Visible light-induced dehydrohalogenative coupling for intramolecular α-alkenylation: A way to build seven- and eight-membered rings.

Dawen Xu, ${ }^{1,2,4}$ Han Li, ${ }^{2,4}$ Guangxing Pan, ${ }^{3,4}$ Pan Huang, ${ }^{2}$ Jens Oberkofler, ${ }^{2}$ Robert M. Reich, ${ }^{2}$ Fritz E. Kühn, 2,* Hao Guo, ${ }^{1, *}$
${ }^{1}$ Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, P. R. China.
${ }^{2}$ Molecular Catalysis, Catalysis Research Center and Department of Chemistry, Technische Universität München, Lichtenbergstr. 4, 85747 Garching bei München, Germany.
${ }^{3}$ Academy for Engineering and Technology, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China.
${ }^{4}$ These authors contributed equally to this manuscript.
* Corresponding authors: Hao_Guo@fudan.edu.cn, fritz.kuehn@ch.tum.de

Supporting Information

Scheme S1. Gram scale experiment of 1a under standard condition 2
Supplementary Experimental Procedures 3
General information 3
General Procedure I for the synthesis of substrates 4
General Procedure II for the synthesis of substrates 6
General procedure III for the synthesis of substrates 8
General procedure IV for the synthesis of substrates 10
General procedure V for the photoreaction 11
Procedure for the transformation of rac-3a-2 into rac-4a 24
Procedure for the transformation of rac-3a-1 into 2a 24
Procedure for the transformation of rac-3a-2 into 2a 25
Procedure for the transformation of rac-4a into $\mathbf{2 a}$ 25
Procedure for gram scale experiment of 1a to $\mathbf{2 a}$ 25
NMR spectrums 26
Supplementary References: 77

Scheme S1. Gram scale experiment of 1a under standard condition

Supplementary Experimental Procedures
 General information

${ }^{1} \mathrm{H}(400 \mathrm{MHz}),{ }^{1} \mathrm{H}(500 \mathrm{MHz}),{ }^{13} \mathrm{C}(100 \mathrm{MHz}),{ }^{13} \mathrm{C}(126 \mathrm{MHz}) \mathrm{NMR}$ and ${ }^{19} \mathrm{~F}(376 \mathrm{MHz})$ NMR spectra are acquired on a Bruker Avance Ultrashield $400 \mathrm{MHz}, 500 \mathrm{MHZ}$ and a Bruker DPX $400 \mathrm{MHz}, 500 \mathrm{MHZ}$ spectrometer. Mass Spectroscopy (MS) and High Resolution Mass Spectroscopy (HR-MS) are performed on a Thermo Scientific LTQ-FT Ultra (ESI), The LTQ FT Ultra (Thermo) is a linear ion trap with a Fourier Transform Ion Cyclotron Resonance (FT-ICR) MS detector. The ICR analyzer is based on a 7 Tesla superconducting magnet. The instrument is coupled online to an analytical HPLC (UltiMate 3000 HPLC system, Dionex). The elemental analysis data are acquired on a Fast Sequential Atomic Absorption Spectrometer, VARIAN, AA280FS. IR spectra are recorded on a Varian FTIR-670 spectrometer using a GladiATR accessory with a diamond ATR element. Melting points are determined on a MPM-H2 apparatus. Anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, THF and $\mathrm{CH}_{3} \mathrm{CN}$ are obtained from a M. Braun SPS purification system. Anhydrous MeOH is prepared using CaH_{2} as drying agent. Anhydrous acetone is prepared using CaCl_{2} as drying agent.
Light sources
The violet LED strips $12 \mathrm{v}-5050-60$ are purchased from GreeThink®. Please refer to the homepage of GreeThink (http://www.greethink.com.cn/English/). The wavelength and intensity of the led strips are given as below.

Figure S1. Spectral distribution of irradiance density for the violet LED strip
Reaction setup
The photoreaction is conducted in a borosilicate glass vessel made by Synthware®. For technical information on this glass, the reader is directed to the homepage of the manufacturer: http://www.xinweier.com/
The distance from the irradiation source to the irradiation vessel is about 5-7 cm . A typical reaction setup is shown as below.

Figure S2. Typical reaction setup for general photoreaction

X-ray Crystallographic Details

The crystal samples were prepared by dissolving the respective compounds in ethyl acetate/n-hexane solvent system. The solvent was placed in the refrigerator, the crystals were grown by slow cooling
Data were collected on a single crystal x-ray diffractometer equipped with a CMOS detector (Bruker APEX III, к-CMOS), an IMS microsource with MoK α radiation ($\lambda=0.71073 \AA$) and a Helios optic using the APEX3 software package. ${ }^{1}$ Measurements were performed on single crystals coated with perfluorinated ether. The crystals were fixed on top of a kapton micro sampler and frozen under a stream of cold nitrogen. A matrix scan was used to determine the initial lattice parameters. Reflections were corrected for Lorentz and polarisation effects, scan speed, and background using SAINT. ${ }^{2}$ Absorption correction, including odd and even ordered spherical harmonics was performed using SADABS. ${ }^{3}$ Space group assignment was based upon systematic absences, E statistics, and successful refinement of the structure. The structures were solved using SHELXS or SHELXT with the aid of successive difference Fourier maps, and were refined against all data using SHELXL in conjunction with SHELXLE., 4,5,6 Hydrogen atoms were calculated in ideal positions as follows: Methyl hydrogen atoms were refined as part of rigid rotating groups, with a C-H distance of $0.98 \AA$ and $U_{\text {iso }(H)}=1.5 \cdot \mathrm{U}_{\text {eq(C) }}$. Other H atoms were placed in calculated positions and refined using a riding model, with methylene and aromatic $\mathrm{C}-\mathrm{H}$ distances of $0.99 \AA$ and $0.95 \AA$, respectively, and other $\mathrm{C}-\mathrm{H}$ distances of $1.00 \AA$, all with $\mathrm{U}_{\text {iso(H) }}=$ 1.2. $\mathrm{U}_{\text {eq(}}(\mathrm{C}$. Non-hydrogen atoms were refined with anisotropic displacement parameters. Full-matrix least-squares refinements were carried out by minimizing $\Sigma w\left(F_{o}{ }^{2}-F_{c}{ }^{2}\right)^{2}$ with the SHELXL weighting scheme. ${ }^{4}$ Neutral atom scattering factors for all atoms and anomalous dispersion corrections for the non-hydrogen atoms were taken from International Tables for Crystallography. ${ }^{7}$ A split layer refinement was used for disordered groups and additional SIMU, DELU, RIGU, ISOR and SAME restraints were used, if necessary. The unit cell of $2 r$ contains 1.5 (not fully occupied sites) disordered molecules of hexane which was treated as a diffuse contribution to the overall scattering without specific atom positions using the PLATON/SQUEEZE procedure. ${ }^{8}$ Images of the crystal structures were generated with PLATON. ${ }^{9}$ Crystallographic data are provided free of charge by The Cambridge Crystallographic Data Centre.

Synthesis of E-4-(((3-bromoallyl)oxy)methyl)quinolin-2(1H)-one

To a Schlenk flask are added E-3-bromoprop-2-en-1-ol ${ }^{10}$ ($164 \mathrm{mg}, 1.2 \mathrm{mmol}$) and anhydrous THF (10 mL). The mixture is stirred under $0^{\circ} \mathrm{C}$ for 10 min and then $\mathrm{NaH}(48 \mathrm{mg}, 2 \mathrm{mmol}$) is added. The mixture is stirred under $0{ }^{\circ} \mathrm{C}$ for 2 h and 4 -(bromomethyl)quinolin- $2(1 H)$-one ($238 \mathrm{mg}, 1 \mathrm{mmol}$) is added subsequently. The mixture is stirred at room temperature overnight, and then cooled to $0{ }^{\circ} \mathrm{C}$, treated with $1 \mathrm{~N} \mathrm{HCl}(10 \mathrm{~mL})$. The solvent is evaporated and the residue is filtered, washed with water (10 mL $\times 3)$, dried under vacuum to afford E-4-(((3-bromoallyl)oxy)methyl)quinolin-2(1H)-one without further purification ($234 \mathrm{mg}, 80 \%$). Mp: 217.3-218. ${ }^{\circ} \mathrm{C}$ (n-hexane/ethyl acetate). ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO$\left.d_{6}\right) \delta 11.71(\mathrm{~s}, 1 \mathrm{H}, \mathrm{N}-\mathrm{H}), 7.66(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.50(\mathrm{t}, \mathrm{J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.32$ (d, J=8.1 $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), 7.18 (t, J = 7.6 Hz, 1H, Ar-H), 6.67 (d, J = 13.6 Hz, 1H, Alkene-H), 6.54-6.36 (m, 2H, Alkene-H), 4.75 (s, 2H, Alkane-H), 4.09 (dd, $J=6.1,1.3 \mathrm{~Hz}, 2 \mathrm{H}$, Alkane-H). ${ }^{13} \mathrm{C}$ NMR (101 MHz , DMSO$\left.d_{6}\right) \delta 162.0,147.6,139.3,134.8,130.8,124.6,122.2,119.5,117.8,116.0,109.7,70.1,68.4$. IR (neat) 3062, 1646, 1613, 1556, 1513, $1439 \mathrm{~cm}^{-1}$. HRMS (ESI): calcd for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{BrNO}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: 294.0124$, found: 294.0124.

General Procedure I for the synthesis of substrates

Synthesis of E-4-(((3-bromoallyl)oxy)methyl)-1-methylquinolin-2(1H)-one (1a)

To a Schlenk flask are added E-3-bromoprop-2-en-1-ol ($329 \mathrm{mg}, 2.4 \mathrm{mmol}$) and anhydrous THF (20 mL). The mixture is stirred under $0^{\circ} \mathrm{C}$ for 10 min and then $\mathrm{NaH}(96 \mathrm{mg}, 4 \mathrm{mmol})$ is added. The mixture is stirred under $0{ }^{\circ} \mathrm{C}$ for 1 h and 4-(bromomethyl)-1-methylquinolin-2(1H)-one ${ }^{11}$ ($504 \mathrm{mg}, 2 \mathrm{mmol}$) is added
subsequently. The mixture is stirred at room temperature overnight, and then cooled to $0^{\circ} \mathrm{C}$, treated with $1 \mathrm{~N} \mathrm{HCl}(10 \mathrm{~mL})$. The solvent is evaporated and the residue is extracted with ethyl acetate (30 mL $\times 3$). The combined organic layers are washed with brine (15 mL), dried over MgSO_{4}, filtered, and evaporated. The crude product is purified by column chromatography (n-hexane/ethyl acetate $=3: 1$) to give the product 1a as a solid ($553 \mathrm{mg}, 90 \%$). Mp: 100.8-101.1 ${ }^{\circ} \mathrm{C}$ (n-hexane/ethyl acetate). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 7.71$ (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H})$, 7.33-7.21 (m, 1H), $6.80(\mathrm{~s}, 1 \mathrm{H}), 6.46-6.21(\mathrm{~m}, 2 \mathrm{H}), 4.74(\mathrm{~s}, 2 \mathrm{H}), 4.08(\mathrm{~d}, \mathrm{~J}=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR (101 MHz, Chloroform-d) δ 161.9, 144.9, 140.0, 133.4, 130.6, 124.5, 122.1, 119.9, 119.1, 114.6, 109.1, 70.2, 68.7, 29.3. IR (neat) 1656, 1553, 1435, $1405 \mathrm{~cm}^{-1}$. HRMS (ESI): calcd for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{BrNO}_{2}{ }^{+}$ $[\mathrm{M}+\mathrm{H}]^{+}$: 308.0281, found: 308.0281 .
The following compounds were synthesized according to general procedure I.
(1) E-4-(((3-chloroallyl)oxy)methyl)-1-methylquinolin-2(1H)-one (1p)

The reaction of 4-(bromomethyl)-1-methylquinolin-2(1H)-one ($252 \mathrm{mg}, 1 \mathrm{mmol}$), E-3-chloroprop-2-en-1$\mathrm{ol}^{12}(112 \mathrm{mg}, 1.2 \mathrm{mmol}), \mathrm{NaH}(48 \mathrm{mg}, 2 \mathrm{mmol})$, and THF (10 mL) affords 1 p as a solid ($229 \mathrm{mg}, 87 \%$). Mp: 96.5-97.1 ${ }^{\circ} \mathrm{C}$ (n-hexane/ethyl acetate). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 7.70(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.58(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.29-7.22(\mathrm{~m}, 1 \mathrm{H}), 6.80(\mathrm{~s}, 1 \mathrm{H}), 6.30(\mathrm{~d}, J=13.4 \mathrm{~Hz}$, $1 \mathrm{H}), 6.06(\mathrm{dt}, J=12.5,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.72(\mathrm{~s}, 2 \mathrm{H}), 4.10(\mathrm{dd}, J=6.1,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform-d) $\delta 161.9,144.9,140.0,130.6,129.2,124.6,122.1,121.8,120.0,119.1,114.6$, 68.7, 29.4. IR (neat) 1646, 1614, 1588, 1557, 1462, 1438, $1413 \mathrm{~cm}^{-1}$. HRMS (ESI): calcd for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{CINO}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: 264.0786$, found: 264.0786 .

