H, NH₂), 7.39-7.34 (m, 16H, CH_{Ar}), 7.24 (m, 4H, CH_{aron}), 4.35 (t, ³*J*_{H-H} = 7.9, 2H, C*H*Ph₂), 3.54 (m, 4H, NCH₂). ¹³C{¹H} APT NMR (100.63 MHz, (CD₃)₂SO, 298 K): 141.0 (CA_r), 128.7 (CH_{Ar}), 127.8 (CH_{Ar}), 127.0 (CH_{Ar}), 48.6 (CHPh₂), 42.3 (NCH₂). HR-MS (electrospray): m/z calcd for C₂₈H₂₈N⁺ [M]⁺ 378.2216; found. 378.2274.

I·HCl:¹³ ¹H NMR (400.16 MHz, CDCl₃, 298 K): δ 9.68 (br, 2H, NH₂), 7.54 (m, 2H, CH_{Ph}), 7.32 (m, 3H, CH_{Ph}), 3.98 (br, 2H, NCH₂Ph), 2.66 (m, 2H, NCH₂), 1.79 (m, 2H, CH₂), 0.87 (t, ³*J*_{*H*-*H*} =

6.7 Hz, 3H, CH₃). ¹³C{¹H} APT NMR (100.63 MHz, CDCl₃, 298 K): 134.1 (C_q), 128.9 (CH_{Ar}), 128.5 (s, CH_{Ar}), 128.4 (s, CH_{Ar}), 61.3 (NCH₂Ph), 49.7 (NCH₂), 42.1 (CH₂), 32.8 (CH₃). LR-MS (electrospray): m/z calcd for C₁₀H₁₆N⁺ [M]⁺ 150.13; found 150.13.

 $\begin{array}{c} \begin{array}{c} \begin{array}{c} H_{2} \\ & & \\$

N CI **n·HCl:**¹³ ¹H NMR (400.16 MHz, CDCl₃, 298 K): δ 9.16 (br, 2H, NH₂), 2.98 (br, 1H, NCH), 2.82 (br, 2H, NCH₂), 2.17 (br, 2H, CH₂), 1.88 (br, 2H, CH₂), 1.78 (br, 2H, CH₂), 1.19 (br, 6H, CH₂), 0.93 (t,

 ${}^{3}J_{H-H} = 6$ Hz, 3H, CH₃). ${}^{13}C{}^{1}H$ APT NMR (100.63 MHz, CDCl₃, 298 K): 57.2

(NCH), 46.2 (NCH₂), 29.2, 24.8, 24.6, 19.6 (all CH₂), 11,5 (CH₃). LR-MS (electrospray): m/z calcd for C₉H₂₀N⁺ [M]⁺ 142.16; found 142.14.

o·HCl: ¹H NMR (400.16 MHz, CDCl₃, 298 K): δ9.75 (br, 2H, NH₂), 7.61 (m, 2H, CH_{Ar}), 7.40 (m, 3H, CH_{Ar}), 4.01 (s, 2H, NCH₂), 2.74 (br, 2H, NCH₂), 1.84 (br, 2H, CH₂),

1.28 (m, 6H, CH₂), 0.84 (t, ${}^{3}J_{H-H} = 6.8$ Hz, 3H, CH₃). ${}^{13}C{}^{1}H}$ APT NMR (100.63 MHz, CDCl₃, 298 K): 127.6 (s, CH_{Ar}), 127.2 (s, C_q), 126.5 (CH_{Ar}), 126.2 (CH_{Ar}), 47.6 (NCH₂), 43.1 (NCH₂), 28.2, 23.6, 23.0, 19.5 (all CH₂), 11,3 (CH₃). HR-MS (electrospray): m/z calcd for C₁₃H₂₂N⁺ [M]⁺ 192.1747 found 192.1739.

p·HCl: ¹H NMR (300.13 MHz, CDCl₃, 298 K): δ 9.26
OMe (br, 2H, NH₂), 3,85 (br, 2H, OCH₂), 3.43 (s, 3H, OCH₃), 3.20 (br, 2H, NCH₂), 3.07 (br, 2H, NCH₂), 1.34 (m, 8H,

CH₂), 0.90 (br, 3H, CH₃). ¹³C{¹H} APT NMR (75.48 MHz, CDCl₃, 298 K): 67.7 (OCH₂), 59.0 (OCH₃), 48.5 (NCH₂), 46.9 (s, NCH₂), 31.2, 26.4, 26.2, 22.4 (all CH₂), 13,9 (CH₃). HR-MS (electrospray): m/z calcd for C₉H₂₂NO⁺ [M]⁺ 160.1696 found 160.1686.

q·HCl: ¹H NMR (400.16 MHz, CDCl₃, 298 K): δ 9.01 (br, ⁺Cl⁻ OMe ⁺Cl⁻

r·HCl:¹⁴ ¹H NMR (400.16 MHz, CDCl₃ 298 K): δ 9.67 (br, 2H, NH₂), 7.17 (m, 5H, Ph), 3.22 (br, 2H, NCH₂), 3.11 (br, 2H, CH₂), 2.93 (br, 1H, NCH), 2.20 (br, 2H, CH₂), 1.77 (br, 2H, CH₂), 1.58 (br, 3H, CH₂), 1.18 (br, 3H, CH₂). 13C{¹H} APT NMR (100.63 MHz, CDCl₃, 298 K): 136.6 (C_q Ph), 128.8 (CH_{Ph}), 128.8 (CH_{Ph}), 127.1 (CH_{Ph}) 57.5 (NCH), 49.4 (s, NCH₂), 46.1 (PhCH₂CH₂), 32.5, 29.3, 24.6 (CH₂ Cy). HR-MS (electrospray): m/z calcd for C₁₄H₂₂N⁺ [M]⁺ 204.1731; found 204.1747.

