Supporting Information

Hollow mesoporous organosilica spheres encapsulating PdAg nanoparticles and poly(ethyleneimine) as reusable catalysts for CO₂ hydrogenation to formate

Yasutaka Kuwahara,*,†,‡,# Yuki Fujie,† Takashi Mihogi,† and Hiromi Yamashita*,†,‡

- [†] Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
- [‡] Unit of Elements Strategy Initiative for Catalysts & Batteries (ESICB), Kyoto University, Katsura, Kyoto 615-8520, Japan
- [#] JST, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan

* Corresponding author;

E-mail: kuwahara@mat.eng.osaka-u.ac.jp, Tel: +81-6-6879-7458 (Y. Kuwahara) E-mail: yamashita@mat.eng.osaka-u.ac.jp, Tel: +81-6-6879-7457 (H. Yamashita)

Experimental Procedures

Materials. Tetraethoxy orthosilicate (TEOS, 95%), disodium tetrachloropalladate(II) (Na₂PdCl₄, >95%), silver(I) nitrate (AgNO₃, 99.8%), sodium borohydride (NaBH₄, >95%), fumed silica (SiO₂), aqueous ammonia solution (28%), ammonium nitrate (99%) and ethanol (99.5%) were purchased from Nacalai Tesque Inc. 1,4-Bis(triethoxysilyl)benzene (BTEB, 98%) was purchased from Sigma-Aldrich. Branched poly(ethylenimine) (PEI, $M_w = 1,800,99\%$) was purchased from Alfa Aesar. Cetyltrimethylammonium bromide (CTAB, 98%) was purchased from Wako Pure Chemical Industries, Ltd. Titanium dioxide P25[®] as a catalyst support was purchased from Osaka Gas Chemicals Co., Ltd. All regents were used as received without further purification. Deionized water was used in all synthetic and catalytic experiments.

Synthesis of supported PdAg NP catalysts. Supported PdAg NP catalysts (PdAg/fumed SiO₂, PdAg/AC and PdAg/TiO₂) were prepared by the conventional wet impregnation method; briefly, 1.0 g of support was impregnated with 100 mL of water containing Na₂PdCl₄ (0.047 mmol) and AgNO₃ (0.047 mmol), followed by stirring for 3 h at room temperature and vacuum dry. Subsequently, the solid was re-dispersed in 50 mL of water, then reduced with 1.7 mL of freshly-prepared aqueous NaBH₄ solution (20 mg/mL) (approximately 10 equiv. of metals), washed with distilled water and dried under vacuum to yield supported PdAg NPs catalysts (Pd: 0.5 wt%, Pd/Ag molar ratio = 1/1). PEI-supported PdAg NP catalyst (denoted as PdAg/PEI) was synthesized by evaporating ethanol/water from the brownish suspension obtained in step 2 in the synthesis procedure for PdAg+PEI@HMOS.

Gas-phase CO₂ adsorption measurement. CO_2 gas adsorption experiments were performed under dry conditions using TG-DTA system (Rigaku, Thermo plus EVO II). The sample (10 mg) was loaded into a platinum pan and heated at 130 °C for 180 min under a N₂ flow (100 mL/min) to remove the physisorbed water. The temperature was then lowered to 40 °C and kept for 120 min in a flow of N₂ (100 mL/min) to stabilize the sample weight and temperature. The amount of adsorbed CO₂ was monitored for 7 h under a flow of water-saturated 10% CO₂/N₂ (100 mL/min).

Liquid-phase adsorption measurement. Liquid-phase adsorption experiments for HCO_3^- and $HCOO^-$ anions in water were performed in sealed quartz vessels for up to 20 h at room temperature (25±3 °C). A dried sample (ca. 100 mg) was dispersed in a glass beaker containing designated amount of either NaHCO₃ aqueous solution (0.06 mol/L, 50 mL) or HCOONa aqueous solution (0.08 mol/L, 50 mL) and was magnetically stirred at 300 rpm. A portion of the solution was collected at predetermined time intervals by filtration, and the residual concentration was determined by a titration method using methyl orange as an indicator for HCO_3^- anion and by using HPLC for HCOO⁻ anion.

Figure S1 (Above) TEM images and (Below) the corresponding N_2 adsorptiondesorption isotherms of as-synthesized PdAg+PEI@HMOS (without CTAB extraction) along with the aging time (2–24 h) at 35°C. Filled and empty symbols show adsorption and desorption isotherm data, respectively.

Figure S2 FE-SEM images of PdAg+PEI@HMOS samples synthesized with (a) branched PEI ($M_w = 1,800$) and (b) linear PEI ($M_w = 2,500$) as a template.

Figure S3 Powder XRD patterns of PdAg+PEI@HMOS catalyst upon catalytic use.

Figure S4 Ag 3d XPS spectra for PdAg+PEI@HMOS along with Ar etching time (0-30 min).