(2) Z-4-((2-(iodomethylene)butoxy)methyl)-1-methylquinolin-2(1H)-one (1q)

1q
The reaction of 4-(bromomethyl)-1-methylquinolin- $2(1 H)$-one ($180 \mathrm{mg}, 0.7 \mathrm{mmol}$), Z-2-(iodomethylene)butan-1-ol ${ }^{13}$ ($148 \mathrm{mg}, 0.7 \mathrm{mmol}$), $\mathrm{NaH}(34 \mathrm{mg}, 1.4 \mathrm{mmol})$, and THF (10 mL) affords $\mathbf{1 q}$ as an oil ($228 \mathrm{mg}, 85 \%$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 7.70(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{t}, \mathrm{J}=7.9$ $\mathrm{Hz}, 1 \mathrm{H}), 7.38(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.20(\mathrm{~m}, 1 \mathrm{H}), 6.85(\mathrm{~s}, 1 \mathrm{H}), 6.15(\mathrm{~s}, 1 \mathrm{H}), 4.71(\mathrm{~s}, 2 \mathrm{H}), 4.28(\mathrm{~s}, 2 \mathrm{H})$, 3.72 (s, 3H), $2.32(\mathrm{q}, \mathrm{J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.06(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, Chloroform-d) δ 162.0, 149.0, 145.3, 140.0, 130.5, 124.6, 122.0, 119.8, 119.1, 114.5, 74.4, 68.6, 29.3, 28.8, 12.3. IR (neat) $1654,1590,1455,1415 \mathrm{~cm}^{-1}$. HRMS (ESI): calcd for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{INO}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: 384.0455$, found: 384.0455.
(3) E-4-(((4-bromo-3-methylbut-3-en-1-yl)oxy)methyl)-1-methylquinolin-2(1H)-one (1r)

The reaction of 4-(bromomethyl)-1-methylquinolin-2(1H)-one ($252 \mathrm{mg}, 1 \mathrm{mmol}$), E-4-bromo-3-methylbut-3-en-1-ol ${ }^{14}$ ($198 \mathrm{mg}, 1.2 \mathrm{mmol}$), $\mathrm{NaH}(48 \mathrm{mg}, 2 \mathrm{mmol})$, and THF (10 mL) affords 1 r as a solid ($238 \mathrm{mg}, 71 \%$). Mp: 85.2-86.7 ${ }^{\circ} \mathrm{C}$ (n-hexane/ethyl acetate). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 7.72$ (dd, $J=8.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.62-7.53(\mathrm{~m}, 1 \mathrm{H}), 7.39(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.31-7.21(\mathrm{~m}, 1 \mathrm{H}), 6.78(\mathrm{~s}, 1 \mathrm{H})$, $5.98(\mathrm{~s}, 1 \mathrm{H}), 4.71(\mathrm{~s}, 2 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.64(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.44(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.79(\mathrm{~d}, \mathrm{~J}=1.1$ $\mathrm{Hz}, 3 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform-d) δ 162.0, 145.3, 140.0, 138.5, 130.6, 124.8, 122.1, 120.0, 119.2, 114.5, 103.1, 69.8, 68.7, 38.2, 29.3, 19.3. IR (neat) 1649, 1590, 1456, $1407 \mathrm{~cm}^{-1}$. HRMS (ESI):
calcd for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{BrNO}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: 336.0594$, found: 336.0595.
(4) E-4-(((6-bromohex-5-en-1-yl)oxy)methyl)-1-methylquinolin-2(1H)-one (1t)

The reaction of 4-(bromomethyl)-1-methylquinolin-2(1H)-one ($252 \mathrm{mg}, 1 \mathrm{mmol}$), E-6-bromohex-5-en-1$\mathrm{ol}^{15}(214 \mathrm{mg}, 1.2 \mathrm{mmol}), \mathrm{NaH}(48 \mathrm{mg}, 2 \mathrm{mmol})$, and THF (10 mL) affords 1 t as a solid ($217 \mathrm{mg}, 62 \%$). Mp: 56.1-57.1 ${ }^{\circ} \mathrm{C}$ (n-hexane/ethyl acetate). ${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform-d) $\delta 7.72$ (dd, $J=8.0,1.5$ $\mathrm{Hz}, 1 \mathrm{H}), 7.62-7.54(\mathrm{~m}, 1 \mathrm{H}), 7.39(\mathrm{dd}, J=8.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-7.22(\mathrm{~m}, 1 \mathrm{H}), 6.81(\mathrm{~s}, 1 \mathrm{H}), 6.14$ (dt, $J=$ $11.4,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.01(\mathrm{dt}, J=11.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.71(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.55(\mathrm{t}, J=6.3$ $\mathrm{Hz}, 2 \mathrm{H})$, 2.11-2.01 (m, 2H), 1.68-1.62 (m, 2H), 1.54-1.45 (m, 2H). ${ }^{13} \mathrm{C}$ NMR (126 MHz, Chloroform-d) ס 161.0, 144.6, 138.9, 136.6, 129.5, 123.5, 120.9, 118.7, 118.2, 113.5, 103.4, 69.6, 68.5, 31.6, 28.3, 27.9, 24.1. IR (neat) $1655,1617,1592,1564,1456 \mathrm{~cm}^{-1}$. HRMS (ESI): calcd for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{BrNO}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$: 350.0750, found: 350.0748

General Procedure II for the synthesis of substrates

Synthesis of E-1-benzyl-4-(((3-bromoallyl)oxy)methyl)quinolin-2(1H)-one (1b)

To a Schlenk flask are added E-4-(((3-bromoallyl)oxy)methyl)quinolin-2(1H)-one (294 mg, 1 mmol), benzyl bromide (342 mg , 2 mmol), $\mathrm{K}_{2} \mathrm{CO}_{3}(414 \mathrm{mg}, 3 \mathrm{mmol}$), and DMF (15 mL). The mixture is stirred under $70^{\circ} \mathrm{C}$ with an oil bath for 4 h as monitored by TLC (eluent: n-hexane/ethyl acetate $=3: 1$). The solvent is evaporated and the residue is purified by column chromatography (eluent: n-hexane/ethyl acetate $=3: 1$) to afford $\mathbf{1 b}$ as a solid ($352 \mathrm{mg}, 92 \%$). Mp: 96.8-97.9 ${ }^{\circ} \mathrm{C}$ (n-hexane/ethyl acetate). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 7.69$ (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$), $7.43(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.33-7.27(\mathrm{~m}, 3 \mathrm{H}), 7.25-$ $7.17(\mathrm{~m}, 4 \mathrm{H}), 6.91(\mathrm{~s}, 1 \mathrm{H}), 6.45(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.36(\mathrm{dt}, J=13.6,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.56(\mathrm{~s}, 2 \mathrm{H}), 4.76$ (s, 2H), 4.11 (d, J = 6.8 Hz, 2H). ${ }^{13} \mathrm{C}$ NMR (101 MHz, Chloroform-d) δ 162.1, 145.5, 139.4, 136.3, 133.4, 130.6, 128.8, 127.2, 126.5, 124.5, 122.2, 119.8, 119.3, 115.5, 109.2, 70.3, 68.8, 45.8. IR (neat) 1649, 1592, $1452 \mathrm{~cm}^{-1}$. HRMS (ESI): calcd for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{BrNO}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: 384.0594$, found: 384.0595 .
The following compounds were synthesized according to general procedure II.
(1) E-4-(((3-bromoallyl)oxy)methyl)-1-((perfluorophenyl)methyl)quinolin-2(1H)-one (1c)

The reaction of E-4-(((3-bromoallyl)oxy)methyl)quinolin-2(1H)-one (294 mg, 1 mmol), 2,3,4,5,6pentafluorobenzyl bromide ($521 \mathrm{mg}, 2 \mathrm{mmol}$), $\mathrm{K}_{2} \mathrm{CO}_{3}(414 \mathrm{mg}, 3 \mathrm{mmol})$, and DMF (15 mL) affords 1c as a solid ($449 \mathrm{mg}, 95 \%$). Mp: 110.7-111.3 ${ }^{\circ} \mathrm{C}$ (n-hexane/ethyl acetate). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroformd) $\delta 7.70(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.20(\mathrm{~m}, 2 \mathrm{H}), 6.84(\mathrm{~s}, 1 \mathrm{H}), 6.44(\mathrm{~d}, J=13.6$ $\mathrm{Hz}, 1 \mathrm{H}), 6.35(\mathrm{dt}, J=13.6,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.69(\mathrm{~s}, 2 \mathrm{H}), 4.74(\mathrm{~s}, 2 \mathrm{H}), 4.09(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform-d) $\delta 161.7,146.0,138.7,133.3,130.9,125.0,122.6,119.47,119.35,113.9,109.3$, 70.4, 68.6, 35.0. IR (neat) 1661, 1597, 1523, 1500, 1478, 1456, $1419 \mathrm{~cm}^{-1}$. HRMS (ESI): calcd for $\mathrm{C}_{20} \mathrm{H}_{14} \mathrm{BrF}_{5} \mathrm{NO}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$: 474.0123, found: 474.0125 .
(2) E-4-(((3-bromoallyl)oxy)methyl)-1-(4-(trifluoromethyl)benzyl)quinolin-2(1H)-one (1d)

1d
The reaction of E-4-(((3-bromoallyl)oxy)methyl)quinolin-2(1H)-one (441 mg, 1.5 mmol$)$, 1-(bromomethyl)-4-(trifluoromethyl)benzene ($718 \mathrm{mg}, 3 \mathrm{mmol}$), $\mathrm{K}_{2} \mathrm{CO}_{3}(621 \mathrm{mg}, 4.5 \mathrm{mmol}$), and DMF (15 mL) affords 1 d as a solid ($547 \mathrm{mg}, 81 \%$). Mp: 91.1-92.2 ${ }^{\circ} \mathrm{C}$ (n-hexane/ethyl acetate). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 7.71$ (d, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.45(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 2 \mathrm{H}$), $7.25-7.16(\mathrm{~m}, 2 \mathrm{H}), 6.91(\mathrm{~s}, 1 \mathrm{H}), 6.46(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.36(\mathrm{dt}, J=13.6,6.0 \mathrm{~Hz}, 1 \mathrm{H})$, $5.61(\mathrm{~s}, 2 \mathrm{H}), 4.78(\mathrm{~s}, 2 \mathrm{H}), 4.12(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform-d) $\delta 162.0,146.0$, 140.5, 139.2, 133.3, 130.8, 129.5, 126.9, 125.9, 125.87, 125.83, 125.80, 124.8, 122.5, 119.7, 119.4, 115.2, 109.3, 70.5, 68.8, 45.5. IR (neat) 1729, 1649, 1593, 1454, $1419 \mathrm{~cm}^{-1}$. HRMS (ESI): calcd for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{BrF}_{3} \mathrm{NO}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: 452.0468$, found: 452.0467 .
(3) E-4-(((3-bromoallyl)oxy)methyl)-1-(4-methoxycarbonylbenzyl)quinolin-2(1H)-one (1e)

The reaction of E-4-(((3-bromoallyl)oxy)methyl)quinolin-2(1H)-one ($450 \mathrm{mg}, 1.5 \mathrm{mmol}$), methyl 4(bromomethyl)benzoate ($687 \mathrm{mg}, 3 \mathrm{mmol}$), $\mathrm{K}_{2} \mathrm{CO}_{3}(621 \mathrm{mg}, 4.5 \mathrm{mmol})$, and DMF (15 mL) affords 1 e as a solid ($576 \mathrm{mg}, 87 \%$). Mp: 137.5-138.9 ${ }^{\circ} \mathrm{C}$ (n-hexane/ethyl acetate). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.97(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.70(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-7.16(\mathrm{~m}, 2 \mathrm{H}), 7.24-7.15$ (m, 2H), $6.92(\mathrm{~s}, 1 \mathrm{H}), 6.46(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.36(\mathrm{dt}, J=13.6,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.61(\mathrm{~s}, 2 \mathrm{H}), 4.77(\mathrm{~s}, 2 \mathrm{H})$, 4.12 (d, $J=5.8 \mathrm{~Hz}, 2 \mathrm{H}$), 3.88 (s, 3H). ${ }^{13} \mathrm{C}$ NMR (101 MHz, Chloroform-d) δ 166.7, 162.1, 145.9, 141.6, 139.2, 133.4, 130.8, 130.2, 129.3, 126.5, 124.7, 122.4, 119.7, 119.4, 115.3, 109.3, 70.5, 68.8, 52.1, 45.7. IR (neat) 1707, 1651, 1593, 1457, 1434, $1425 \mathrm{~cm}^{-1}$. HRMS (ESI): calcd for $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{BrNO}_{4}^{+}[\mathrm{M}+\mathrm{H}]^{+}$: 442.0648, found: 442.0648.
(4) E-4-(((3-bromoallyl)oxy)methyl)-1-(4-cyanobenzyl)quinolin-2(1H)-one (1f)

