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Figure S1. Plots of the coordination of the EQ and TS points on two CVs.  
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Figure S2. The EQ structures of EQ3 (solid color) and EQ7 (shadow color). 

 

 

Table S1. Dihedral angles of the Ramachandran plot for each EQ point. 

 
𝜙GLY2  
(degree) 

𝜓GLY2  
(degree) 

𝜙GLY3  
(degree) 

𝜓GLY3  
(degree) 

𝜙PHE4  
(degree) 

𝜓PHE4  
(degree) 

EQ1 −47.2 139.2 84.6 4.3 81.3 44.8 

EQ2 −75.9 −17.4 −89.5 21.1 −130.0 7.1 

EQ3 79.7 16.6 75.5 19.9 −132.6 169.1 

EQ4 −51.7 160.8 −74.4 −51.7 −94.7 16.6 

EQ5 63.5 32.6 105.2 63.5 −155.5 153.4 

EQ6 −73.2 −23.9 −109.0 −73.2 −62.6 −36.5 

EQ8 79.4 1.4 100.1 79.4 −121.6 157.9 

EQ9 87.2 8.2 81.9 2.2 −92.1 −15.6 

EQ10 82.0 −6.7 80.6 6.3 −104.8 −11.6 

EQ11 84.3 16.7 87.8 9.0 −151.3 155.0 

EQ12 80.7 15.6 95.5 −0.1 −133.8 144.6 

EQ13 67.4 17.2 85.7 −7.1 −94.6 −39.0 

EQ14 −75.6 −175.9 −87.8 −4.8 −119.1 1.6 
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Table S2. Kinetic Matrix of the contracted-FERN of the RCMC analysis until the maximum rate constant as 𝑘𝑚𝑎𝑥 = 0.01 ps−1 =
10 ns−1. The direction is from SS of the column to that of the row. The unit of each kinetic is ns−1. 𝑘 = 0.000 means that there is not 

connection between the two points. 

to 

from 
SSa SSb SSc SSd SSe SSf SSg SSh SSi SSj SSk SSl 

SSa – 0.426 0.447 0.007 0.016 1.028 0.295 0.103 0.000 0.019 0.000 0.081 

SSb 1.111 – 0.312 0.494 0.532 0.850 0.030 0.395 0.005 0.007 0.019 0.698 

SSc 2.335 0.625 – 0.005 0.173 9.066 0.908 0.033 0.084 0.001 0.000 2.922 

SSd 0.021 0.591 0.003 – 0.124 0.004 0.000 1.467 0.000 0.000 0.000 0.032 

SSe 0.065 0.853 0.138 0.167 – 0.103 0.015 0.334 0.008 0.000 0.285 2.238 

SSf 5.348 1.695 9.036 0.006 0.129 – 0.309 0.072 0.003 0.002 0.000 1.332 

SSg 2.042 0.080 1.204 0.001 0.025 0.411 – 0.006 0.013 0.001 0.000 0.171 

SSh 0.885 1.296 0.053 4.028 0.684 0.118 0.007 – 0.001 0.005 0.000 0.179 

SSi 0.199 0.765 6.822 0.017 0.770 0.262 0.775 0.033 – 0.000 0.000 4.303 

SSj 3.723 0.557 0.041 0.004 0.002 0.095 0.031 0.111 0.000 – 0.000 0.008 

SSk 0.000 0.198 0.000 0.000 1.818 0.000 0.000 0.000 0.000 0.000 – 0.000 

SSl 1.243 4.110 8.604 0.155 8.230 3.934 0.379 0.321 0.156 0.001 0.000 – 
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Parameters for the SHS Calculation 

Table S1 summarizes the parameters chosen in the study. The optimization of the Newton–

Raphson method and the dimer approach were performed using the threshold of the gradient.  

In the SHS calculation, it is important to firstly calculate the scaled hypersphere surface (SH-

surface). To reduce the structure of the harmonic potential, we selected the parameter of length 

between an EQ point and the initial SH-surface along the harmonic potential hardest mode. The 

stepsize of uphill walking of the SH-surfaces was calculated using the length of the hardest 

mode. 

In addition, the threshold to identify the same EQ or TS points was prepared, which should be 

larger than the optimization error. In our calculation, the dimer method was used, which was 

improved by Kästner and Sherwood.1 In this method, two parameters are considered, i.e., the 

length of dimer and the threshold of rotation minimizing |𝜙1|.  