MeO H_2 M_2 M_2 M_2 N_1 N_1 N_2 N_1 N_1 N_2 N_1 N_1 N_2 N_2 N_1 N_2 N_2 N_1 N_2 N_2 N_2 3.11 (t, ${}^{3}J_{\text{H-H}} = 5.2$ Hz, 2H, NCH₂CH₂O), 2.98 (m, 2H, NCH₂), 1.81 (m, 2H, CH₂), 1.35 (m, 2H, CH₂), 0.88 (t, ${}^{3}J_{\text{H-H}} = 7.4$ Hz, 3H, CH₃). ${}^{13}C{}^{1}H$ APT NMR (100.63 MHz, CDCl₃, 298 K): δ 67.6 (OCH₂), 58.9 (OCH₃), 48.1 (NCH₂CH₂O), 46.6, 27.9, 20.0 (all CH₂), 13.5 (CH₃). HR-MS (electrospray): m/z calcd for C₇H₁₈NO⁺ [M]⁺ 132.1383; found 132.1390.

HCl: ¹H NMR (400.16 MHz, CDCl₃, 298 K): δ 9.74 (br, 2H, NH₂), 7.54 (m, 2H, Ph), 7.32 (m, 3H, Ph), 4.11 (br, 2H, NCH₂Ph), 3.71 (m, 2H, OCH₂), 3.31 (s, 3H, OCH₃), 2.95 (br, 2H, NCH₂CH₂). ¹³C{¹H} APT NMR (100.63 MHz, CDCl₃, 298 K): 136.1 (C_q), 130.5 (s, CH_{Ph}), 129.5 (s, CH_{Ph}), 129.2 (s, CH_{Ph}), 68.3, 67.6 (NCH₂Ph and OCH₂), 59.0 (OCH₃), 45.0 (s, NCH₂CH₂). HR-MS (electrospray): m/z calcd for C₁₀H₁₆NO⁺ [M]⁺ 166.1226; found 166.1224.

Figures of the ¹H NMR spectra of the reaction crude of the catalytic nitrile hydrogenations and ¹H NMR and ¹³C{¹H} APT NMR spectra of the hydrochloride salts.

Figure S1. ¹H NMR (300.13 MHz, C₇D₈, 298 K) spectrum of the reaction mixture of the hydrogenation of propionitrile: formation of di-*n*-propylamine (**a**). • Mesitylene. \Box OsH₆(PⁱPr₃)₂ (**1**).

Figure S2. ¹H NMR (300.13 MHz, CDCl₃, 298 K) spectrum of **a·HCl**.

Figure S3. ¹³C{¹H} APT NMR (75.48 MHz, CDCl₃, 298 K) spectrum of **a·HCl**.

Figure S4. ¹H NMR (300.13 MHz, C₇D₈, 298 K) spectrum of the reaction mixture of the hydrogenation of hexanenitrile: formation of di-*n*-hexylamine (**b**). • Mesitylene. \Box OsH₆(PⁱPr₃)₂ (**1**).

Figure S5. ¹H NMR (400.16 MHz, CDCl₃, 298 K) spectrum of **b**·**HCl**.

Figure S6. ¹³C{¹H} APT NMR (100.63 MHz, CDCl₃, 298 K) spectrum of **b·HCl**.

Figure S7. ¹H NMR (300.13 MHz, C₇D₈, 298 K) spectrum of reaction mixture of the hydrogenation of 3-phenylpropanenitrile: formation of bis(3-phenylpropyl)amine (c).¹⁵ • Mesitylene. \Box OsH₆(PⁱPr₃)₂ (1)

Figure S8. ¹H NMR (400.16 MHz, CDCl₃, 298 K) spectrum of c·HCl.

Figure S10. ¹H NMR (300.13 MHz, C₇D₈, 298 K) spectrum of the reaction mixture of the hydrogenation of 2-phenylacetonitrile: formation of diphenethylamine (**d**).¹⁶ • Mesitylene. \Box OsH₆(PⁱPr₃)₂ (**1**).

Figure S11. ¹H NMR (400.16 MHz, CDCl₃, 298 K) spectrum of d·HCl.

Figure S12. ¹³C $\{^{1}H\}$ APT NMR (100.63 MHz, CDCl₃, 298 K) spectrum of d·HCl.

Figure S13. ¹H NMR (300.13 MHz, C₇D₈, 298 K) spectrum of the reaction mixture of the hydrogenation of 2-(*p*-tolyl)acetonitrile: formation of bis(4-methylphenethyl)amine (e). • Mesitylene. \Box OsH₆(PⁱPr₃)₂ (1).

Figure S14. ¹H NMR (400.13 MHz, (CD₃)₂SO, 298 K) spectrum of e·HCl.

Figure S16. ¹H NMR (300.13 MHz, C₇D₈, 298 K) spectrum of the reaction mixture of the hydrogenation of 2-(4-methoxyphenyl)acetonitrile: formation of bis(4-methoxyphenethyl)amine (**f**). • Mesitylene. \Box OsH₆(PⁱPr₃)₂ (**1**).

Figure S18. ¹³C{¹H} APT NMR (75.48 MHz, (CD₃)₂SO, 298 K) spectrum of f·HCl.

Figure S19. ¹H NMR (300.13 MHz, C₇D₈, 298 K) spectrum of the reaction mixture of the hydrogenation of 2-(pyridin-3-yl)acetonitrile: formation of bis(2-(pyridin-3-yl)ethyl)amine (**g**). • Mesitylene. \Box OsH₆(PⁱPr₃)₂ (**1**).

Figure S20. ¹H NMR (300.13 MHz, (CD₃)₂SO, 298 K) spectrum of g·HCl.

Figure S21. ¹³C{¹H} APT NMR (100.63 MHz, (CD₃)₂SO, 298 K) spectrum of g·HCl.

Figure S22. ¹H NMR (300.13 MHz, C₇D₈, 298 K) spectrum of reaction mixture of the hydrogenation of 2-methoxyacetonitrile: formation of bis(2-methoxyethyl)amine (**h**)¹⁷. • Mesitylene. \Box OsH₆(PⁱPr₃)₂ (**1**).

Figure S23. ¹H NMR (400.16 MHz, CDCl₃, 298 K) spectrum of h·HCl.

Figure S24. ${}^{13}C{}^{1}H$ APT NMR (100.63 MHz, CDCl₃, 298 K) spectrum of h·HCl.