Figure S5 (a) Pd K-edge XANES spectra and (b) fourier transforms of EXAFS spectra for Pd K-edge of as-synthesized/used PdAg+PEI@HMOS, as-synthesized/used Pd+PEI@HMOS and some Pd references (Pd foil and PdO). (c) Ag K-edge XANES spectra and (d) fourier transforms of EXAFS spectra for Ag K-edge of as-synthesized/used PdAg+PEI@HMOS and some Ag references (Ag foil and AgO).

Figure S6 Kinetics in adsorption of (a) bicarbonate (HCO₃⁻) and (b) formate (HCOO⁻) at room temperature in water using PdAg+PEI@HMOS and PdAg@HMOS catalysts. *Adsorption conditions for bicarbonate*: sample (100 mg), NaHCO₃ aq. (0.06 M, 50 mL), room temperature, 300 rpm. *Adsorption conditions for formate*: sample (100 mg), HCOONa aq. (0.08 M, 50 mL), room temperature, 300 rpm.

Figure S7 (a) TON after 22 h reaction in the CO₂ hydrogenation and (b) the relationship between TON in the CO₂ hydrogenation and the total volume (V_{total}) over the series of PdAg+PEI@HMOS catalysts synthesized with different aging period of time (2–24 h). *Reaction conditions*: catalyst (10 mg, Pd 0.38 µmol), solvent (0.1 M NaOH aq., 15 mL), H₂ (1.0 MPa), CO₂ (1.0 MPa), Temp. = 100 °C, t = 22 h.

Sample	S _{BET} ^b (°C)	V _{total} ^c (cm ³ /g)	D _{pore} d (nm)
PdAg+PEI@HMOS (aging 2 h)	18.4	0.070	2.1
PdAg+PEI@HMOS (aging 6 h)	36.3	0.100	2.0
PdAg+PEI@HMOS (aging 9 h)	195	0.221	1.6
PdAg+PEI@HMOS (aging 16 h)	169	0.278	1.6
PdAg+PEI@HMOS (aging 24 h)	187	0.406	1.6

Table S1 Textural properties of PdAg+PEI@HMOS catalysts synthesized with different aging period of time $(2-24 h)^a$.

^a Samples prepared without the CTAB extraction process (see the Experimental procedures). ^b Surface area calculated by the BET method. ^c Total pore volume reported at $p/p_0 = 0.99$. ^d Peak pore size determined by the BJH method.

Catalyst	Temp (°C)	Base/Solvent	<i>P</i> (H ₂ /CO ₂) (MPa)	Time (h)	TON	TOF (h ⁻¹)	Ref.
PdAg+PEI@HMOS	100	0.1 M NaOH aq.	1/1	22	2754	125	This work
Pd+PEI@HMOS	100	0.1 M NaOH aq.	1/1	22	455	21	This work
PdAg/TiO ₂	100	0.1 M NaOH aq.	1/1	22	519	24	This work
PdAg/AC	100	0.1 M NaOH aq.	1/1	22	71	3.2	This work
PdAg/fumed SiO ₂	100	0.1 M NaOH aq.	1/1	22	63	2.9	This work
$Pd/mpg-C_3N_4$	100	20 vol.% NEt ₃ aq.	2/2	24	38	1.6	Ref. 1
Pd _{0.8} Co _{0.2} @MSN	100	1 M NaHCO3 aq.	1/1	10	4082	408	Ref. 2
PdAg/SBA-15- phenylamine	100	1 M NaHCO3 aq.	1/1	24	874	36	Ref. 3
PdAg/amine-modified mesoporous carbon	100	1 M NaHCO3 aq.	1/1	24	839	35	Ref. 4
PdAg/amine-modified resorcinol-formaldehyde polymers	100	1 M NaHCO3 aq.	1/1	24	867	36	Ref. 5
PdAg@mesoporous hollow carbon sphere	100	1 M NaHCO3 aq.	1/1	24	2680	112	Ref. 6
PdAg/TiO ₂	100	1 M NaHCO3 aq.	1/1	24	748	31	Ref. 7
$Pd@Ag/TiO_2$	100	1 M NaHCO3 aq.	1/1	24	2496	104	Ref. 7
Ru/LDH (Mg ²⁺ /Al ³⁺ =5)	100	1 M NaOH aq.	1/1	24	698	29	Ref. 8
Ru NPs	80	67 vol.% NEt ₃ aq.	5/8	3	6351	2117	Ref. 9
Ir/AP-POP	120	1 M NEt ₃ aq.	3/3	24	6784	283	Ref. 10
Au NPs/Al ₂ O ₃	70	14 vol.% NEt ₃ /EtOH	2/2	20	215	11	Ref. 11
Au NPs/TiO ₂	70	14 vol.% NEt ₃ /EtOH	2/2	20	111	5.5	Ref. 11
AUROlite	80	20 vol.% NEt ₃ aq.	9/9	37 days	18040	28	Ref. 12

Table S2 Summary of reaction conditions and catalytic activities for hydrogenation ofCO2 to formic acid/formate over supported metal NPs catalysts recently reported.