$1 f$
The reaction of E-4-(((3-bromoallyl)oxy)methyl)quinolin-2(1H)-one (445 mg, 1.5 mmol$)$, 4(bromomethyl)benzonitrile ($580 \mathrm{mg}, 3 \mathrm{mmol}$), $\mathrm{K}_{2} \mathrm{CO}_{3}(621 \mathrm{mg}, 4.5 \mathrm{mmol})$, and DMF (15 mL) affords $\mathbf{1 f}$ as a solid ($526 \mathrm{mg}, 86 \%$). Mp: 130.9-132.0 ${ }^{\circ} \mathrm{C}$ (n-hexane/ethyl acetate). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroformd) $\delta 7.71(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.45(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H})$, $7.26-7.21(\mathrm{~m}, 1 \mathrm{H}), 7.13(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{~s}, 1 \mathrm{H}), 6.45(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.36(\mathrm{dt}, J=13.6$, $6.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.60(\mathrm{~s}, 2 \mathrm{H}), 4.77(\mathrm{~s}, 2 \mathrm{H}), 4.12(\mathrm{~d}, \mathrm{~J}=5.7 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, Chloroform-d) δ 161.9, 146.1, 141.9, 139.0, 133.3, 132.6, 130.9, 127.3, 124.9, 122.6, 119.5, 119.4, 118.5, 114.9, 111.4, 109.3, 70.5, 68.7, 45.5. IR (neat) 2226, 1651, 1591, 1458, 1432, $1413 \mathrm{~cm}^{-1}$. HRMS (ESI): calcd for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{BrN}_{2} \mathrm{O}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: 409.0546$, found: 409.0546 .
(5) E-4-(((3-bromoallyl)oxy)methyl)-1-(4-nitrobenzyl)quinolin-2(1H)-one (1g)

1 g
The reaction of E-4-(((3-bromoallyl)oxy)methyl)quinolin-2(1H)-one (294 mg, 1 mmol$)$, 1-(bromomethyl)-4-nitrobenzene ($259 \mathrm{mg}, 1.2 \mathrm{mmol}$), $\mathrm{K}_{2} \mathrm{CO}_{3}(621 \mathrm{mg}, 4.5 \mathrm{mmol})$, and DMF (15 mL) affords 1 g as a solid ($309 \mathrm{mg}, 72 \%$). Mp: 165.9-166.7 ${ }^{\circ} \mathrm{C}$ (n-hexane/ethyl acetate). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 8.16$ (d, J=8.6 Hz, 2H), 7.72 (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.37$ (d, J=8.6 Hz, 2H), 7.26-7.21 (m, 1H), $7.14(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{~s}, 1 \mathrm{H}), 6.46(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.36(\mathrm{dt}, J=13.6,6.0 \mathrm{~Hz}, 1 \mathrm{H})$, $5.65(\mathrm{~s}, 2 \mathrm{H}), 4.78(\mathrm{~s}, 2 \mathrm{H}), 4.13(\mathrm{~d}, \mathrm{~J}=5.7 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform-d) $\delta 161.9,147.3$, 146.2, 143.9, 139.0, 133.3, 130.9, 127.4, 124.9, 124.1, 122.6, 119.5, 119.4, 114.9, 109.3, 70.5, 68.7, 45.4. IR (neat) 1648, 1590, 1515, 1458, 1440, $1417 \mathrm{~cm}^{-1}$. HRMS (ESI): calcd for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{BrN}_{2} \mathrm{O}_{4}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$: 429.0444, found: 429.0444 .
(6) E-4-(((3-bromoallyl)oxy)methyl)-1-(2-oxo-2-phenylethyl)quinolin-2(1H)-one (1h)

The reaction of E-4-(((3-bromoallyl)oxy)methyl)quinolin-2(1H)-one (294 mg, 1 mmol), 2-bromo-1-phenylethan-1-one ($256 \mathrm{mg}, 1.2 \mathrm{mmol}$), $\mathrm{K}_{2} \mathrm{CO}_{3}(276 \mathrm{mg}, 2 \mathrm{mmol})$, and DMF (10 mL) affords $\mathbf{1 h}$ as a solid ($390 \mathrm{mg}, 95 \%$). Mp: 173.5-174.6 ${ }^{\circ} \mathrm{C}$ (n-hexane/ethyl acetate). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) δ $8.09(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.71(\mathrm{dd}, J=8.1,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H})$, $7.46(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{~s}, 1 \mathrm{H}), 6.44(\mathrm{dt}, J=13.6$, $1.2 \mathrm{~Hz}, 1 \mathrm{H}$), 6.34 (dt, $J=13.6,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.82(\mathrm{~s}, 2 \mathrm{H}), 4.77(\mathrm{~s}, 2 \mathrm{H}), 4.10(\mathrm{dd}, \mathrm{J}=5.7,1.3 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, Chloroform-d) $\delta 192.3,146.0,139.4,134.8,134.0,133.4,130.7,128.9,128.1,124.6$, 122.3, 119.1, 114.5, 109.1, 70.3, 68.7, 48.6. IR (neat) 1690, 1653, 1595, 1449, $1424 \mathrm{~cm}^{-1}$. HRMS (ESI): calcd for $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{BrNO}_{3}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$: 412.0543 , found: 412.0543 .
General procedure III for the synthesis of substrates
Synthesis of E-4-(5-bromopent-4-en-1-yl)-1-methylquinolin-2(1H)-one (1i)

To a flame dried flask are added 1,4-dimethylquinolin-2(1H)-one (1.731g, 10 mmol) and THF (50 mL). The mixture is cooled to $-78^{\circ} \mathrm{C}$ under argon atmosphere and treated dropwise with n-butyl lithium (2.5 M in n-hexane, $8.0 \mathrm{~mL}, 20 \mathrm{mmol}$). The solution is stirred at room temperature for 3 h , cooled to $-78{ }^{\circ} \mathrm{C}$ and treated with $E-1,4$-dibromobut-1-ene $(4.240 \mathrm{~g}, 20 \mathrm{mmol})$. The solution is stirred at room temperature overnight and then cooled to $0^{\circ} \mathrm{C}$, treated with $1 \mathrm{~N} \mathrm{HCl}(20 \mathrm{~mL})$. The solvent is evaporated and the residue is extracted with ethyl acetate ($40 \mathrm{~mL} \times 3$). The combined organic layers are washed with brine $(50 \mathrm{~mL})$, dried over MgSO_{4}, filtered, and evaporated. The crude product is purified by column chromatography (n-hexane/ethyl acetate $=10: 1$ to $1: 1$) to give the product 1 i as a solid ($1.067 \mathrm{~g}, 35 \%$). Mp: 80.9-81.2 ${ }^{\circ} \mathrm{C}$ (n-hexane/ethyl acetate). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 7.71$ (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$, Ar-H), $7.58(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.39(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.31-7.23(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.59(\mathrm{~s}, 1 \mathrm{H}$, Alkene-H), 6.20 (dt, $J=13.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}$, Alkene-H), $6.09(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}$, Alkene-H), 3.72 (s, 3H, $\mathrm{N}-\mathrm{Me}$), $2.83(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}$, Alkane-H), $2.19(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$, Alkane-H), 1.91-1.77 (m, 2H, AlkaneH). ${ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d) $\delta 162.1,149.9,140.0,136.9,130.6,124.8,122.2,120.6,119.9$,
114.8, 105.4, 32.5, 31.2, 29.5, 27.6. IR (neat) 1636, 1597, $1459 \mathrm{~cm}^{-1}$. HRMS (ESI): calcd for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{BrNO}^{+}[\mathrm{M}+\mathrm{H}]^{+}: 306.0488$, found: 306.0490.
The following compound was synthesized according to general procedure III.
(1) E-4-(5-bromopent-4-en-1-yl)-6-methoxy-1-methylquinolin-2(1H)-one (1k)

The reaction of 6-methoxy-1,4-dimethylquinolin-2(1H)-one ($406 \mathrm{mg}, 2 \mathrm{mmol}$), E-1,4-dibromobut-1-ene $(857 \mathrm{mg}, 4 \mathrm{mmol})$, nBuLi (2.5 M in hexane, $1.6 \mathrm{~mL}, 4 \mathrm{mmol}$), and THF (20 mL) affords 1 k as a solid (281 $\mathrm{mg}, 42 \%)$. Mp: $142.0-143.9^{\circ} \mathrm{C}$ (n-hexane/ethyl acetate). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 7.32$ (d, J $=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{dd}, J=9.2,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.58(\mathrm{~s}, 1 \mathrm{H}), 6.21(\mathrm{dt}, J=13.6$, $7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.09(\mathrm{~d}, \mathrm{~J}=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 2.78(\mathrm{t}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.18(\mathrm{q}, J=$ $7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.88-1.76$ (m, 2H). ${ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform-d) $\delta 161.6,154.6,148.6,136.9,134.6$, 121.2, 120.9, 118.0, 115.8, 107.8, 105.4, 55.7, 32.4, 31.1, 29.4, 27.3. IR (neat) 1646, 1618, 1588, 1568, 1506, 1460, 1426, $1413 \mathrm{~cm}^{-1}$. HRMS (ESI): calcd for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{BrNO}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: 336.0594$, found: 336.0595. Synthesis of E-4-(5-bromopent-4-en-1-yl)-6-((tert-butyldimethylsilyl)oxy)-1-methylquinolin-2(1H)-one (1j)

To a flame dried flask are added 6-((tert-butyldimethylsilyl)oxy)-4-methylquinolin-2(1H)-one (920 mg, 3.18 mmol), and THF (20 mL). The mixture is cooled to $-78{ }^{\circ} \mathrm{C}$ under argon atmosphere and treated dropwise with n-butyl lithium (2.5 M in n-hexane, $2.5 \mathrm{~mL}, 6.25 \mathrm{mmol}$). The solution is stirred at $0{ }^{\circ} \mathrm{C}$ for 3 h , cooled to $-78{ }^{\circ} \mathrm{C}$ and treated with E-1,4-dibromobut-1-ene ($1.360 \mathrm{~g}, 6.38 \mathrm{mmol}$). The solution is stirred at room temperature overnight and then cooled to $0^{\circ} \mathrm{C}$, treated with $1 \mathrm{~N} \mathrm{HCl}(20 \mathrm{~mL})$. The solvent is evaporated and the residue is extracted with ethyl acetate ($40 \mathrm{~mL} \times 3$). The combined organic layers are washed with brine $(50 \mathrm{~mL})$, dried over MgSO_{4}, filtered, and evaporated. The crude product is purified by column chromatography (n-hexane/ethyl acetate $=1: 1$) to give the product E-4-(5 -bromopent- 4 -en-1-yl)-6-((tert-butyldimethylsilyl)oxy)-quinolin-2(1H)-one as a solid (469 mg, 35\%). Mp: 174.5-175.6 ${ }^{\circ} \mathrm{C}$ (n-hexane/ethyl acetate). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 12.58(\mathrm{~s}, 1 \mathrm{H}), 7.35(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.13-6.99(\mathrm{~m}, 2 \mathrm{H}), 6.56(\mathrm{~s}, 1 \mathrm{H}), 6.21(\mathrm{dt}, J=13.6,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.11(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.80(\mathrm{t}, J=7.6$ $\mathrm{Hz}, 2 \mathrm{H}), 2.20(\mathrm{q}, \mathrm{J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.95-1.77(\mathrm{~m}, 2 \mathrm{H}), 1.01(\mathrm{~s}, 9 \mathrm{H}), 0.22(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform-d) $\delta 163.7,151.6,150.9,136.9,133.5,124.2,120.4,119.9,117.8,113.4,105.4,32.5,31.4$, $27.5,25.7,18.3,-4.4$. IR (neat) 1662, 1619, 1499, 1470, 1462, $1425 \mathrm{~cm}^{-1}$. Anal. Calc. for $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{BrNO}_{2} \mathrm{Si}$ (421.11), C, 56.87; H, 6.68; N, 3.32. found: C, 56.93; H, 6.72; N, 3.41.