Figure S25. ¹H NMR (300.13 MHz, C₇D₈, 298 K) spectrum of the reaction mixture of the hydrogenation of isobutyronitrile: formation of diisobutylamine (i). • Mesitylene. \Box OsH₆(PⁱPr₃)₂ (1).

Figure S26. ¹H NMR (300.13 MHz, CDCl₃, 298 K) spectrum of i·HCl.

Figure S28. ¹H NMR (300.13 MHz, C₇D₈, 298 K) spectrum of reaction mixture of the hydrogenation of cyclohexanecarbonitrile: formation of bis(cyclohexylmethyl)amine $(\mathbf{j})^{15}$ (\blacklozenge) and cyclohexylmethanamine (\blacklozenge). \bullet Mesitylene. \Box OsH₆(PⁱPr₃)₂ (**1**).

Figure S30. ¹³C{¹H} APT NMR (100.63 MHz, CDCl₃, 298 K) spectrum of **j**·**HCl**.

Figure S31. ¹H NMR (300.13 MHz, C₇D₈, 298 K) spectrum of the reaction mixture of the hydrogenation of 2,2-diphenylacetonitrile: formation of bis(2,2-diphenylethyl)amine (k). • Mesitylene. \Box OsH₆(PⁱPr₃)₂ (1).

8.2 8.0 7.8 7.6 7.4 7.2 7.0 6.8 6.6 6.4 6.2 6.0 5.8 5.6 5.4 5.2 5.0 4.8 4.6 4.4 4.2 4.0 3.8 3.6 3.4 3.2 3.0 2.8 2.6 2.4 2. Figure S32. ¹H NMR (400.13 MHz, (CD₃)₂SO, 298 K) spectrum of k·HCl.

Figure S33. ¹³C{¹H} APT NMR (100.63 MHz, (CD₃)₂SO, 298 K) spectrum of k·HCl.

Figure S34. ¹H NMR (300.13 MHz, C₇D₈, 298 K) spectrum of the reaction mixture of the catalytic hydrogenation of pivalonitrile after 24 h at 100 °C with 10% mol 1: Formation of 2,2-dimethylpropan-1-amine (\blacklozenge), 2,2-dimethylpropan-1-imine (\blacklozenge) and 2,2-dimethyl-*N*-neopentylpropan-1-imine (\blacklozenge). \bullet Mesitylene. \Box OsH₆(PⁱPr₃)₂ (1).

Figure S35. ¹H NMR (300.13 MHz, C₇D₈, 298 K) spectrum of the reaction mixture of the hydrogenation of propionitrile in the presence of benzylamine: formation of *N*-benzylpropan-1-amine (**l**).¹⁸ • Mesitylene. \Box OsH₆(PⁱPr₃)₂ (**1**). * Excess of benzylamine.

Figure S36. ¹H NMR (400.16 MHz, CDCl₃, 298 K) spectrum of **I**·HCl.

Figure S38. ¹H NMR (300.13 MHz, C₇D₈, 298 K) spectrum of the reaction mixture of the hydrogenation of propionitrile in the presence of 2-methoxyethan-1-amine: formation of *N*-(2-methoxyethyl)propan-1-amine (**m**). • Mesitylene. \Box OsH₆(PⁱPr₃)₂ (**1**). *Excess of 2-methoxyethan-1-amine.

Figure S40. ¹³C{¹H} APT NMR (100.63 MHz, CDCl₃, 298 K) spectrum of **m·HCl**.

Figure S41. ¹H NMR (300.13 MHz, C₇D₈, 298 K) spectrum of the reaction mixture of the hydrogenation of butyronitrile in the presence of cyclohexylamine: formation of *N*-propylcyclohexanamine (**n**).¹⁹ • Mesitylene. \Box OsH₆(PⁱPr₃)₂ (**1**). *Excess of cyclohexylamine.

Figure S42. ¹H NMR (400.16 MHz, CDCl₃, 298 K) spectrum of n·HCl.

Figure S43. ¹³C{¹H} APT NMR (100.63 MHz, CDCl₃, 298 K) spectrum for n·HCl.

Figure S44. ¹H NMR (300.13 MHz, C₇D₈, 298 K) spectrum of the reaction mixture of the hydrogenation of hexanenitrile in the presence of benzylamine: formation of *N*-benzylhexan-1-amine (**o**).²⁰ • Mesitylene. \Box OsH₆(PⁱPr₃)₂ (**1**). * Excess of benzylamine.

Figure S46. ¹³C{¹H} APT NMR (100.63 MHz, CDCl₃, 298 K) spectrum of o·HCl.

Figure S47. ¹H NMR (300.13 MHz, C₇D₈, 298 K) spectrum of the reaction mixture of the hydrogenation of hexanenitrile in the presence of 2-methoxyethan-1-amine: formation of *N*-(2-methoxyethyl)hexan-1-amine (**p**). • Mesitylene. \Box OsH₆(PⁱPr₃)₂ (**1**). * Excess of 2-methoxyethan-1-amine.

Figure S48. ¹H NMR (300.13 MHz, CDCl₃, 298 K) spectrum of p·HCl.

Figure S50. ¹H NMR (300.13 MHz, C₇D₈, 298 K) spectrum of the reaction mixture of the hydrogenation of 2-phenylacetonitrile in the presence of 2-methoxyethan-1-amine: formation of 2-methoxy-*N*-phenethylethan-1-amine (**q**). • Mesitylene. \Box OsH₆(PⁱPr₃)₂ (**1**). * Excess of 2-methoxyethan-1-amine.

Figure S53. ¹H NMR (300.13 MHz, C₇D₈, 298 K) spectrum of the reaction mixture of the hydrogenation of 2-phenylacetonitrile in the presence of cyclohexylamine: formation of *N*-phenethylcyclohexanamine (**r**) and symmetrical secondary amine **d** (\blacklozenge). • Mesitylene. \Box OsH₆(PⁱPr₃)₂ (**1**). * Excess of cyclohexylamine.

Figure S54. ¹H NMR (400.16 MHz, CDCl₃, 298 K) spectrum of r•HCl and d•HCl (♦).