Au/SiO ₂ -Schiff	90	1.5 M NEt ₃ in	5/3	12	14470	1206	Ref. 13
		H ₂ O/MeOH					
		(20/80 v/v%)					

- Lee, J. H.; Ryu, J.; Kim, J. Y.; Nam, S.-W.; Han, J. H.; Lim, T.-H.; Gautam, S.; Chae, K. H.; Yoon, C. W. Carbon dioxide mediated, reversible chemical hydrogen storage using a Pd nanocatalyst supported on mesoporous graphitic carbon nitride. *J. Mater. Chem. A* 2014, *2 (25)*, 9490-9495.
- 2. Sun, Q.; Fu, X.; Si, R.; Wang, C. H.; Yan, N. Mesoporous silica-encaged ultrafine bimetallic nanocatalysts for CO₂ hydrogenation to formates. *ChemCatChem* **2019**, *11* (20), 5093-5097.
- Mori, K.; Masuda, S.; Tanaka, H.; Yoshizawa, K.; Che, M.; Yamashita, H. Phenylamine-functionalized mesoporous silica supported PdAg nanoparticles: a dual heterogeneous catalyst for formic acid/CO₂-mediated chemical hydrogen delivery/storage. *Chem. Commun.* 2017, *53 (34)*, 4677-4680.
- 4. Masuda, S.; Mori, K.; Futamura, Y; Yamashita, H. PdAg nanoparticles supported on functionalized mesoporous carbon: promotional effect of surface amine groups in reversible hydrogen delivery/storage mediated by formic acid/CO₂. *ACS Catal.* **2018**, *8* (*3*), 2277-2285.
- 5. Masuda, S.; Mori, K.; Kuwahara, Y; Yamashita, H. PdAg nanoparticles supported on resorcinol-formaldehyde polymers containing amine groups: the promotional effect of phenylamine moieties on CO₂ transformation to formic acid. *J. Mater. Chem. A* **2019**, *7 (27)*, 16356-16363.
- Yang, G.; Kuwahara, Y.; Masuda, S.; Mori, K.; Louis, C.; Yamashita, H. PdAg nanoparticles and aminopolymer confined within mesoporous hollow carbon spheres as an efficient catalyst for hydrogenation of CO₂ to formate. *J. Mater. Chem. A* 2020, *8 (8)*, 4437-4446.
- 7. Mori, K.; Sano, T.; Kobayashi, H.; Yamashita, H. Surface engineering of a supported PdAg catalyst for hydrogenation of CO₂ to formic acid: elucidating the active Pd atoms in alloy nanoparticles. *J. Am. Chem. Soc.* **2018**, *140 (28)*, 8902-8909.
- Mori, K.; Taga, T; Yamashita, H. Isolated single-atomic Ru catalyst bound on a layered double hydroxide for hydrogenation of CO₂ to formic acid. *ACS Catal.* 2017, 7 (5), 3147-3151.
- 9. Umegaki, T.; Enomoto, Y.; Kojima, Y. Metallic ruthenium nanoparticles for hydrogenation of supercritical carbon dioxide. *Catal. Sci. Technol.* **2016**, *6 (2)*, 409-412.
- Shao, X.; Yang, X.; Xu, J.; Liu, S.; Miao, S.; Liu, X.; Su, X.; Duan, H.; Huang, Y.; Zhang, T. Iridium single-atom catalyst rerforming a quasi-homogeneous hydrogenation transformation of CO₂ to formate. *Chem* **2019**, *5*, 693-705.
- Filonenko, G. A.; Vrijburg, W. L.; Hensen, E. J. M.; Pidko, E. A. On the activity of supported Au catalysts in the liquid phase hydrogenation of CO₂ to formates. *J. Catal.* 2016, *343*, 97-105.

- 12. Preti, D.; Resta, C.; Squarcialupi, S.; Fachinetti, G. Carbon dioxide hydrogenation to formic acid by using a heterogeneous gold catalyst. *Angew. Chem. Int. Ed.* **2011**, *50 (52)*, 12551-12554.
- Liu, Q.; Yang, X.; Li, L.; Miao, S.; Li, Y.; Li, Y.; Wang, X.; Huang, Y.; Zhang, T. Direct catalytic hydrogenation of CO₂ to formate over a Schiff-basemediated gold nanocatalyst. *Nat. Commun.* 2017, 8 (1), 1407.

Sample	S _{BET} ^c (°C)	V _{total} d (cm ³ /g)	D _{pore} e (nm)
PdAg+PEI@HMOS ^a	401	0.500	1.8
PdAg@HMOS ^b	464	0.422	1.3
PdAg+PEI@HMOS (after 1st use)	438	0.673	1.6
PdAg+PEI@HMOS (after 5th use)	326	0.549	1.8

 Table S3 Textural properties of PdAg+PEI@HMOS catalysts after calcination and after catalytic use.

^a Samples after the CTAB extraction process (see the Experimental procedure). ^b Prepared from PdAg+PEI@HMOS by calcination in air at 500 °C, followed by H₂ reduction at 200 °C ° Surface area calculated by the BET method. ^d Total pore volume reported at $p/p_0 = 0.99$. ^e Peak pore size determined by the BJH method.