To a sealed tube are added E-4-(5-bromopent-4-en-1-yl)-6-((tert-butyldimethylsilyl)oxy)quinolin-2(1H)one ($422 \mathrm{mg}, 1 \mathrm{mmol}$), $\mathrm{CH}_{3} \mathrm{I}(427 \mathrm{mg}, 3 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(827 \mathrm{mg}, 6 \mathrm{mmol})$, and anhydrous DMF (10 mL). The mixture is stirred at $70^{\circ} \mathrm{C}$ with an oil bath for 4 h as monitored by TLC (eluent: n-hexane/ethyl acetate $=5: 1$). The reaction is quenched with $1 \mathrm{~N} \mathrm{HCl}(10 \mathrm{~mL})$ and extracted with ethyl acetate (20 mL $x 3$). The combined organic layers are washed with brine ($30 \mathrm{~mL} \times 3$), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and evaporated. The residue is purified by flash chromatography on silica gel (eluent: n-hexane/ethyl acetate $=5: 1$) to afford product 1 j as an oil ($402 \mathrm{mg}, 95 \%$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 7.23$ (d, J = 9.5 $\mathrm{Hz}, 1 \mathrm{H}), 7.13-7.02(\mathrm{~m}, 2 \mathrm{H}), 6.53(\mathrm{~s}, 1 \mathrm{H}), 6.17(\mathrm{dt}, J=13.6,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.06(\mathrm{~d}, \mathrm{~J}=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.65$ (s, 3H), 2.72 (t, J = 7.6 Hz, 2H), 2.15 (q, J=7.2 Hz, 2H), 1.89-1.67 (m, 2H), $0.98(\mathrm{~s}, 9 \mathrm{H}), 0.20(\mathrm{~s}, 6 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR (101 MHz, Chloroform-d) $\delta 161.5,150.3,148.5,136.8,134.9,123.3,121.2,120.6,115.6$, 114.4, 105.2, 32.4, 31.1, 29.2, 27.4, 25.6, 18.2, -4.4. IR (neat) 1638, 1593, 1499, 1450, $1415 \mathrm{~cm}^{-1}$. HRMS (ESI): calcd for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{BrNO}_{2}{ }^{+}$[M-TBDMS] ${ }^{+}$: 322.0437, found: 322.0437. Anal. Calc. for
$\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{BrNO}_{2} \mathrm{Si}(435.12)$, C, 57.79; H, 6.93; N, 3.21. found: C, 57.88; H, 7.07; N, 3.36.
Synthesis of E-4-(5-bromopent-4-en-1-yl)-6-hydroxy-1-methylquinolin-2(1H)-one (1)

To a flask are added 1 j ($436 \mathrm{mg}, 1 \mathrm{mmol}$), tetra- n-butylammonium fluoride (TBAF) ($522 \mathrm{mg}, 2 \mathrm{mmol}$), and anhydrous THF (10 mL). The mixture is stirred at room temperature for 1 h as monitored by TLC (eluent: n-hexane/ethyl acetate $=1: 1$). The crude product is washed with water and extracted with ethyl acetate ($20 \mathrm{~mL} \times 3$). The combined organic layers are washed with brine ($30 \mathrm{~mL} \times 3$), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and evaporated. The residue is purified by flash chromatography on silica gel (eluent: n hexane/ethyl acetate $=1: 1$) to afford product 1 I as a solid ($321 \mathrm{mg}, 99 \%$). Mp: 135.9-137.0 ${ }^{\circ} \mathrm{C}$ ($n-$ hexane/ethyl acetate). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 9.51(\mathrm{~s}, 1 \mathrm{H}), 7.38(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.15-7.05$ (m, 2H), $6.45(\mathrm{~s}, 1 \mathrm{H}), 6.36(\mathrm{~d}, \mathrm{~J}=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.29(\mathrm{dt}, J=13.6,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.55(\mathrm{~s}, 3 \mathrm{H}), 2.77-2.69$ $(\mathrm{m}, 2 \mathrm{H}), 2.15(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.72(\mathrm{p}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO-d6) $\delta 171.1,160.7$, 152.6, 149.2, 138.1, 121.1, 120.3, 119.7, 116.7, 109.7, 105.9, 32.4, 31.1, 29.3, 27.5. IR (neat) 3389, $1655 \mathrm{~cm}^{-1}$. HRMS (ESI): calcd for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{BrNO}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: 322.0437$, found: 322.0437.

General procedure IV for the synthesis of substrates

Synthesis of E-4-((4-bromobut-3-en-1-yl)oxy)-6-methyl-2H-chromen-2-one (1m)

To a flask are added 4-hydroxy-6-methyl-2H-chromen-2-one ($880 \mathrm{mg}, 5 \mathrm{mmol}$), E-1,4-dibromobut-1-ene ($1.065 \mathrm{~g}, 5 \mathrm{mmol}$), $\mathrm{K}_{2} \mathrm{CO}_{3}(1.656 \mathrm{~g}, 12 \mathrm{mmol})$, and anhydrous acetone (15 mL). The mixture is refluxed with an oil bath for 24 h as monitored by TLC (n-hexane/ethyl acetate $=1: 1$). The solvent is evaporated and the residue is purified by flash chromatography on silica gel (eluent: n-hexane/ethyl acetate $=5: 1$) to afford product 1 m as a solid ($1.078 \mathrm{~g}, 70 \%$). Mp: 127.9-129.1 ${ }^{\circ} \mathrm{C}$ (n-hexane/ethyl acetate). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 7.54$ (d, J = $0.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), 7.34 (dd, $J=8.4,1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), 7.19 (d, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.40-6.22(\mathrm{~m}, 2 \mathrm{H}$, Alkene-H$), 5.62(\mathrm{~s}, 1 \mathrm{H}$, Alkene-H), $4.14(\mathrm{t}, \mathrm{J}=6.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{O}-$ Alkane-H), 2.70-2.63 (m, 2H, Alkane-H), 2.41 (s, 3H, Me). ${ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform-d) $\delta 165.2$, 162.9, 151.4, 133.6, 133.4, 132.6, 122.5, 116.5, 115.1, 107.8, 90.5, 67.3, 32.1, 20.9. IR (neat) 1695, 1625, 1572, 1462, $1440 \mathrm{~cm}^{-1}$. HRMS (ESI): calcd for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{BrO}_{3}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: 309.0121$, found: 309.0121.
The following compounds were synthesized according to general procedure IV.
(1) E-6-bromo-4-((4-bromobut-3-en-1-yl)oxy)-2H-chromen-2-one (1n)

$+\mathrm{Br} \sim$ Br

The reaction of 6-bromo-4-hydroxy- 2 H -chromen-2-one ($964 \mathrm{mg}, 4 \mathrm{mmol}$), E-1,4-dibromobut-1-ene ($1.026 \mathrm{~g}, 4.8 \mathrm{mmol}$), $\mathrm{K}_{2} \mathrm{CO}_{3}(1.656 \mathrm{~g}, 12 \mathrm{mmol})$, and anhydrous acetone (15 mL) affords $\mathbf{1 n}$ as a solid ($967 \mathrm{mg}, 68 \%$). Mp: $151.5-152.0^{\circ} \mathrm{C}$ (n-hexane/ethyl acetate). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 7.89$ (d, $J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{dd}, J=8.8,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.36-6.22(\mathrm{~m}, 2 \mathrm{H}), 5.67(\mathrm{~s}$, $1 \mathrm{H}), 4.16(\mathrm{t}, \mathrm{J}=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.68(\mathrm{q}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform-d) $\delta 164.0,161.9$, 152.1, 135.3, 132.2, 125.6, 118.6, 117.1, 116.8, 108.2, 91.4, 67.7, 32.1. IR (neat) 1725, 1622, 1558, 1478, 1459, 1431, $1421 \mathrm{~cm}^{-1}$. HRMS (ESI): calcd for $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{Br}_{2} \mathrm{O}_{3}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: 372.9069$, found: 372.9069. (2) E-4-((4-bromobut-3-en-1-yl)oxy)-6-fluoro-2H-chromen-2-one (10)

The reaction of 6-fluoro-4-hydroxy-2H-chromen-2-one (180 mg, 1 mmol), E-1,4-dibromobut-1-ene (257 $\mathrm{mg}, 1.2 \mathrm{mmol}$), $\mathrm{K}_{2} \mathrm{CO}_{3}(414 \mathrm{mg}, 3 \mathrm{mmol})$, and anhydrous acetone (10 mL) affords 10 as a solid (235 $\mathrm{mg}, 75 \%)$. Mp: $159.8-160.0^{\circ} \mathrm{C}$ (n-hexane/ethyl acetate). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 7.44$ (dd, $J=8.3,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.33-7.24(\mathrm{~m}, 2 \mathrm{H}), 6.35-6.22(\mathrm{~m}, 2 \mathrm{H}), 5.69(\mathrm{~s}, 1 \mathrm{H}), 4.17(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.67(\mathrm{q}$, $J=6.1 \mathrm{~Hz}, 2 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR (101 MHz, Chloroform-d) $\delta 164.40$, 164.37, 162.3, 159.9, 157.4, 149.45, $149.43,132.3,120.1,119.9,118.5,118.4,116.5,116.4,108.9,108.6,108.1,91.4,67.6,32.1$. IR (neat) 1646, 1587, 1567, 1460, 1426, $1413 \mathrm{~cm}^{-1}$. HRMS (ESI): calcd for $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{BrFO}_{3}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: 312.9870$, found: 312.9870.
(3) E-4-((6-bromohex-5-en-1-yl)oxy)-2H-chromen-2-one (1s)

The reaction of 4-hydroxy- 2 H -chromen-2-one ($160 \mathrm{mg}, 1 \mathrm{mmol}$), E-1,6-dibromohex-1-ene ($290 \mathrm{mg}, 1.2$ mmol), $\mathrm{K}_{2} \mathrm{CO}_{3}(417 \mathrm{mg}, 3 \mathrm{mmol})$, and anhydrous acetone (10 mL) affords 1 s as a solid ($226 \mathrm{mg}, 70 \%$). ${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform-d) $\delta 7.81$ (dd, $J=7.9,1.6 \mathrm{~Hz}, 1 \mathrm{H}$), 7.55 (ddd, $J=8.7,7.3,1.6 \mathrm{~Hz}, 1 \mathrm{H}$), $7.32(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.26(\mathrm{~m}, 1 \mathrm{H}), 6.20(\mathrm{dt}, J=10.8,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.10(\mathrm{dt}, J=10.8 \mathrm{~Hz}, 1.2 \mathrm{~Hz}$, $1 \mathrm{H}), 5.66(\mathrm{~s}, 1 \mathrm{H}), 4.13(\mathrm{t}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.17(\mathrm{qd}, \mathrm{J}=7.3,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.99-1.89(\mathrm{~m}, 2 \mathrm{H}), 1.71-1.60$ (m, 2H). ${ }^{13} \mathrm{C}$ NMR (126 MHz, Chloroform-d) δ 164.5, 161.9, 152.3, 136.1, 131.3, 122.8, 121.9, 115.7, 114.7, 104.1, 89.4, 67.9, 31.4, 26.8, 24.0. IR (neat) 1708, 1620, 1607, 1565, 1495, 1475, 1454, 1417 cm^{-1}. HRMS (ESI): calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{BrO}_{3}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: 323.0277$, found: 323.0275.

General procedure \mathbf{V} for the photoreaction

(1) 7-Methyl-3,7-dihydrooxepino[4,3-c]quinolin-6(1H)-one (2a)

Violet LED

To a flame dried Schlenk tube are added 1 a ($31 \mathrm{mg}, 0.1 \mathrm{mmol}$), thioxanthone ($1.1 \mathrm{mg}, 0.005 \mathrm{mmol}$), $\mathrm{NaOMe}(6.5 \mathrm{mg}, 0.12 \mathrm{mmol})$, and anhydrous $\mathrm{CH}_{3} \mathrm{CN}(10 \mathrm{~mL})$. The reaction is irradiated by a violet LED strips under argon atmosphere at room temperature. The reaction is completed after 4 h as monitored by TLC (eluent: n-hexane/ethyl acetate $=3: 1$). The solvent is removed and the residue is purified by flash chromatography on silica gel (eluent: n-hexane/ethyl acetate $=5: 1$) to afford 2 a as an oil (22 mg , $95 \%) .{ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 7.81$ (d, J = $8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), 7.54 (t, J=7.8 Hz, 1H, Ar-H), 7.37 (d, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}$, Ar-H), 7.28-7.22 (m, 1H, Ar-H), 7.13 (dt, $J=12.6,2.2 \mathrm{~Hz}, 1 \mathrm{H}$, Alkene-H), 6.20 (dt, $J=12.5,3.2 \mathrm{~Hz}, 1 \mathrm{H}$, Alkene-H), 4.93 (s, 2H, H-Alkane-O), $4.59(\mathrm{t}, J=2.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{O}-A l k a n e-\mathrm{H}), 3.76$ (s, 3H, N-Me). ${ }^{13} \mathrm{C}$ NMR (101 MHz, Chloroform-d) $\delta 161.3,144.5,138.9,135.9,130.2,127.3,124.24$, $124.15,122.3,119.2,114.6,73.3,65.6,30.1$. IR (neat) 1629, 1586, 1457, $1417 \mathrm{~cm}^{-1}$. HRMS (ESI): calcd for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{NO}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: 228.1019$, found: 228.1019.
(2) 7-Benzyl-3,7-dihydrooxepino[4,3-c]quinolin-6(1H)-one (2b)

1b

2b

The reaction of $\mathbf{1 b}(38 \mathrm{mg}, 0.1 \mathrm{mmol})$, thioxanthone $(1.1 \mathrm{mg}, 0.005 \mathrm{mmol}), \mathrm{NaOMe}(6.5 \mathrm{mg}, 0.12 \mathrm{mmol})$, and $\mathrm{CH}_{3} \mathrm{CN}(10 \mathrm{~mL})$ affords $\mathbf{2 b}$ as an oil $(28 \mathrm{mg}, 93 \%) .{ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 7.82$ (d, $\mathrm{J}=$ $8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.32-7.17(\mathrm{~m}, 8 \mathrm{H}), 6.23(\mathrm{dt}, J=12.5,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.61(\mathrm{~s}, 2 \mathrm{H}), 4.98$ ($\mathrm{s}, 2 \mathrm{H}$), $4.63(\mathrm{t}, \mathrm{J}=2.5 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform-d) $\delta 161.5,145.1,138.4,136.3,136.1$, 130.2, 128.8, 127.3, 127.2, 126.5, 124.21, 124.19, 122.4, 119.4, 115.5, 73.5, 65.7, 46.7. IR (neat) 1630, 1585, $1452 \mathrm{~cm}^{-1}$. HRMS (ESI): calcd for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{NO}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: 304.1332$, found: 304.1332.
(3) 7-((Perfluorophenyl)methyl)-3,7-dihydrooxepino[4,3-c]quinolin-6(1H)-one (2c)