Figure S56. ¹H NMR (300.13 MHz, C₇D₈, 298 K) spectrum of the reaction mixture of the hydrogenation of 2-methoxyacetonitrile in the presence of butan-1-amine: formation of *N*-(2-methoxyethyl)butan-1-amine (\mathbf{s})²¹ and symmetrical secondary amine \mathbf{h} (\blacklozenge). • Mesitylene. \Box OsH₆(PⁱPr₃)₂ (**1**). * Excess of butan-1-amine.

Figure S57. ¹H NMR (400.16 MHz, CDCl₃, 298 K) spectrum of s·HCl.

Figure S58. ¹³C{¹H} APT NMR (100.63 MHz, CDCl₃, 298 K) spectrum for s·HCl.

Figure S59. ¹H NMR (300.13 MHz, C₇D₈, 298 K) spectrum of the reaction mixture of the hydrogenation of 2-methoxyacetonitrile in the presence of benzylamine: formation of *N*-benzyl-2-methoxyethan-1-amine (t).²⁰ • Mesitylene. \Box OsH₆(PⁱPr₃)₂ (1). * Excess of benzylamine.

Figure S60. ¹H NMR (400.16 MHz, CDCl₃, 298 K) spectrum of t·HCl.

Figure S61. ¹³C{¹H} APT NMR (100.63 MHz, CDCl₃, 298 K) spectrum of t·HCl.

NMR spectra of complexes of a mixture of complexes 2 and 3 (35:65 molar ratio).

Figure S62. ¹H NMR (300.13 MHz, C₆D₆, 298 K) spectrum for mixture of complexes **2** (\blacklozenge) and **3** (\diamondsuit).

Figure S63. ¹H NMR (300.13 MHz, C₇D₈, 298 K) spectrum for mixture of complexes 2 (\blacklozenge) and 3 (\diamondsuit).

-8.6 -8.8 -9.0 -9.2 -9.4 -9.6 -9.8 -10.0 -10.2 -10.4 -10.6 -10.8 -11.0 -11.2 -11.4 -11.6 -11.8 -12.0 -12.2 -12.4 -12.6 -12.8 -13.0 -13.2 -13.4 -13.6 -13.8 -14.0 -14.2 -14.4 -14 fl (pm)

Figure S64. High-field region of the ¹H NMR (300.13 MHz, C₇D₈) spectrum for the mixture of complexes 2 (\diamond) and 3 (\diamond) between 298 and 173 K.

62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 f1 (ppm)

Figure S65. ³¹P{¹H} NMR (121.49 MHz, C₇D₈, 298 K) spectrum for the mixture of complexes $2(\blacklozenge)$ and $3(\diamondsuit)$.

Figure S66. ¹³C{¹H} APT NMR (75.48 MHz, C₇D₈, 298 K) spectrum for the mixture of complexes $2(\blacklozenge)$ and $3(\diamondsuit)$.

Figure S67. Region of the HMBC (¹H, ¹³C) NMR (300.13, 75.48, C₇D₈, 298 K) spectrum for the mixture of complexes **2** (\bullet) and **3** (\bullet) showing the cross peaks between the N \equiv C and N=CH ¹³C NMR signals and ¹H NMR signals of the corresponding ^tBu groups.

Figure S68. IR ATR spectrum for mixture of complexes 2 and 3.

 1H NMR and $^{31}P\{^1H\}NMR$ spectra of reaction of a mixture of 2 and 3 in a 35:65 molar ratio with H_2

Figure S70. ³¹P{¹H} NMR (121.49 MHz, C₇D₈, 298 K) spectrum for the reaction of a **2:3** mixture (35:65) with H₂(1 bar, 10 min, 100 °C).

Monitoring of the reaction of 1 with 2-methoxyacetonitrile (1:1 molar ratio; both 0.1 M) by ¹H NMR and ³¹P{¹H}NMR

-8.6 -8.8 -9.0 -9.2 -9.4 -9.6 -9.8 -10.0 -10.2 -10.4 -10.6 -10.8 -11.0 -11.2 -11.4 -11.6 -11.8 -12.0 -12.2 -12.4 -12.6 -12.8 f1 (ppm)

Figure S71. High field region of the ¹H NMR (300.13 MHz, C₇D₈, 298 K) spectrum for the reaction of complex **1** with 2-methoxyacetonitrile (1:1; both 0.1 M) at 50 °C.

Figure S72. ³¹P{¹H} NMR (121.49 MHz, C₇D₈, 298 K) spectrum for the reaction of complex **1** with 2-methoxyacetonitrile (1:1; both 0.1 M) at 50 °C.

-9.0 -9.2 -9.4 -9.6 -9.8 -10.0 -10.2 -10.4 -10.6 -10.8 -11.0 -11.2 -11.4 -11.6 -11.8 -12.0 -12.2 -12.4 -12.6 -12.8 -13.0 -13.2 -13.4 fl (ppm)

Figure S73. High field region of the ¹H NMR (300.13 MHz, C₇D₈, 298 K) spectrum for the reaction of complex **1** with 2-methoxyacetonitrile (1:1; both 0.1 M) at 80 °C.

Figure S74. ³¹P{¹H} NMR (121.49 MHz, C₇D₈, 298 K) spectrum for the reaction of complex **1** with 2-methoxyacetonitrile (1:1; both 0.1 M) at 80 °C.

Figure S75. ¹H NMR (300.13 MHz, C₇D₈, 298 K) spectrum for complex 4.

Figure S76. High-field region of the ¹H NMR (300.13 MHz, C₇D₈) spectrum of complex 4 between 273 K and 183 K.

Figure S77. ³¹P{¹H} NMR (121.49 MHz, C₇D₈, 298 K) spectrum for complex **4**.

Figure S78. ¹³C{¹H} APT NMR (75.48 MHz, C₇D₈, 298 K) spectrum for complex **4**.