Calculating the gradient down from a TS point, there is an MFEP on the TS point along the 

imaginary frequency direction 𝑣1 , which is the normalized eigenvector with a negative 

eigenvalue: 

𝑆±1 = 𝑆0 ± 𝑣1 ⋅ ∆𝑠0 , (S1) 

where 𝑆0  is the CV of the TS point and ∆𝑠0  denotes the parameter of the first step. After 

calculating 𝑆±1, the subsequent step involves parameter ∆𝑠;  

𝑆𝑚±1 = 𝑆𝑚 −
𝑔(𝑆𝑚)

|𝑔(𝑆𝑚)|
⋅ ∆𝑠. (S2) 

Note that ∆𝑠0 should be larger than ∆𝑠.2  
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Table S3. Parameters for the SHS calculation. 

parameter name meanings Styblinski–Tang met-enkephalin 

threshold 

Threshold of gradient in the 

optimizations in the Newton–

Raphson method and the dimer 

method. 

0.1 0.1 

sameEQthreshold 
Threshold to identify same EQ or TS 

points. 
0.05 0.05 

IOEsphereA_initial 
Length to calculate the potential of 

initial SH surface. 
0.2 0.02 

IOEsphereA_dist 
Length to calculate the stepsize of 

SH surfaces. 
0.05 0.005 

Ddimer 
Distance of dimer in the dimer 

method. 
0.05 0.05 

phitol 
Threshold of |𝜙1|  in the dimer 

method. 
0.08 0.08 

deltas0 ∆𝑠0 in equation (S1). 0.01 0.01 

deltas ∆𝑠 in equation (S2). 0.005 0.005 
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Test Calculation for a Two-dimensional Example 

In the present section, a test calculation for a two-dimensional toy example is demonstrated 

using the following function: 

𝑉(𝑥, 𝑦) = sin(𝜋 𝑥) sin(𝜋 𝑦). (S3) 

This function has a large number of global minima at (𝑥, 𝑦) = (𝑛 − 0.5, 𝑚 + 0.5), where 𝑛 

and 𝑚 are integers. For instance, (0.5, −0.5) is a global minimum surrounded by 4 saddle states 

at (0, 0), (1, 0), (0, −1) , and (1, −1) . Notably, the saddle states are not located along the 

frequency directions of the minimum point. In Figure S3, the SHS searching from (0.5, − 0.5) is 

shown. The black lines are plotted along ADDs of each SH-surface, which is different from the 

frequency directions, and the 4 saddle states are found simultaneously. 

 

 

Figure S3. Contour plot of equation (S3) and the SHS calculated from the equation point of 

(0.5, − 0.5). The black lines indicate the paths of ADDs until the saddle points are found. 
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Estimation of Frequency Factors  

In equation (6), the frequency factor A is a parameter, which depends on each MFEP path. 

Moreover, the velocity depends on CVs, and theoretical estimation of A is difficult. To calculate 

it using the result of the performed simulations, we used the trajectory of metadynamics. After 

the metadynamics simulation, the potential of FEL with the bias potential is approximately 

flatten, which means that 𝐹𝑇𝑆 − 𝐹𝑎 ≈ 0. The velocity of the simulation with the bias potential is 

approximate to the frequency factor. For example, the METAGUI tool3 can be used to calculate 

the velocity using grid spacing4; however, it is difficult to apply it for high-dimensional CVs due 

to the limitation of computational costs. In the present study we analyzed the trajectory directory 

and collected the velocity of the nearest points. 

The frequency factors were calculated according to the following steps: 

1. The MD simulation was performed with the bias potential after the metadynamics 

simulation. In the present study, the multiple walker MTD without adding new bias 

potentials was performed in 10 ns for each of the 10 walkers, affording a 100 ns trajectory. 

2. The trajectory was analyzed and the velocities on CVs of the sampling were obtained. 

Because the grid spacing was difficult, we constructed the velocities along the trajectory of 

the MD simulation. In this step, we focused on the microstate separated by the distance of 

0.1 nm on the CVs. The initial point on the trajectory was defined. The time was summed 

until separation over 0.1 nm was detected and the last point was defined. The velocity was 

calculated as the time divided by the length between the initial point and the last point. The 

last point was defined as a new initial point and the calculation was iterated. We attempted 

changing the distance of the microstate to 0.2 nm and 0.5 nm; however, the qualitative 

results were not affected. 
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3. The distance between MFEP and the sampled points was compared, and 50 velocities of 

the nearest points were collected. The average of the velocities was the velocity on the CVs 

along the MFEP. 

4. The length of the MFEP was divided by the velocity on the CVs. The velocity between two 

EQ points was calculated. The velocity was approximately equal to the frequency factor of 

the velocity along the MFEP.  
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