Violet LED

The reaction of $1 \mathbf{c}(48 \mathrm{mg}, 0.1 \mathrm{mmol})$, thioxanthone $(1.1 \mathrm{mg}, 0.005 \mathrm{mmol})$, $\mathrm{NaOMe}(6.5 \mathrm{mg}, 0.12 \mathrm{mmol})$, and $\mathrm{CH}_{3} \mathrm{CN}(10 \mathrm{~mL})$ affords 2 c as an oil ($37 \mathrm{mg}, 93 \%$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 7.84$ ($\mathrm{d}, \mathrm{J}=$ $8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.29-7.22(\mathrm{~m}, 2 \mathrm{H}), 7.12(\mathrm{dt}, J=12.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.23(\mathrm{dt}, J=12.5$, $3.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.72(\mathrm{~s}, 2 \mathrm{H}), 4.95(\mathrm{~s}, 2 \mathrm{H}), 4.61(\mathrm{t}, \mathrm{J}=2.5 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform-d) δ 161.3, 145.3, 137.6, 136.6, 130.4, 127.0, 124.8, 123.8, 122.8, 119.7, 113.9, 73.5, 65.7, 35.9. ${ }^{19} \mathrm{~F}$ NMR (376 MHz , Chloroform-d) $\delta-141.9--142.8(\mathrm{~m}),-154.5(\mathrm{t}, J=22.4 \mathrm{~Hz}$), -161.4--163.7 (m), IR (neat) 1656, 1502, 1456, $1421 \mathrm{~cm}^{-1}$. HRMS (ESI): calcd for $\mathrm{C}_{20} \mathrm{H}_{13} \mathrm{~F}_{5} \mathrm{NO}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$: 394.0861, found: 394.0860.
(4) 7-(4-(Trifluoromethyl)benzyl)-3,7-dihydrooxepino[4,3-c]quinolin-6(1H)-one (2d)

The reaction of $1 \mathrm{~d}(45 \mathrm{mg}, 0.1 \mathrm{mmol})$, thioxanthone ($1.1 \mathrm{mg}, 0.005 \mathrm{mmol}$), $\mathrm{NaOMe}(6.5 \mathrm{mg}, 0.12 \mathrm{mmol})$, and $\mathrm{CH}_{3} \mathrm{CN}(10 \mathrm{~mL})$ affords 2d as a solid ($36 \mathrm{mg}, 96 \%$). Mp: 89.1-90.1 ${ }^{\circ} \mathrm{C}$ (n-hexane/ethyl acetate). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 7.85(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.41(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.32(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.26-7.20(\mathrm{~m}, 1 \mathrm{H}), 7.19-7.14(\mathrm{~m}, 2 \mathrm{H}), 6.25(\mathrm{dt}, J=12.5,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.65$ ($\mathrm{s}, 2 \mathrm{H}$), $4.99(\mathrm{~s}, 2 \mathrm{H}), 4.64(\mathrm{t}, \mathrm{J}=2.4 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform-d) $\delta 161.5,145.3,140.4$, 138.1, 136.5, 130.4, 129.8, 129.5, 127.2, 126.9, 125.9, 125.82, 125.78, 125.7, 125.4, 124.4, 123.9, $122.73,122.66,119.5,115.1,73.6,65.8,46.3$. IR (neat) $1635,1598,1458 \mathrm{~cm}^{-1}$. HRMS (ESI): calcd for $\mathrm{C}_{21} \mathrm{H}_{17} \mathrm{~F}_{3} \mathrm{NO}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: 372.1206$, found: 372.1206.
(5) 7-(4-Methoxycarbonylbenzyl)-3,7-dihydrooxepino[4,3-c]quinolin-6(1H)-one (2e)

The reaction of $\mathbf{1 e}(44 \mathrm{mg}, 0.1 \mathrm{mmol})$, thioxanthone ($1.1 \mathrm{mg}, 0.005 \mathrm{mmol}$), $\mathrm{NaOMe}(6.5 \mathrm{mg}, 0.12 \mathrm{mmol})$, and $\mathrm{CH}_{3} \mathrm{CN}(10 \mathrm{~mL})$ affords $\mathbf{2 e}$ as an oil ($33 \mathrm{mg}, 91 \%$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 7.96$ (d, J = $8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.83(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-7.12(\mathrm{~m}, 5 \mathrm{H}), 6.24(\mathrm{dt}, J=12.5,3.0$ $\mathrm{Hz}, 1 \mathrm{H}), 5.65(\mathrm{~s}, 2 \mathrm{H}), 4.98(\mathrm{~s}, 2 \mathrm{H}), 4.64(\mathrm{t}, \mathrm{J}=2.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroformd) $\delta 166.7,161.5,145.3,141.6,138.1,136.4,130.3,130.1,129.2,127.2,126.5,124.4,124.0,122.6$, 119.5, 115.2, 73.6, 65.7, 52.1, 46.5. IR (neat) 1719, 1641, 1457, 1436, $1416 \mathrm{~cm}^{-1}$. HRMS (ESI): calcd for $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{NO}_{4}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: 362.1387$, found: 362.1386 .
(6) 7-(4-Cyanobenzyl)-3,7-dihydrooxepino[4,3-c]quinolin-6(1H)-one (2f)

The reaction of $1 \mathrm{f}(41 \mathrm{mg}, 0.1 \mathrm{mmol})$, thioxanthone ($1.1 \mathrm{mg}, 0.005 \mathrm{mmol}$), $\mathrm{NaOMe}(6.5 \mathrm{mg}, 0.12 \mathrm{mmol})$, and $\mathrm{CH}_{3} \mathrm{CN}(10 \mathrm{~mL})$ affords 2 f as a solid ($30 \mathrm{mg}, 90 \%$). Mp: 110.1-110.7 ${ }^{\circ} \mathrm{C}$ (n-hexane/ethyl acetate). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 7.86(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$), $7.59(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.41(\mathrm{t}, J=8.0$ Hz, 1H), 7.31 (d, J = 8.0 Hz, 2H), 7.26-7.21 (m, 1H), 7.13 (t, J = $11.0 \mathrm{~Hz}, 2 \mathrm{H}$), $6.25(\mathrm{dt}, J=12.4,2.9 \mathrm{~Hz}$, $1 \mathrm{H}), 5.65$ (s, 2H), 4.99 (s, 2H), 4.65 (s, 2H). ${ }^{13} \mathrm{C}$ NMR (101 MHz, Chloroform-d) $\delta 161.4,145.4,141.9$, 137.9, 136.6, 132.7, 130.4, 127.3, 127.2, 124.6, 123.8, 122.9, 119.5, 118.6, 114.9, 111.3, 73.6, 65.7, 46.4. IR (neat) 2250, 1718, 1642, 1456, $1436 \mathrm{~cm}^{-1}$. Anal. Calc. for $\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2}$ (328.12), C, 76.81; H, 4.91; N, 8.53. found: C, 77.01; H, 5.20; N, 8.61.
(7) 7-(4-Nitrobenzyl)-3,7-dihydrooxepino[4,3-c]quinolin-6(1H)-one (2g)

The reaction of $1 \mathrm{~g}(43 \mathrm{mg}, 0.1 \mathrm{mmol})$, thioxanthone ($1.1 \mathrm{mg}, 0.005 \mathrm{mmol}$), NaOMe ($6.5 \mathrm{mg}, 0.12 \mathrm{mmol}$), and $\mathrm{CH}_{3} \mathrm{CN}(10 \mathrm{~mL})$ affords 2 g as a solid ($32 \mathrm{mg}, 92 \%$). Mp: 120.5-121.7 ${ }^{\circ} \mathrm{C}$ (n-hexane/ethyl acetate). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 8.17$ (d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}$), 7.87 (d, $\left.J=8.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.48-7.34$ (m, 3H), 7.25-7.22 (m, 1H), 7.20-7.08 (m, 2H), 6.26 (dt, J = 13.2, 3.1 Hz, 1H), 5.69 (s, 2H), 5.00 (s, 2H), 4.66 (s, $2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform-d) $\delta 161.4,145.5,143.9,137.9,136.7,130.4,127.4,127.2,124.6$, $124.1,123.8,122.9,119.6,114.9,73.6,65.8,46.2$. IR (neat) $1624,1586,1512,1455,1435 \mathrm{~cm}^{-1}$. HRMS (ESI): calcd for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{4}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$: 349.1183 , found: 349.1182.
(8) 7-(2-Oxo-2-phenylethyl)-3,7-dihydrooxepino[4,3-c]quinolin-6(1H)-one (2h)

Violet LED

1h

90\%

2h

The reaction of $1 \mathrm{~h}(41 \mathrm{mg}, 0.1 \mathrm{mmol})$, thioxanthone ($1.1 \mathrm{mg}, 0.005 \mathrm{mmol}$), $\mathrm{NaOMe}(6.5 \mathrm{mg}, 0.12 \mathrm{mmol})$, and $\mathrm{CH}_{3} \mathrm{CN}(10 \mathrm{~mL})$ affords 2 h as an oil ($30 \mathrm{mg}, 90 \%$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 8.10$ (d, $\mathrm{J}=$ $7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.84(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.42(\mathrm{t}, J=7.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.22(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{~d}, J=12.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.21(\mathrm{dt}, J=12.7,3.3$ $\mathrm{Hz}, 1 \mathrm{H}), 5.86(\mathrm{~s}, 2 \mathrm{H}), 4.98(\mathrm{~s}, 2 \mathrm{H}), 4.62(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform-d) δ 192.4, 161.3, 145.4, 138.5, 136.1, 133.9, 130.3, 129.0, 128.2, 127.1, 124.5, 124.1, 122.6, 119.5, 114.5, 73.3, 65.9, 49.4. IR (neat) 1690, 1653, 1595, 1469, 1450, $1424 \mathrm{~cm}^{-1}$. HRMS (ESI): calcd for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{NO}_{3}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: 332.1281$, found: 332.1281 .
(9) 5-Methyl-5,9,10,11-tetrahydro-6H-cyclohepta[c]quinolin-6-one (2i)

Violet LED

$1 i$

2i

The reaction of $1 \mathrm{i}(31 \mathrm{mg}, 0.1 \mathrm{mmol})$, thioxanthone ($1.1 \mathrm{mg}, 0.005 \mathrm{mmol}$), NaOMe ($6.5 \mathrm{mg}, 0.12 \mathrm{mmol}$), and $\mathrm{CH}_{3} \mathrm{CN}(10 \mathrm{~mL})$ affords $\mathbf{2 i}$ as an oil ($21 \mathrm{mg}, 95 \%$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 7.88$ (d, $J=$ $9.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.53(\mathrm{t}, \mathrm{J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.37(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.28-7.23(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H})$, 6.95 (d, J = $11.8 \mathrm{~Hz}, 1 \mathrm{H}$, Alkene-H), 6.38-6.24 (m, 1H, Alkene-H), 3.76 (s, 3H, N-Me), 3.04-2.94 (m, 2H, Alkane-H), 2.32 ($\mathrm{q}, \mathrm{J}=5.9 \mathrm{~Hz}, 2 \mathrm{H}$, Alkane-H), 2.26-2.12 (m, 2H, Alkane-H). ${ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform-d) $\delta 147.4,138.9,135.4,129.6,127.4,125.9,124.9,122.0,121.6,120.7,114.4,31.6,30.0$, 29.8, 27.5. IR (neat) 1639, 1588, $1452 \mathrm{~cm}^{-1}$. HRMS (ESI): calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{NO}^{+}[\mathrm{M}+\mathrm{H}]^{+}: 226.1226$, found: 226.1227.
(10) 2-((tert-Butyldimethylsilyl)oxy)-5-methyl-5,9,10,11-tetrahydro-6H-cyclohepta [c] quinolin-6one (2j)

The reaction of $1 \mathrm{j}(44 \mathrm{mg}, 0.1 \mathrm{mmol})$, thioxanthone ($1.1 \mathrm{mg}, 0.005 \mathrm{mmol}$), $\mathrm{NaOMe}(6.5 \mathrm{mg}, 0.12 \mathrm{mmol})$, and $\mathrm{CH}_{3} \mathrm{CN}(10 \mathrm{~mL})$ affords $\mathbf{2 j}$ as a solid ($27 \mathrm{mg}, 76 \%$). Mp: 143.2-145.0 ${ }^{\circ} \mathrm{C}$ (n-hexane/ethyl acetate). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 7.29(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.05$ (dd, $J=9.0$, $2.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.37-6.25(\mathrm{~m}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 2.94-2.86(\mathrm{~m}, 2 \mathrm{H}), 2.31(\mathrm{q}, J=$ $6.0 \mathrm{~Hz}, 2 \mathrm{H}$), 2.25-2.13 (m, 2H), $1.02(\mathrm{~s}, 9 \mathrm{H}), 0.23(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, Chloroform-d) δ 161.1, 150.6, 146.7, 135.4, 133.9, 127.7, 126.1, 122.4, 121.6, 115.4, 114.8, 31.6, 29.93, 29.85, 27.7, 25.7, 18.3, -4.4. IR (neat) 1632, 1564, 1506, 1461, $1428 \mathrm{~cm}^{-1}$. HRMS (ESI): calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{NO}_{2}{ }^{+}$[M-TBDMS] ${ }^{+}$: 242.1176, found: 242.1176.
(11) 2-Methoxy-5-methyl-5,9,10,11-tetrahydro-6H-cyclohepta[c]quinolin-6-one (2k)