Figure S79. ¹H NMR (300.13 MHz, C₇D₈, 298 K) spectrum for reaction mixture of **1** with 2-methoxyacetonitrile (44 h, 50 °C). Free 2-methoxyethan-1-imine (\blacklozenge)

Figure S80. Low field region of ¹H NMR (300.13 MHz, C₇D₈, 298 K) spectrum for reaction mixture of **1** with 2-methoxyacetonitrile (44 h, 50 °C). Free 2-methoxyethan-1-imine (\blacklozenge)

4.7 4.6 4.5 4.4 4.3 4.2 4.1 4.0 3.9 3.8 3.7 3.6 3.5 3.4 3.3 3.2 3.1 3.0 2.9 2.8 2.7 2.6 2.5 2.4 2.3 2.2 2.1 2.0 1.9 1.8 1.7 1.6 1.5 1.4 1.3 1.2 1.1 1.0 0.9 0.8 0.7 fl (ppm)

Figure S81. Mid field region of ¹H NMR (300.13 MHz, C₇D₈, 298 K) spectrum for reaction mixture of **1** with 2-methoxyacetonitrile (44 h, 50 °C). *Excess of 2-methoxyacetonitrile.

Figure S82. High field region of ¹H NMR (300.13 MHz, C₇D₈, 298 K) spectrum for the reaction mixture of **1** with 2-methoxyacetonitrile (44 h, 50 °C).

⁶⁰ ⁵⁸ ⁵⁶ ⁵⁴ ⁵² ⁵⁰ ⁴⁸ ⁴⁶ ⁴⁴ ⁴² ⁴⁰ ³⁸ ³⁶ ³⁴ ³² ³⁰ ²⁸ ²⁶ ²⁴ ²² ²⁰ ¹⁸ ¹⁶ ¹⁴ ¹² ¹⁰ ⁸ ⁶ ⁴ ² ⁰ **Figure S83.** ³¹P{¹H} NMR (121.49 MHz, C7D8, 298 K) spectrum for reaction mixture of 1 with 2-methoxyacetonitrile (44 h, 50 °C).

Figure S84. ¹H NMR (300.13 MHz, C₇D₈, 298 K) spectrum for complex 6.

9.0 -9.2 -9.4 -9.6 -9.8 -10.0 -10.2 -10.4 -10.6 -10.8 -11.0 -11.2 -11.4 -11.6 -11.8 -12.0 -12.2 -12.4 -12.6 -12.8 -13.0 -13.2 -13.4 -13.6 -13.8 -14.0 -14.2 -14.4 f1 (ppm)

Figure S85. High-field region of the ¹H NMR (300.13 MHz, C₇D₈) spectrum of complex **6** between 298 and 183 K.

Figure S86. ³¹P{¹H} NMR (121.49 MHz, C₇D₈, 298 K) spectrum for complex 6.

Figure S87. ¹³C{¹H} APT NMR (75.48 MHz, C₇D₈, 298 K) spectrum for complex **6**.

Figure S88. IR ATR spectrum for complex 6.

Energy values of the computed structures included in the mechanistic studies (B3LYPD3/SDD/6-31G** level): the calculated complexes can be viewed with the xyz file with a free software as Mercury (CCDC) following the nomenclature given in the manuscript (Figures 5-8 of the manuscript and Figures S87-S90).

Figure S89. Computed energy profile for the formation of the azavinylidene intermediate t_2 via 1,3-hydrogen shift (—) or via 1,2-hydrogen migration on a η^2 -CN intermediate (—).

t₀

Zero-point correction=	0.684220 (Hartree/Particle)
Thermal correction to Energy=	0.722454
Thermal correction to Enthalpy=	0.723398
Thermal correction to Gibbs Free Ene	rgy= 0.615599
Sum of electronic and zero-point Ener	rgies= -1658.715169
Sum of electronic and thermal Energie	es= -1658.676936
Sum of electronic and thermal Enthal	pies= -1658.675991
Sum of electronic and thermal Free E	nergies= -1658.783791

TS₀₋₁

Zero-point correction=	0.682197 (Hartree/Particle)
Thermal correction to Energy=	0.720014
Thermal correction to Enthalpy=	0.720959
Thermal correction to Gibbs Free Ene	ergy= 0.614952
Sum of electronic and zero-point Ene	rgies= -1658.691444
Sum of electronic and thermal Energi	es= -1658.653626
Sum of electronic and thermal Enthal	pies= -1658.652682
Sum of electronic and thermal Free E	nergies= -1658.758689

t_1

Zero-point correction=	0.685477 (Hartree/Particle)
Thermal correction to Energy=	0.723259
Thermal correction to Enthalpy=	0.724203
Thermal correction to Gibbs Free Ene	rgy= 0.617697
Sum of electronic and zero-point Ene	rgies= -1658.691602
Sum of electronic and thermal Energi	es= -1658.653820
Sum of electronic and thermal Enthal	pies= -1658.652876
Sum of electronic and thermal Free E	nergies= -1658.759382

TS₁₋₂

Zero-point correction=	0.685137 (Hartree/Particle)
Thermal correction to Energy=	0.722862
Thermal correction to Enthalpy=	0.723806
Thermal correction to Gibbs Free Ene	ergy= 0.617142
Sum of electronic and zero-point Ene	rgies= -1658.687359
Sum of electronic and thermal Energi	es= -1658.649634
Sum of electronic and thermal Enthal	pies= -1658.648689
Sum of electronic and thermal Free E	nergies= -1658.755353

t2

Zero-point correction=	0.685912 (Hartree/Particle)
Thermal correction to Energy=	0.724532
Thermal correction to Enthalpy=	0.725477
Thermal correction to Gibbs Free Ene	ergy= 0.614620
Sum of electronic and zero-point Ene	ergies= -1658.725459
Sum of electronic and thermal Energy	ies= -1658.686838
Sum of electronic and thermal Entha	lpies= -1658.685894
Sum of electronic and thermal Free E	inergies= -1658.796751

$\textbf{TS}_{\textbf{0-0'}}$

Zero-point correction=	0.683371 (Hartree/Particle)
Thermal correction to Energy=	0.721118
Thermal correction to Enthalpy=	0.722063
Thermal correction to Gibbs Free Ene	ergy= 0.616380
Sum of electronic and zero-point Ene	rgies= -1658.690629
Sum of electronic and thermal Energy	ies= -1658.652881
Sum of electronic and thermal Entha	lpies= -1658.651937
Sum of electronic and thermal Free E	nergies= -1658.757620

