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Figure S1. Plots of the coordination of the EQ and TS points on two CVs.
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Figure S2. The EQ structures of EQ3 (solid color) and EQ7 (shadow color).

Table S1. Dihedral angles of the Ramachandran plot for each EQ point.

beLy2 YeLy2 bcLy3 YeLys ®PHE4 YpPHE4

(degree)  (degree)  (degree)  (degree)  (degree)  (degree)
EQI —47.2 139.2 84.6 4.3 81.3 44.8
EQ2 -75.9 -17.4 —89.5 21.1 —130.0 7.1
EQ3 79.7 16.6 75.5 19.9 —132.6 169.1
EQ4 =51.7 160.8 —74.4 —51.7 —94.7 16.6
EQ5 63.5 32.6 105.2 63.5 —155.5 153.4
EQ6 —73.2 -23.9 —109.0 —73.2 —62.6 -36.5
EQ8 79.4 1.4 100.1 79.4 —121.6 157.9
EQ9 87.2 8.2 81.9 2.2 -92.1 —15.6
EQ10 82.0 —6.7 80.6 6.3 —104.8 —-11.6
EQI11 84.3 16.7 87.8 9.0 —151.3 155.0
EQI2 80.7 15.6 95.5 —0.1 —133.8 144.6
EQI13 67.4 17.2 85.7 7.1 —94.6 -39.0
EQ14 —=75.6 —-175.9 —87.8 —4.8 —119.1 1.6




Table S2. Kinetic Matrix of the contracted-FERN of the RCMC analysis until the maximum rate constant as K4, = 0.01 ps™! =
10 ns~ 1. The direction is from SS of the column to that of the row. The unit of each kinetic is ns™*. k = 0.000 means that there is not
connection between the two points.

from “| ss, ss,  SS.  SSs  SS.  SS  SS,  SS,  SS  S§  SS S
SS. | - 0426 0447 0007 0016 1028 0295 0103 0000 0019 0000 0.081
sS, | 1111 - 0312 0494 0532 0850 0030 0395 0005 0007 0019 0.698
SSe | 2335 0625 - 0005 0173 9066 0908 0033 0084 0001 0000 2.922
SS¢ | 0021 0591 0003 - 0124 0004 0000 1467 0000 0000 0.000 0.032
SS. | 0065 0853 0138 0167 - 0103 0015 0334 0008 0000 0285 2.238
SSt | 5348 1695 9036 0006 0129 - 0309 0072 0003 0002 0000 1.332
SS, | 2042 0080 1204 0001 0025 0411 - 0006 0013 0001 0000 0.171
SS, | 0.885 1296 0053 4028 0684 0118 0007 - 0001 0005 0000 0.179
SSi | 0199 0765 6822 0017 0770 0262 0775 0033 - 0000 0000 4.303
SS; | 3723 0557 0041 0004 0002 0095 0031 0111 0000 - 0000 0.008
SS¢ | 0.000 0198 0000 0000 1818 0000 0000 0000 0000 0000 -  0.000
SS | 1243 4110 8604 0155 8230 3934 0379 0321 0156 0001 0000  —




Parameters for the SHS Calculation

Table S1 summarizes the parameters chosen in the study. The optimization of the Newton—
Raphson method and the dimer approach were performed using the threshold of the gradient.

In the SHS calculation, it is important to firstly calculate the scaled hypersphere surface (SH-
surface). To reduce the structure of the harmonic potential, we selected the parameter of length
between an EQ point and the initial SH-surface along the harmonic potential hardest mode. The
stepsize of uphill walking of the SH-surfaces was calculated using the length of the hardest
mode.

In addition, the threshold to identify the same EQ or TS points was prepared, which should be
larger than the optimization error. In our calculation, the dimer method was used, which was
improved by Kistner and Sherwood.! In this method, two parameters are considered, i.e., the
length of dimer and the threshold of rotation minimizing | ¢ |.