The reaction of $1 \mathbf{k}(34 \mathrm{mg}, 0.1 \mathrm{mmol})$, thioxanthone ($1.1 \mathrm{mg}, 0.005 \mathrm{mmol}$), $\mathrm{NaOMe}(6.5 \mathrm{mg}, 0.12 \mathrm{mmol})$, and $\mathrm{CH}_{3} \mathrm{CN}(10 \mathrm{~mL})$ affords $\mathbf{2 k}$ as an oil ($24 \mathrm{mg}, 94 \%$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 7.36-7.28$ (m, 2H), 7.15 (dd, $J=9.1,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.36-6.26(\mathrm{~m}, 1 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 3.74$ (s, 3H), 2.99-2.90 (m, 2H), $2.32(\mathrm{q}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.25-2.13(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, Chloroformd) $\delta 161.0,154.7,146.8,135.4,133.6,128.0,126.1,121.5,117.2,115.6,108.1,55.8,31.6,30.0,29.9$, 27.7. IR (neat) $1615,1568,1508,1458,1428 \mathrm{~cm}^{-1}$. HRMS (ESI): calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{NO}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: 256.1332$, found: 256.1332.
(12) 2-Hydroxy-5-methyl-5,9,10,11-tetrahydro-6H-cyclohepta[c]quinolin-6-one (2I)

Violet LED

The reaction of $1 \mathrm{I}(32 \mathrm{mg}, 0.1 \mathrm{mmol})$, thioxanthone ($1.1 \mathrm{mg}, 0.005 \mathrm{mmol}$), $\mathrm{NaOMe}(12 \mathrm{mg}, 0.22 \mathrm{mmol})$, and $\mathrm{CH}_{3} \mathrm{CN}(10 \mathrm{~mL})$ affords 2 I as a solid ($22 \mathrm{mg}, 93 \%$). Mp: 136.1-136.7 ${ }^{\circ} \mathrm{C}$ (n-hexane/ethyl acetate). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Methanol- d_{4}) $\delta 7.43(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{dd}, J=9.1$, $2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{dd}, \mathrm{J}=11.7,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.37-6.26(\mathrm{~m}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 2.99-2.91(\mathrm{~m}, 2 \mathrm{H}), 2.36-$ $2.15(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, Methanol- d_{4}) $\delta 162.5,154.4,149.6,136.4,133.5,128.0,126.9,123.0$, $120.3,117.4,110.4,33.0,30.6,30.5,28.6$. IR (neat) 2920, 1602, 1570, 1511, 1455, $1434 \mathrm{~cm}^{-1}$. HRMS (ESI): calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{NO}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$: 242.1176 , found: 242.1176. Supplementary crystallographic data for 2I have been deposited at the Cambridge Crystallographic Data Center. CCDC: 1990197.

Ortep drawing with 50% ellipsoids for 21

Compound	21
formula	$\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{NO}_{2}$
CCDC number	1990197
fw	241.28
color/habit	clear yellow fragment
Cryst. Dimens. [mm ${ }^{3}$]	$0.110 \times 0.249 \times 0.479$
Cryst. Syst.	monoclinic
space group	P 1 21/c 1
a [\AA]	8.4227(3)
$\mathrm{b}[\AA]$	16.6533(6)
$\mathrm{c}[\AA$]	8.2953(3)
α [deg]	90
β [deg]	95.7590(10)
Y [deg]	90
$\mathrm{V}\left[\AA^{3}\right]$	1157.67(7)
Z	4
T [K]	100(2)
$\mathrm{D}_{\text {calcd }}\left[\mathrm{g} / \mathrm{cm}^{-3}\right]$	1.384
$\mu\left[\mathrm{mm}^{-1}\right]$	0.092
ϑ range [deg]	2.43 to 26.39
index range (h, k, l)	$\begin{aligned} & -10 \leq h \leq 10 \\ & -20 \leq k \leq 20 \\ & -10 \leq \mathrm{l} \leq 10 \end{aligned}$
Reflections collected	18989
no. of indep reflns/ $\mathrm{R}_{\text {int }}$	2375/0.0289
no. of data/ restraints/params	2375/0/166
R1/wR2 (1>26(l))	0.0400/0.1072
R1/wR2 (all data)	0.0432/0.1094
GOF (on F${ }^{2}$)	1.100
Largest diff peak and hole [e \AA^{-3}]	0.286/-0.219

(13) 10-Methyl-2,3-dihydro-6H-oxepino[3,2-c]chromen-6-one (2m)

Violet LED

The reaction of $1 \mathrm{~m}(31 \mathrm{mg}, 0.1 \mathrm{mmol})$, thioxanthone ($1.1 \mathrm{mg}, 0.005 \mathrm{mmol}$), $\mathrm{NaOMe}(6.5 \mathrm{mg}, 0.12 \mathrm{mmol})$, and $\mathrm{CH}_{3} \mathrm{CN}(10 \mathrm{~mL})$ affords $\mathbf{2 m}$ as an oil ($19 \mathrm{mg}, 84 \%$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 7.64(\mathrm{~s}, 1 \mathrm{H}$, Ar-H), 7.32-7.25 (m, 1H, Ar-H), 7.16 (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.81(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}$, Alkene-H), 6.186.08 (m, 1H, Alkene-H), 4.54 (t, $J=4.4 \mathrm{~Hz}, 2 \mathrm{H}$, Alkane-H), 2.77 (q, J = $4.6 \mathrm{~Hz}, 2 \mathrm{H}$, Alkane-H), 2.40 (s, $3 \mathrm{H}, \mathrm{N}-\mathrm{Me}$). ${ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform-d) $\delta 163.8,162.9,149.6,133.7,132.6,131.6,123.4,122.3$, 116.8, 116.0, 105.3, 71.4, 33.7, 20.9. IR (neat) 1694, 1621, 1576, 1495, $1426 \mathrm{~cm}^{-1}$. HRMS (ESI): calcd for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{O}_{3}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: 229.0859$, found: 229.0860 .
(14) 10-Bromo-2,3-dihydro-6H-oxepino[3,2-c]chromen-6-one (2n)

Violet LED

The reaction of $1 \mathrm{n}(37 \mathrm{mg}, 0.1 \mathrm{mmol})$, thioxanthone ($1.1 \mathrm{mg}, 0.005 \mathrm{mmol}$), $\mathrm{NaOMe}(6.5 \mathrm{mg}, 0.12 \mathrm{mmol})$, and $\mathrm{CH}_{3} \mathrm{CN}(10 \mathrm{~mL})$ affords $\mathbf{2 n}$ as a solid ($26 \mathrm{mg}, 85 \%$). Mp: 118.1-119.2 ${ }^{\circ} \mathrm{C}$ (n-hexane/ethyl acetate). ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, Chloroform-d) $\delta 8.00(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{dd}, J=8.7,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{~d}, J=$ $8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{~d}, \mathrm{~J}=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.24-6.14(\mathrm{~m}, 1 \mathrm{H}), 4.54(\mathrm{t}, \mathrm{J}=4.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.83-2.74(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform-d) $\delta 163.0,161.3,150.2,134.3,132.8,126.3,122.0,118.7,117.9,116.8$, $106.0,71.6,33.6$. IR (neat) 1704, 1600, 1556, 1474, $1416 \mathrm{~cm}^{-1}$. HRMS (ESI): calcd for $\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{BrO}_{3}{ }^{+}$ [M+H] ${ }^{+}$: 292.9808, found: 292.9808.
(15) 10-Fluoro-2,3-dihydro-6H-oxepino[3,2-c]chromen-6-one (2o)

Violet LED

The reaction of $10(31 \mathrm{mg}, 0.1 \mathrm{mmol})$, thioxanthone ($1.1 \mathrm{mg}, 0.005 \mathrm{mmol}$), NaOMe ($6.5 \mathrm{mg}, 0.12 \mathrm{mmol}$), and $\mathrm{CH}_{3} \mathrm{CN}(10 \mathrm{~mL})$ affords 20 as a solid ($19 \mathrm{mg}, 80 \%$). Mp: $110.4-111.3^{\circ} \mathrm{C}$ (n-hexane/ethyl acetate). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.52$ (dd, $J=8.8,2.9 \mathrm{~Hz}, 1 \mathrm{H}$), 7.27-7.17 (m, 2H), 6.81 (d, $J=11.8$ $\mathrm{Hz}, 1 \mathrm{H}), 6.26-6.15(\mathrm{~m}, 1 \mathrm{H}), 4.55(\mathrm{t}, \mathrm{J}=4.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.84-2.73(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroformd) $\delta 163.3,161.73,161.70,160.0,157.6,147.5,132.7,122.0,119.1,118.9,118.2,118.1,117.8,117.7$, $109.5,109.3,106.0,71.5,33.6$. IR (neat) $1741,1460 \mathrm{~cm}^{-1}$. HRMS (ESI): calcd for $\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{FO}_{3}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$: 233.0608, found: 233.0609.
(16) 7-Methyl-3,7-dihydrooxepino[4,3-c]quinolin-6(1H)-one (2a)

The reaction of $1 \mathrm{p}(26 \mathrm{mg}, 0.1 \mathrm{mmol})$, thioxanthone $(1.1 \mathrm{mg}, 0.005 \mathrm{mmol}), \mathrm{NaOMe}(6.5 \mathrm{mg}, 0.12 \mathrm{mmol})$, and $\mathrm{CH}_{3} \mathrm{CN}(10 \mathrm{~mL})$ affords $2 \mathbf{a}$ as an oil ($7 \mathrm{mg}, 25 \%$).
(17) 4-Ethyl-7-methyl-3,7-dihydrooxepino[4,3-c]quinolin-6(1H)-one (2q)

Violet LED

The reaction of $1 q(38 \mathrm{mg}, 0.1 \mathrm{mmol})$, thioxanthone ($1.1 \mathrm{mg}, 0.005 \mathrm{mmol}$), $\mathrm{NaOMe}(6.5 \mathrm{mg}, 0.12 \mathrm{mmol})$, and $\mathrm{CH}_{3} \mathrm{CN}(10 \mathrm{~mL})$ affords 2 q as an oil $(23 \mathrm{mg}, 90 \%) .{ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 7.78$ (d, $\mathrm{J}=$ $8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{t}, \mathrm{J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.19(\mathrm{~m}, 1 \mathrm{H}), 6.98(\mathrm{~s}, 1 \mathrm{H}), 4.88(\mathrm{~s}$, $2 \mathrm{H}), 4.45(\mathrm{~s}, 2 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 2.25(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.20(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, Chloroform-d) $\delta 161.4,150.2,143.0,138.6,129.7,127.6,123.9,122.2,120.0,119.3,114.5,74.7,65.5$, 30.1, 28.8, 13.5. IR (neat) 1637, 1590, $1459 \mathrm{~cm}^{-1}$. HRMS (ESI): calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{NO}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: 256.1332$, found: 256.1332.

(18) 5,8-Dimethyl-4,8-dihydro-1H-oxocino[4,3-c]quinolin-7(3H)-one (2r)

Violet LED

The reaction of $1 \mathbf{r}(34 \mathrm{mg}, 0.1 \mathrm{mmol})$, thioxanthone ($1.1 \mathrm{mg}, 0.005 \mathrm{mmol}$), NaOMe ($6.5 \mathrm{mg}, 0.12 \mathrm{mmol}$), and $\mathrm{CH}_{3} \mathrm{CN}(10 \mathrm{~mL})$ affords 2 r as a solid ($23 \mathrm{mg}, 89 \%$). Mp: 107.4-109.0 ${ }^{\circ} \mathrm{C}$ (n-hexane/ethyl acetate). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 7.99(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.56 (t, J = $8.4 \mathrm{~Hz}, 1 \mathrm{H}$), 7.39 (d, J = 8.4 $\mathrm{Hz}, 1 \mathrm{H}$), 7.32 (t, J = $7.6 \mathrm{~Hz}, 1 \mathrm{H}$), 6.67 (s, 1H), 4.64 (brs, 2H), 3.76 (s, 3H), 3.65 (brs, 2H), 2.23-2.10 (m, $2 \mathrm{H}), 2.06$ (d, $J=1.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform-d) $\delta 162.0,142.7,139.2,139.0,129.7$, 129.6, 125.8, 122.5, 122.0, 120.9, 114.2, 66.6, 63.8, 36.9, 29.7, 25.6. IR (neat) 1646, 1588, 1459, 1411 cm^{-1}. HRMS (ESI): calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{NO}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$: 256.1332, found: 256.1332. Supplementary crystallographic data for 2 r have been deposited at the Cambridge Crystallographic Data Center. CCDC: 1990198.