$\boldsymbol{t}_{0'}$

Zero-point correction=	0.683414 (Hartree/Particle)
Thermal correction to Energy=	0.721919
Thermal correction to Enthalpy=	0.722863

Thermal correction to Gibbs Free Energy=	0.615858
Sum of electronic and zero-point Energies=	-1658.690737
Sum of electronic and thermal Energies=	-1658.652232
Sum of electronic and thermal Enthalpies=	-1658.651288
Sum of electronic and thermal Free Energies=	-1658.758293

$\textbf{TS}_{0'\text{-}1'}$

Zero-point correction=	0.682718 (Hartree/Particle)
Thermal correction to Energy=	0.720453
Thermal correction to Enthalpy=	0.721397
Thermal correction to Gibbs Free Ene	rgy= 0.615716
Sum of electronic and zero-point Ene	rgies= -1658.689800
Sum of electronic and thermal Energi	es= -1658.652064
Sum of electronic and thermal Enthal	pies= -1658.651120
Sum of electronic and thermal Free E	nergies= -1658.756801

$\boldsymbol{t_{1'}}$

Zero-point correction=	0.684466 (Hartree/Particle)
Thermal correction to Energy=	0.722622
Thermal correction to Enthalpy=	0.723566
Thermal correction to Gibbs Free Ene	ergy= 0.615636
Sum of electronic and zero-point Ene	rgies= -1658.691440
Sum of electronic and thermal Energi	ies= -1658.653285
Sum of electronic and thermal Enthal	lpies= -1658.652341
Sum of electronic and thermal Free E	nergies= -1658.760270

Figure S90. Computed energy profile for the reaction of the model azavinylidene t_2 with H_2 : outer sphere () and inner sphere via a dihydogen intermediate.

$t_2 + H_2$

Zero-point correction=	0.698377 (Hartree/Particle)
Thermal correction to Energy=	0.739681
Thermal correction to Enthalpy=	0.740625
Thermal correction to Gibbs Free Ene	ergy= 0.626411
Sum of electronic and zero-point Ene	rgies= -1659.893729
Sum of electronic and thermal Energi	es= -1659.852425
Sum of electronic and thermal Enthal	pies= -1659.851481
Sum of electronic and thermal Free E	nergies= -1659.965695

TS_{2-3a}

Zero-point correction=	0.700884 (Hartree/Particle)
Thermal correction to Energy=	0.739404
Thermal correction to Enthalpy=	0.740348
Thermal correction to Gibbs Free Ene	ergy= 0.632350
Sum of electronic and zero-point Ene	rgies= -1659.852812
Sum of electronic and thermal Energi	es= -1659.814292
Sum of electronic and thermal Enthal	pies= -1659.813348
Sum of electronic and thermal Free E	nergies= -1659.921347

t_{3a}

Zero-point correction=	0.709134 (Hartree/Particle)
Thermal correction to Energy=	0.747130
Thermal correction to Enthalpy=	0.748074
Thermal correction to Gibbs Free Ene	rgy= 0.642465

Sum of electronic and zero-point Energies=	-1659.904496
Sum of electronic and thermal Energies=	-1659.866500
Sum of electronic and thermal Enthalpies=	-1659.865556
Sum of electronic and thermal Free Energies=	-1659.971165

7t₂+H₂^b

Zero-point correction=	0.698727 (Hartree/Particle)
Thermal correction to Energy=	0.740020
Thermal correction to Enthalpy=	0.740965
Thermal correction to Gibbs Free Ener	rgy= 0.626739
Sum of electronic and zero-point Ener	gies= -1659.894198
Sum of electronic and thermal Energie	es= -1659.852904
Sum of electronic and thermal Enthalp	oies= -1659.851960
Sum of electronic and thermal Free Er	nergies= -1659.966185

TS_{2-4}

Zero-point correction=	0.700645 (Hartree/Particle)
Thermal correction to Energy=	0.739799
Thermal correction to Enthalpy=	0.740743
Thermal correction to Gibbs Free Ene	ergy= 0.632584
Sum of electronic and zero-point Ene	ergies= -1659.875713
Sum of electronic and thermal Energi	ies= -1659.836559
Sum of electronic and thermal Enthal	lpies= -1659.835615
Sum of electronic and thermal Free E	nergies= -1659.943774

t4

Zero-point correction=	0.704524 (Hartree/Particle)
Thermal correction to Energy=	0.742835
Thermal correction to Enthalpy=	0.743779
Thermal correction to Gibbs Free Ene	ergy= 0.637490
Sum of electronic and zero-point Ene	rgies= -1659.877883
Sum of electronic and thermal Energi	es= -1659.839572
Sum of electronic and thermal Enthal	pies= -1659.838628
Sum of electronic and thermal Free E	nergies= -1659.944917

TS_{4-3b}

Zero-point correction=	0.700630 (Hartree/Particle)
Thermal correction to Energy=	0.739254
Thermal correction to Enthalpy=	0.740198
Thermal correction to Gibbs Free Ene	ergy= 0.631625
Sum of electronic and zero-point Ene	rgies= -1659.852043
Sum of electronic and thermal Energi	es= -1659.813419
Sum of electronic and thermal Enthal	pies= -1659.812475
Sum of electronic and thermal Free E	nergies= -1659.921048

Zero-point correction= 0.708140 (Hartree/Particle) Thermal correction to Energy= 0.746567 Thermal correction to Enthalpy= 0.747512 Thermal correction to Gibbs Free Energy= 0.639566 Sum of electronic and zero-point Energies= -1659.906635 Sum of electronic and thermal Energies= -1659.868208 Sum of electronic and thermal Enthalpies= -1659.867264 Sum of electronic and thermal Free Energies= -1659.975209

Figure S91. Computed energy profile for the insertion of the imine ligand into one of the Os-H bonds of t_{3a} (*cis*-imine) and t_{3b} (*trans*-imine).