Calculating the gradient down from a TS point, there is an MFEP on the TS point along the
imaginary frequency direction v;, which is the normalized eigenvector with a negative
eigenvalue:

St1 =59 X vy - Asg, (S1)

where Sj is the CV of the TS point and Asy denotes the parameter of the first step. After

calculating Sy 4, the subsequent step involves parameter As;

(Sm)
Spms1 = Spm — lz(_m -As. (S2)

Note that As, should be larger than As.?



Table S3. Parameters for the SHS calculation.

parameter name meanings Styblinski-Tang | met-enkephalin
Threshold of gradient in the
optimizations in the Newton—

threshold Raphson method and the dimer 0.1 0.1
method.

sameEQthreshold Th.reshold to identify same EQ or TS 0.05 0.05
points.

[OEsphereA _initial | -CPeth fo calculate the potential of 0.2 0.02

- initial SH surface.

[OEsphereA_dist Length to calculate the stepsize of 0.05 0.005
SH surfaces.

Ddimer Distance of dimer in the dimer 0.05 0.05
method.

phitol Threshold of |¢,| in the dimer 0.08 0.08
method.

deltasO As in equation (S1). 0.01 0.01

deltas As in equation (S2). 0.005 0.005




Test Calculation for a Two-dimensional Example

In the present section, a test calculation for a two-dimensional toy example is demonstrated
using the following function:

V(x,y) = sin(m x) sin(m y). (S3)

This function has a large number of global minima at (x,y) = (n — 0.5,m + 0.5), where n
and m are integers. For instance, (0.5, —0.5) is a global minimum surrounded by 4 saddle states
at (0,0),(1,0),(0,—1), and (1,—1). Notably, the saddle states are not located along the
frequency directions of the minimum point. In Figure S3, the SHS searching from (0.5, — 0.5) is
shown. The black lines are plotted along ADDs of each SH-surface, which is different from the

frequency directions, and the 4 saddle states are found simultaneously.
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Figure S3. Contour plot of equation (S3) and the SHS calculated from the equation point of
(0.5, — 0.5). The black lines indicate the paths of ADDs until the saddle points are found.



Estimation of Frequency Factors

In equation (6), the frequency factor A is a parameter, which depends on each MFEP path.
Moreover, the velocity depends on CVs, and theoretical estimation of A is difficult. To calculate
it using the result of the performed simulations, we used the trajectory of metadynamics. After
the metadynamics simulation, the potential of FEL with the bias potential is approximately
flatten, which means that Frg — F, = 0. The velocity of the simulation with the bias potential is
approximate to the frequency factor. For example, the METAGUI tool® can be used to calculate
the velocity using grid spacing*; however, it is difficult to apply it for high-dimensional CVs due
to the limitation of computational costs. In the present study we analyzed the trajectory directory
and collected the velocity of the nearest points.

The frequency factors were calculated according to the following steps:

1. The MD simulation was performed with the bias potential after the metadynamics
simulation. In the present study, the multiple walker MTD without adding new bias
potentials was performed in 10 ns for each of the 10 walkers, affording a 100 ns trajectory.

2. The trajectory was analyzed and the velocities on CVs of the sampling were obtained.
Because the grid spacing was difficult, we constructed the velocities along the trajectory of
the MD simulation. In this step, we focused on the microstate separated by the distance of
0.1 nm on the CVs. The initial point on the trajectory was defined. The time was summed
until separation over 0.1 nm was detected and the last point was defined. The velocity was
calculated as the time divided by the length between the initial point and the last point. The
last point was defined as a new initial point and the calculation was iterated. We attempted
changing the distance of the microstate to 0.2 nm and 0.5 nm; however, the qualitative

results were not affected.



3. The distance between MFEP and the sampled points was compared, and 50 velocities of

the nearest points were collected. The average of the velocities was the velocity on the CVs

along the MFEP.

4. The length of the MFEP was divided by the velocity on the CVs. The velocity between two
EQ points was calculated. The velocity was approximately equal to the frequency factor of
the velocity along the MFEP.
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