Ortep drawing with 50\% ellipsoids for $\mathbf{2 r}$

Compound	2r
formula	$\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NO}_{2}$
CCDC number	1990198
fw	255.30
color/habit	clear colourless fragment
Cryst. Dimens. [mm $\left.{ }^{3}\right]$	$0.122 \times 0.292 \times 0.377$
Cryst. Syst.	trigonal
space group	R-1
a $[\AA]$	27.772(12)
$\mathrm{b}[\AA]$	27.772(12)
$\mathrm{c}[\AA]$	9.413(4)
α [deg]	90
β [deg]	90
Y [deg]	120
$\vee\left[\AA^{3}\right]$	6287.(6)
Z	6
T [K]	100(2)
$\mathrm{D}_{\text {calcd }}\left[\mathrm{g} / \mathrm{cm}^{-3}\right]$	1.214
$\mu\left[\mathrm{mm}^{-1}\right]$	0.080
ϑ range [deg]	2.32 to 25.34
index range ($\mathrm{h}, \mathrm{k}, \mathrm{l}$)	$\begin{aligned} & -33 \leq h \leq 33 \\ & -33 \leq k \leq 33 \\ & -11 \leq \mathrm{l} \leq 11 \\ & \hline \end{aligned}$
Reflections collected	61427
no. of indep reflns/Rint	2568/0.0574
no. of data/ restraints/params	2568/0/174
R1/wR2 (I>2 ${ }^{\text {(I) }}$)	0.0494/0.0984
R1/wR2 (all data)	0.0540/0.1003
GOF (on F^{2})	1.162
Largest diff peak and hole [e \AA^{-3}]	0.202/-0.208

The reaction of $1 \mathbf{u}^{16}(23 \mathrm{mg}, 0.1 \mathrm{mmol})$, thioxanthone $(1.1 \mathrm{mg}, 0.005 \mathrm{mmol}), \mathrm{NaOMe}(6.5 \mathrm{mg}, 0.12$ mmol), and $\mathrm{CH}_{3} \mathrm{CN}(10 \mathrm{~mL})$ affords rac-3u as a solid ($20 \mathrm{mg}, 88 \%$). ${ }^{1} \mathrm{H} \mathrm{NMR}$ (400 MHz , Chloroform-d) $\delta 7.22(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.37$ $(\mathrm{s}, 3 \mathrm{H}), 3.11-2.99(\mathrm{~m}, 1 \mathrm{H}), 2.68-2.43(\mathrm{~m}, 2 \mathrm{H}), 2.17-2.02(\mathrm{~m}, 3 \mathrm{H}), 1.99-1.83(\mathrm{~m}, 3 \mathrm{H}), 1.71-1.64(\mathrm{~m}, 1 \mathrm{H})$.
(20) 3a-Bromo-6-methyl-1,2,3,3a,4,4a-hexahydrocyclopenta[2,3]cyclobuta[1,2-c]quinolin-5(6H)one (rac-3v)

The reaction of $1 \mathbf{v}(31 \mathrm{mg}, 0.1 \mathrm{mmol})$, thioxanthone ($1.1 \mathrm{mg}, 0.005 \mathrm{mmol}$), NaOMe ($6.5 \mathrm{mg}, 0.12 \mathrm{mmol}$), and $\mathrm{CH}_{3} \mathrm{CN}(10 \mathrm{~mL})$ affords rac-3v as an oil ($26 \mathrm{mg}, 85 \%$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Methylene Chloride- d_{2}) $\delta 7.32(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.24-7.09(\mathrm{~m}, 2 \mathrm{H}), 7.04(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.35(\mathrm{~s}, 3 \mathrm{H}), 3.12-2.91(\mathrm{~m}, 2 \mathrm{H})$, 2.89-2.78 (m, 1H), 2.50-2.31 (m, 2H), 2.25-1.96 (m, 4H). ${ }^{13} \mathrm{C}$ NMR (101 MHz , Methylene Chloride- d_{2}) δ 168.6, 140.3, 129.1, 128.8, 125.3, 122.8, 115.0, 71.3, 56.5, 46.1, 43.9, 41.5, 39.0, 29.3, 25.0. IR (neat) 1625, 1592, 1570, $1453 \mathrm{~cm}^{-1}$. HRMS (ESI): calcd for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{BrNO}^{+}[\mathrm{M}+\mathrm{H}]^{+}: 306.0488$, found: 306.0489. Synthesis of 4-bromo-6-methyl-3,3a,4,4a-tetrahydro-1H-furo[3',4':2,3]cyclobuta[1,2-c]quinolin-5(6H)-one (rac-3a-1 and rac-3a-2)

To a flame dried Schlenk tube are added 1a ($31 \mathrm{mg}, 0.1 \mathrm{mmol}$), thioxanthone ($1.1 \mathrm{mg}, 0.005 \mathrm{mmol}$), and $\mathrm{CH}_{3} \mathrm{CN}(10 \mathrm{~mL})$. The reaction is irradiated by a violet LED strips under argon atmosphere at room temperature. The reaction is completed after 4 h as monitored by TLC (eluent: n-hexane/ethyl acetate $=3: 1$). The solvent is removed and the residue is purified by flash chromatography on silica gel (eluent: n-hexane/ethyl acetate $=5: 1$) to afford rac-3a-1 and rac-3a-2 as a solid. rac-3a-1 ($7 \mathrm{mg}, 22 \%$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 7.32(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.04(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.77(\mathrm{t}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.57(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.16-4.07(\mathrm{~m}, 1 \mathrm{H}), 4.03(\mathrm{~d}, J$ $=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.59(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.39(\mathrm{~s}, 3 \mathrm{H}), 3.17(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform-d) δ 165.8, 139.4, 128.9, 127.1, 123.5, 121.7, 115.4, 78.6, 71.8, 57.0, $50.4,49.2,44.3,29.1$. IR (neat) 1664, 1600, 1468, 1419, $1366 \mathrm{~cm}^{-1}$. HRMS (ESI): calcd for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{BrNO}^{+}$ $[\mathrm{M}+\mathrm{H}]^{+}$: 308.0281, found: 308.0281. Supplementary crystallographic data for rac-3a-1 have been deposited at the Cambridge Crystallographic Data Center. CCDC: 1986917.

Ortep drawing with 50\% ellipsoids for rac-3a-1

Compound	rac-3a-1
formula	$\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{Br} \mathrm{NO} 2$
CCDC number	1986917
fw	308.17
color/habit	clear colourless fragment
Cryst. Dimens. [mm ${ }^{3}$]	$0.05 \times 0.05 \times 0.05$
Cryst. Syst.	monoclinic
space group	P21/n
a [\AA]	9.1885(6)
$\mathrm{b}\left[\AA{ }^{\text {d }}\right.$]	14.2679(9)
$\mathrm{c}[\AA]$	10.1298(6)
α [deg]	90
β [deg]	107.630(2)
Y [deg]	90
$V\left[\AA^{3}\right]$	1265.65(14)
Z	4
T [K]	298(2)
$\mathrm{D}_{\text {calcd }}\left[\mathrm{g} / \mathrm{cm}^{-3}\right]$	1.617
$\mu\left[\mathrm{mm}^{-1}\right]$	2.890
ϑ range [deg]	5.2 to 59.3
index range (h, k, l)	-11<=h<=11, -18<=k<=18, -12<=\|<= 12
Reflections collected	18648
no. of indep reflns/Rint	2725 / 0.042
no. of data/ restraints/params	2465 / 0 / 164
R1/wR2 (I>2б(I))	0.0531/0.1576
R1/wR2 (all data)	0.0565/0.1621
GOF (on F${ }^{2}$)	1.068

rac-3a-2 (11 mg, 34\%). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Methylene Chloride- d_{2}) $\delta 7.32$ (td, $J=8.4,2.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.23 (dd, $J=7.7,1.6 \mathrm{~Hz}, 1 \mathrm{H}$), 7.11 (td, $J=7.5,1.1 \mathrm{~Hz}, 1 \mathrm{H}$), 7.06 (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}$), 4.44 (dd, $J=8.6,2.3$ $\mathrm{Hz}, 1 \mathrm{H}), 4.15(\mathrm{~d}, ~ J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{dd}, J=10.4,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.76$ (dd, J $=8.5,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.39(\mathrm{~s}, 3 \mathrm{H}), 3.20(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , Methylene Chloride- d_{2}) $\delta 165.1,140.2,128.9,126.7,123.7,123.5,115.6,79.0,74.1,62.2,49.4,47.5$, 46.8, 29.3. IR (neat) 1662, 1599, 1467, $1367 \mathrm{~cm}^{-1}$. HRMS (ESI): calcd for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{BrNO}^{+}[\mathrm{M}+\mathrm{H}]^{+}: 308.0281$, found: 308.0281. Supplementary crystallographic data for rac-3a-2 have been deposited at the Cambridge Crystallographic Data Center. CCDC: 1990199.

Ortep drawing with 50\% ellipsoids for rac-3a-2

Compound	rac-3a-2
formula	$\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{BrNO}_{2}$
CCDC number	1990199
fw	308.17
color/habit	clear colourless fragment
Cryst. Dimens. $\left[\mathrm{mm}^{3}\right]$	$0.084 \times 0.211 \times 0.243$
Cryst. Syst.	monoclinic
space group	$P 121 / \mathrm{n} 1$
$\mathrm{a}[\AA]$	$7.5317(15)$
$\mathrm{b}[\AA]$	$10.0907(19)$
$\mathrm{c}[\AA \overline{ }(\mathrm{A}]$	$16.552(3)$
$\alpha[\mathrm{deg}]$	90
$\beta[\mathrm{deg}]$	$96.368(8)$
$\mathrm{Y}[\mathrm{deg}]$	90
$\mathrm{~V}\left[\AA^{3}\right]$	$1250.2(4)$
Z	4
$\mathrm{~T}[\mathrm{~K}]$	$100(2)$
$\mathrm{D}_{\text {calc }}\left[\mathrm{g} / \mathrm{cm}^{-3}\right]$	1.637
$\mu\left[\mathrm{~mm}^{-1}\right]$	3.281
ϑ range $[\mathrm{deg}]$	2.37 to 25.35

	$-9 \leq \mathrm{h} \leq 9$				
index range (h, $\mathrm{k}, \mathrm{l})$	$-12 \leq \mathrm{k} \leq 12$				
	$-19 \leq \mathrm{l} \leq 19$	$	$	Reflections collected	16733
:---	:---				
no. of indep reflns/Rint	$2283 / 0.0651$				
no. of data/ restraints/params	$2283 / 0 / 164$				
R1/wR2 (l>2 $\sigma(\mathrm{l})$)	$0.0296 / 0.0753$				
R1/wR2 (all data)	$0.0314 / 0.0766$				
GOF (on F^{2})	1.061				
Largest diff peak and hole $\left[\mathrm{e} \AA^{-3}\right]$	$0.470 /-0.555$				

Synthesis of 6-methyl-3,3a-dihydro-1H-furo[3',4':2,3]cyclobuta[1,2-c]quinolin-5(6H)-one (rac-4a)

rac-3a-1 ($31 \mathrm{mg}, 0.1 \mathrm{mmol}$), $\mathrm{NaOMe}(6.5 \mathrm{mg}, 0.12 \mathrm{mmol}$), and anhydrous $\mathrm{MeCN}(10 \mathrm{~mL})$ are added into a 25 mL of dry Schlenk flask. The reaction mixture is degassed with argon. The reaction mixture is stirred at room temperature under argon atmosphere. The reaction is completed after 4 h as monitored by TLC (eluent: petroleum ether/ethyl acetate $=3: 1$). The solvent is removed and the residue is purified by flash chromatography on silica gel (eluent: petroleum ether/ethyl acetate $=3: 1$) to afford rac-4a as a solid ($22 \mathrm{mg}, 99 \%$). Mp 83.1-84.1 ${ }^{\circ} \mathrm{C}$ (petroleum ether/ethyl acetate). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 7.35-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.10(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.66(\mathrm{~s}, 1 \mathrm{H}), 4.00(\mathrm{~d}, J=9.8 \mathrm{~Hz}$, 2H), 3.64-3.54 (m, 1H), 3.49-3.41 (m, 1H), 3.36 (s, 3H), $3.26(\mathrm{~d}, \mathrm{~J}=9.8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 159.8,142.3,140.6,140.2,128.6,127.0,126.5,123.4,116.0,71.8,67.9,55.8,54.6,29.3$; IR (neat) 1676, 1627, 1598, $1456 \mathrm{~cm}^{-1}$. HRMS (EI) calcd for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{NO}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: 228.1019$, found: 228.1018 . Supplementary crystallographic data for rac-4a have been deposited at the Cambridge Crystallographic Data Center. CCDC: 1986918.