$\textbf{TS}_{3a\text{-}6}$

Zero-point correction=	0.707374 (Hartree/Particle)
Thermal correction to Energy=	0.745391
Thermal correction to Enthalpy=	0.746335
Thermal correction to Gibbs Free Ene	ergy= 0.640132
Sum of electronic and zero-point Ene	rgies= -1659.874068
Sum of electronic and thermal Energi	es= -1659.836051
Sum of electronic and thermal Enthal	pies= -1659.835106
Sum of electronic and thermal Free E	nergies= -1659.941309

 t_{3b}

t₆

Zero-point correction=	0.707548 (Hartree/Particle)
Thermal correction to Energy=	0.746177
Thermal correction to Enthalpy=	0.747121
Thermal correction to Gibbs Free Ene	ergy= 0.639498
Sum of electronic and zero-point Ene	ergies= -1659.874565
Sum of electronic and thermal Energy	ies= -1659.835936
Sum of electronic and thermal Entha	lpies= -1659.834992
Sum of electronic and thermal Free E	nergies= -1659.942615

TS₆₋₅

Zero-point correction=	0.706489 (Hartree/Particle)
Thermal correction to Energy=	0.744341
Thermal correction to Enthalpy=	0.745285
Thermal correction to Gibbs Free Ene	ergy= 0.640308
Sum of electronic and zero-point Ene	rgies= -1659.874118
Sum of electronic and thermal Energy	ies= -1659.836265
Sum of electronic and thermal Entha	lpies= -1659.835321
Sum of electronic and thermal Free E	nergies= -1659.940299

t5

Zero-point correction=	0.710977 (Hartree/Particle)
Thermal correction to Energy=	0.748767
Thermal correction to Enthalpy=	0.749711
Thermal correction to Gibbs Free Ene	ergy= 0.644186
Sum of electronic and zero-point Ene	rgies= -1659.880549
Sum of electronic and thermal Energy	ies= -1659.842759
Sum of electronic and thermal Entha	lpies= -1659.841815
Sum of electronic and thermal Free E	nergies= -1659.947340

TS_{3b-5}

Zero-point correction=	0.707381 (Hartree/Particle)
Thermal correction to Energy=	0.745024
Thermal correction to Enthalpy=	0.745968
Thermal correction to Gibbs Free Ene	ergy= 0.641250
Sum of electronic and zero-point Ene	rgies= -1659.877732
Sum of electronic and thermal Energi	es= -1659.840089
Sum of electronic and thermal Enthal	pies= -1659.839145
Sum of electronic and thermal Free E	nergies= -1659.943863

TS₅₋₇

Zero-point correction=	0.710336 (Hartree/Particle)
Thermal correction to Energy=	0.747978
Thermal correction to Enthalpy=	0.748922
Thermal correction to Gibbs Free Ene	ergy= 0.643450
Sum of electronic and zero-point Ene	ergies= -1659.874508

Sum of electronic and thermal Energies=	-1659.836866
Sum of electronic and thermal Enthalpies=	-1659.835922
Sum of electronic and thermal Free Energies=	-1659.941394

t7

Zero-point correction=	0.711905 (Hartree/Particle)
Thermal correction to Energy=	0.750233
Thermal correction to Enthalpy=	0.751177
Thermal correction to Gibbs Free Ene	ergy= 0.643941
Sum of electronic and zero-point Ene	rgies= -1659.905145
Sum of electronic and thermal Energi	es= -1659.866817
Sum of electronic and thermal Enthal	pies= -1659.865873
Sum of electronic and thermal Free E	nergies= -1659.973108

Figure S92. Computed energy profile for the reaction of the *n*-propylidene intermediate t_7 with H₂: formation of amine intermediate t_9 via dihydrogen intermediate t_8 .

$t_7 + H_2$

Zero-point correction=	0.724002 (Hartree/Particle	2)
Thermal correction to Energy=	0.765311	
Thermal correction to Enthalpy=	0.766255	
Thermal correction to Gibbs Free Er	nergy= 0.653379	
Sum of electronic and zero-point Er	nergies= -1661.073066	
Sum of electronic and thermal Ener	rgies= -1661.031757	
Sum of electronic and thermal Enth	nalpies= -1661.030813	

Sum of electronic and thermal Free Energies= -1661.143689

TS₇₋₈

Zero-point correction=	0.725905 (Hartree/Particle)
Thermal correction to Energy=	0.765277
Thermal correction to Enthalpy=	0.766222
Thermal correction to Gibbs Free Ene	ergy= 0.657757
Sum of electronic and zero-point Ene	rgies= -1661.056197
Sum of electronic and thermal Energi	es= -1661.016824
Sum of electronic and thermal Enthal	pies= -1661.015880
Sum of electronic and thermal Free E	nergies= -1661.124344

t₈

Zero-point correction=	0.727753 (Hartree/Particle)
Thermal correction to Energy=	0.766900
Thermal correction to Enthalpy=	0.767844
Thermal correction to Gibbs Free Ene	ergy= 0.659215
Sum of electronic and zero-point Ene	rgies= -1661.058503
Sum of electronic and thermal Energi	es= -1661.019355
Sum of electronic and thermal Enthal	pies= -1661.018411
Sum of electronic and thermal Free E	nergies= -1661.127040

TS₈₋₉

0.727219 (Hartree/Particle)
0.765712
0.766656
ergy= 0.659816
rgies= -1661.047310
ies= -1661.008816
lpies= -1661.007872
nergies= -1661.114713

t9

Zero-point correction=	0.732727 (Hartree/Particle)
Thermal correction to Energy=	0.771612
Thermal correction to Enthalpy=	0.772557
Thermal correction to Gibbs Free Ene	rgy= 0.663649
Sum of electronic and zero-point Ener	rgies= -1661.101643
Sum of electronic and thermal Energie	es= -1661.062758
Sum of electronic and thermal Enthal	pies= -1661.061814
Sum of electronic and thermal Free El	nergies= -1661.170721

References

(1) Aracama, M.; Esteruelas, M. A.; Lahoz, F. J.; López, J. A.; Meyer, U.; Oro, L. A.; Werner, H. Synthesis, Reactivity, Molecular Structure, and Catalytic Activity of the Novel Dichlorodihydridoosmium(IV) Complexes OsH₂Cl₂(PR₃)₂ (PR₃ = P-*i*-Pr₃, PMe-*t*-Bu₂). *Inorg. Chem.* **1991**, *30*, 288–293.

(2) Blessing, R. H. An Empirical Correction for Absorption Anisotropy. *Acta Crystallogr.* **1995**, *A51*, 33. SADABS: Area-detector absorption correction; Bruker-AXS, Madison, WI, 1996.

(3) SHELXL-2016/6. Sheldrick, G. M. A short history of SHELX. *Acta Cryst.* 2008, *A64*, 112-122.

(4) (a) Lee, C.; Yang, W.; Parr, R. G. Development of the Colle-Salvetti correlationenergy formula into a functional of the electron density. *Phys. Rev. B* 1988, *37*, 785–789. (b) Becke, A. D. Density-functional exchange-energy approximation with correct asymptotic behavior. *J. Chem. Phys.* 1993, *98*, 5648–5652. (c) Stephens, P. J.; Devlin, F. J.; Chabalowski, C. F.; Frisch, M. J. *Ab Initio* Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields. *J. Phys. Chem.* 1994, *98*, 11623–11627.

(5) Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate *ab initio* parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. *J. Chem. Phys.* **2010**, *132*, 154104.

(6) Gaussian 09, Revision D.01, Frisch, M. J.; Trucks, G. W.; Schlegel H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A.; Peralta, Jr., J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Keith, T.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc., Wallingford CT, 2013.

(7) Andrea, D.; Haeussermann, U. M.; Dolg, M.; Stoll, H.; Preuss, H. *Theor. Chim. Acta* **1990**, *77*, 123–141.

(8) Ehlers, A. W.; Bohme, M.; Dapprich, S.; Gobbi, A.; Hollwarth, A.; Jonas, V.; Kohler, K. F.; Stegmann, R.; Veldkamp, A.; Frenking, G. A set of f-polarization functions for pseudo-potential basis sets of the transition metals SC-Cu, Y-Ag and La-Au. *Chem. Phys. Lett.* **1993**, *208*, 111–114.

(9) (a) Hehre, W. J.; Ditchfield, R.; Pople, J. A. Self-Consistent Molecular Orbital Methods. XII. Further Extensions of Gaussian-Type Basis Sets for Use in Molecular Orbital Studies of Organic Molecules. *J. Chem. Phys.* 1972, *56*, 2257–2261. (b) Francl, M. M.; Pietro, W. J.; Hehre, W. J.; Binkley, J. S.; Gordon, M. S.; DeFrees, D. J.; Pople, J. A. Self consistent molecular orbital methods. XXIII. A polarization type basis set for second row elements. *J. Chem. Phys.* 1982, *77*, 3654–3665.

(10) Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. J. Phys. Chem. B 2009, 113, 6378–6396.

(11) AIST: Integrated Spectral Database System of Organic Compounds. (Data were obtained from the National Institute of Advanced Industrial Science and Technology (Japan)). (a) a·HCl: <u>https://sdbs.db.aist.go.jp/sdbs/cgi-bin/landingpage?sdbsno=10120</u>. (b) i·HCl: <u>https://sdbs.db.aist.go.jp/sdbs/cgi-bin/landingpage?sdbsno=4739</u>.

(12) Ghosh, C.; Konai, M. M.; Sarkar, P.; Samaddar, S.; Haldar, J. Designing Simple Lipidated Lysines: Bifurcation Imparts Selective Antibacterial Activity. *ChemMedChem* **2016**, *11*, 2367-2371.

(13) Montgomery, S. L.; Mangas-Sanchez, J.; Thompson, M. P.; Aleku, G. A.; Dominguez, B.; Turner, N. J. Direct Alkylation of Amines with Primary and Secondary Alcohols through Biocatalytic Hydrogen Borrowing. *Angew. Chem., Int. Ed.* **2017**, *56*, 10491-10494.

(14) Wiese, S.; Badiei, Y. M.; Gephart, R. T.; Mossin, S.; Varonka, M. S.; Melzer, M. M.; Meyer, K.; Cundari, T. R.; Warren, T. H. Catalytic C-H Amination with Unactivated Amines through Copper(II) Amides. *Angew. Chem., Int. Ed.* **2010**, *49*, 8850-8855.

(15) Miriyala, B.; Bhattacharyya, S.; Williamson, J. S. Chemoselective reductive alkylation of ammonia with carbonyl compounds: synthesis of primary and symmetrical secondary amines. *Tetrahedron*, **2004**, *60*, 1463-1471.

(16) Brinkmann, C.; Barrett, A. G. M.; Hill, M. S.; Procopiou, P. A. Heavier Alkaline Earth Catalysts for the Intermolecular Hydroamination of Vinylarenes, Dienes, and Alkynes. *J. Am. Chem. Soc.* **2012**, *134*, 2193–2207.

(17) Squiller, E. P.; Pajerski, A. D.; Whittle, R. R.; Richey, H. G. Jr. Preparation and Properties of RMgN< Compounds Having Coordinating Oxygen Atoms in the Amino Component. *Organometallics* **2006**, *25*, 2465-2469.

(18) Orito, K; Horibata, A.; Nakamura, T.; Ushito, H.; Nagasaki, H.; Yuguchi, M.; Yamashita, S.; Tokuda, M. Preparation of Benzolactams by Pd(OAc)₂-Catalyzed Direct Aromatic Carbonylation. *J. Am. Chem. Soc* **2004**, *126*, 14342-14343.

(19) Nacario, R.; Kotakonda, S.; Fouchard, D. M. D.; Tillekeratne, L. M. V.; Hudson, R. A. Reductive Monoalkylation of Aromatic and Aliphatic Nitro Compounds and the Corresponding Amines with Nitriles. *Org. Lett.* **2005**, *7*, 471-474.

(20) Largeron, M.; Fleury, M.-B. A Biomimetic Electrocatalytic System for the Atom-Economical Chemoselective Synthesis of Secondary Amines. *Org. Lett.* **2009**, *11*, 883-886.

(21) Candeias, N. R.; Gois, P. M. P.; Afonso, C. A. M. Rh(II)-Catalyzed Intramolecular C-H Insertion of Diazo Substrates in Water: Scope and Limitations. J. *Org. Chem.* **2006**, *71*, 5489-5497.