Ortep drawing with 50\% ellipsoids for rac-4a

Compound	rac-4a
formula	$\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{NO}_{2}$
CCDC number	1986918
fw	227.27
color/habit	clear colourless fragment
Cryst. Dimens. [mm ${ }^{3}$]	$0.09 \times 0.08 \times 0.07$
Cryst. Syst.	monoclinic
space group	$P 21 / \mathrm{c}$
$\mathrm{a}[\AA]$	9.0750(2)
$\mathrm{b}[\AA$]	9.0233(2)
$\mathrm{c}[\AA$]	13.9880(3)
人 [deg]	90
β [deg]	107.620(1)
Y [deg]	90
$\checkmark\left[\AA^{3}\right]$	1091.69(4)
Z	4
T [K]	180(2)
$\mathrm{D}_{\text {calcd }}\left[\mathrm{g} / \mathrm{cm}^{-3}\right]$	1.383
$\mu\left[\mathrm{mm}^{-1}\right]$	0.750
ϑ range [deg]	3.560 to 26.37
index range (h, k, l)	$-10<=\mathrm{h}<=10,-10<=\mathrm{k}<=10,-16<=\mathrm{l}<=16$
Reflections collected	1936
no. of indep reflns/ $\mathrm{R}_{\text {int }}$	1936/ 0.039
no. of data/ restraints/params	13949 / 0 / 155
R1/wR2 (l>2 ${ }^{\text {(I) }}$)	0.0387/0.0990
R1/wR2 (all data)	0.0344/0.0924
GOF (on ${ }^{2}$)	1.072
Largest diff peak and hole [e \AA^{-3}]	0.36/-0.16

Procedure for the transformation of rac-3a-2 into rac-4a

rac-3a-2
rac-4a
rac-3a-2 (31 mg, 0.1 mmol), $\mathrm{NaOMe}(6.5 \mathrm{mg}, 0.12 \mathrm{mmol}$), and anhydrous $\mathrm{MeCN}(10 \mathrm{~mL})$ are added into a 25 mL of dry Schlenk flask. The reaction mixture is degassed with argon. The reaction mixture is stirred at room temperature under argon atmosphere. The reaction is completed after 4 h as monitored by TLC (eluent: petroleum ether/ethyl acetate $=3: 1$). The solvent is removed and the residue is purified by flash chromatography on silica gel (eluent: petroleum ether/ethyl acetate $=3: 1$) to afford rac-4a as a solid ($22 \mathrm{mg}, 99 \%$).

Procedure for the transformation of rac-3a-1 into 2a

rac-3a-1 (16 mg, 0.05 mmol$)$, $\mathrm{NaOMe}(3.3 \mathrm{mg}, 0.06 \mathrm{mmol})$, thioxanthone ($0.6 \mathrm{mg}, 0.0028 \mathrm{mmol}$), and anhydrous $\mathrm{MeCN}(10 \mathrm{~mL})$ are added into a 25 mL of dry Schlenk flask. The reaction mixture is degassed with argon. The reaction mixture is irradiated at room temperature under argon atmosphere. The reaction is completed after 4 h as monitored by TLC (eluent: petroleum ether/ethyl acetate $=3: 1$). The
solvent is removed and the residue is purified by flash chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 3:1) to afford $\mathbf{2 a}$ as an oil ($10.5 \mathrm{mg}, 95 \%$).

Procedure for the transformation of rac-3a-2 into 2a

rac-3a-2 (31 mg, 0.1 mmol), $\mathrm{NaOMe}(6.5 \mathrm{mg}, 0.12 \mathrm{mmol}$), thioxanthone ($1.1 \mathrm{mg}, 0.005 \mathrm{mmol}$), and anhydrous $\mathrm{MeCN}(10 \mathrm{~mL})$ are added into a 25 mL of dry Schlenk flask. The reaction mixture is degassed with argon. The reaction mixture is irradiated at room temperature under argon atmosphere. The reaction is completed after 4 h as monitored by TLC (eluent: petroleum ether/ethyl acetate $=3: 1$). The solvent is removed and the residue is purified by flash chromatography on silica gel (eluent: petroleum ether/ethyl acetate $=3: 1$) to afford $\mathbf{2 a}$ as an oil ($22 \mathrm{mg}, 95 \%$).

Procedure for the transformation of rac-4a into 2a

rac-4a ($23 \mathrm{mg}, 0.1 \mathrm{mmol}$), thioxanthone ($1.1 \mathrm{mg}, 0.005 \mathrm{mmol}$), and anhydrous MeCN (10 mL) are added into a 25 mL of dry Schlenk flask. The reaction mixture is degassed with argon. The reaction mixture is irradiated at room temperature under argon atmosphere. The reaction is completed after 4 h as monitored by TLC (eluent: petroleum ether/ethyl acetate $=3: 1$). The solvent is removed and the residue is purified by flash chromatography on silica gel (eluent: petroleum ether/ethyl acetate $=3: 1$) to afford 2a as an oil ($21 \mathrm{mg}, 95 \%$).
Procedure for gram scale experiment of $\mathbf{1 a}$ to $\mathbf{2 a}$

To a flame dried three-necked bottle $(500 \mathrm{~mL})$ are added $\mathbf{1 a}(1002 \mathrm{mg}, 3.25 \mathrm{mmol})$, thioxanthone (34.5 $\mathrm{mg}, 0.1625 \mathrm{mmol}$), $\mathrm{NaOMe}(210.9 \mathrm{mg}, 3.9 \mathrm{mmol})$, and anhydrous $\mathrm{CH}_{3} \mathrm{CN}(325 \mathrm{~mL})$. The reaction mixture is degassed with argon and irradiated by a violet LED strips under argon atmosphere at room temperature. The reaction is completed after 4 h as monitored by TLC (eluent: n-hexane/ethyl acetate $=3: 1$). The solvent is removed and the residue is purified by flash chromatography on silica gel (eluent: n-hexane/ethyl acetate $=3: 1$) to afford $\mathbf{2 a}$ as an oil ($672 \mathrm{mg}, 91 \%$).

NMR spectrums

xdw standard 9.21. fid
DMSO- $d_{6}-400 \mathrm{MHz}$
$\stackrel{n}{n}$

$$
\text { jusj ji } 1
$$

 xdw standard 9.20.fid DMSO- $d_{6}-101 \mathrm{MHz}$

[^0]

[^1]

1a

$\mathrm{CDCl}_{3}-400 \mathrm{MHz}$

xdw 5-93.21.fid $\mathrm{CDCl}_{3}-101 \mathrm{MHz}$

[^2]

xdw 5-94.21.fid $\mathrm{CDCl}_{3}-101 \mathrm{MHz}$

mislof \& 1

xdw 5-100.31.fid
$\mathrm{CDCl}_{3}-101 \mathrm{MHz}$

xdw 5-102.11.fid
$\mathrm{CDCl}_{3}-101 \mathrm{MHz}$

$1 \mathbf{e}$

xdw 5-101.31.fid $\mathrm{CDCl}_{3}-101 \mathrm{MHz}$

1f

$\begin{array}{lllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130\end{array}$
120
$10 \underset{\mathrm{f} 1(\mathrm{ppm})}{100}$
$80 \quad 70$

xdw 5-97.31.fid
$\mathrm{CDCl}_{3}-101 \mathrm{MHz}$

爰管

1 g

[^3]lh-dw-5-89.10.fid
$\mathrm{CDCl}_{3}-400 \mathrm{MHz}$

xdw 5-98.21.fid
$\mathrm{CDCl}_{3}-101 \mathrm{MHz}$

프르릉

$$
\begin{aligned}
& \stackrel{\text { O}}{\substack{\circ \\
\text { ¢ } \\
\mid}}
\end{aligned}
$$

1h

[^4]xdw 5-13.10.fid
$\mathrm{CDCl}_{3}-400 \mathrm{MHz}$

$1 i$

xdw 5-13.21.fid $\mathrm{CDCl}_{3}-101 \mathrm{MHz}$

$1 i$

[^5](

 xdw 5-67-2ch3ic.10.fid
$\mathrm{CDCl}_{3}-101 \mathrm{MHz}$

1j

Ji ! \| \| J J J

,
 xdw 5-32ch3i C.10.fid
$\mathrm{CDCl}_{3}-101 \mathrm{MHz}$

11

xdw tbdmsdeprotected.21.fid DMSO- $d_{6}-101 \mathrm{MHz}$

	-		$\begin{aligned} & \stackrel{\rightharpoonup}{\mathbf{o}} \\ & \stackrel{\rightharpoonup}{\mathrm{W}} \end{aligned}$	

11

xdw 5-77.11.fid $\mathrm{CDCl}_{3}-101 \mathrm{MHz}$

[^6]xdw 5-65.10.fid
$\mathrm{CDCl}_{3}-400 \mathrm{MHz}$

 xdw 5-65c.10.fid $\mathrm{CDCl}_{3}-101 \mathrm{MHz}$

210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10
210	200	190	180	170	160	150	140	130	120	110	f1 (ppm)	90	80	7	60	50	40	30	20	10	0	-10

xdw 5-90.11.fid
CDCl_{3}-101 MHz

[^7]

xdw 5-82.31.fid
$\mathrm{CDCl}_{3}-101 \mathrm{MHz}$

 xdw 5-78ch3i.11.fid $\mathrm{CDCl}_{3}-101 \mathrm{MHz}$

Mn

Niñoñ

[^8]

whe

> xdw 5-45 ch3i.11.fid

$\mathrm{CDCl}_{3}-101 \mathrm{MHz}$

9－3－H．10．fid CDCll－500 MHz	8		필
			Q
		ザア	

10-1-H.10.fid $\mathrm{CDCl}_{3}-500 \mathrm{MHz}$

10-1-C.10.fid
$\mathrm{CDCl}_{3}-126 \mathrm{MHz}$

|d\|

2a

[^9] , ,ll , f ff

2b

xdw 5-95.21.fid
$\mathrm{CDCl}_{3}-101 \mathrm{MHz}$

2b

xdw 5-96.40.fid
$\mathrm{CDCl}_{3}-400 \mathrm{MHz}$
xdw 5-96.40.fid

xdw 5-96.41.fid
$\mathrm{CDCl}_{3}-101 \mathrm{MHz}$

$\stackrel{\tilde{m}}{\substack{0 \\ \\ 1}}$

2c

[^10]

2c

xdw 5-100 photo.10.fid $\mathrm{CDCl}_{3}-400 \mathrm{MHz}$

2d

$x d w$ 5-100 photo.11.fid $\mathrm{CDCl}_{3}-101 \mathrm{MHz}$

2d

[^11]xdw 5-107.60.fid
$\mathrm{CDCl}_{3}-400 \mathrm{MHz}$

J, \|ll s f 11

2e

/小l , / J J

xdw 5-101 photo.11.fid

xdw 5-104-02.10.fid
$\mathrm{CDCl}_{3}-400 \mathrm{MHz}$

2g

 $\stackrel{8}{\square}$

2h

2h

 $x d w$
$\mathrm{CDCl}_{3}-400 \mathrm{MHz}$

2i

$2 i$
$\underbrace{\text { N }}_{\text {N }}$

TBDMSO

$\mathrm{CDCl}_{3}-400 \mathrm{MHz}$

xdw 5-46.41.fid $\mathrm{CDCl}_{3}-101 \mathrm{MHz}$

$\stackrel{n}{0}$	안	+	等敢	
$\stackrel{\text { ¢ }}{\text { - }}$	$\stackrel{\text { ¢ }}{\text { ¢ }}$	¢	¢ $\mathrm{m}_{\text {m }}$	
\|	\|		11	1114

2k

xdw 5-73-2.20.fid
MeOD-400 MHz

 율휼률율휼

/1 /
κ

xdw 5-68.30.fid $\mathrm{CDCl}_{3}-400 \mathrm{MHz}$㳑

2n

xdw 5-68.21.fic $\mathrm{CDCl}_{3}-101 \mathrm{MHz}$

COSY spectrum of $\mathbf{2 n}$

HSQC spectrum of $\mathbf{2 n}$

HMBC spectrum of $\mathbf{2 n}$

xdw 5-91.10.fid
$\mathrm{CDCl}_{3}-400 \mathrm{MHz}$

, 1, jo

xdw 5-86.10.fid
$\mathrm{CDCl}_{3}-400 \mathrm{MHz}$
il

2q

xdw 5-71.30.fid
$\mathrm{CDCl}_{3}-400 \mathrm{MHz}$

xdw 5-71.21.fid
$\mathrm{CDCl}_{3}-101 \mathrm{MHz}$

2r

xdw 2-20.10.fid $\mathrm{CDCl}_{3}-400 \mathrm{MHz}$

rac-3u

rac-3v

xdw 4-22-01-022.30.fid
$\mathrm{CD}_{2} \mathrm{Cl}_{2}-101 \mathrm{MHz}$

rac-3v

/1//
f J Jj J/ / /
rac-3a-1

xdw-p1.31.fid
$\mathrm{CDCl}_{3}-101 \mathrm{MHz}$

rac-3a-1

xdw p2.20.fid
$\mathrm{CD}_{2} \mathrm{Cl}_{2}-400 \mathrm{MHz}$

rac-3a-2
IIII
/ J/J $1 /$

$\underbrace{\text { - }}$

xdw p2.21.fid
$\mathrm{CD}_{2} \mathrm{Cl}_{2}-101 \mathrm{MHz}$

rac-3a-2

$\int J S$ f frils

1
-

 $\stackrel{y}{0}$

| 10 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

pgx-cyclobutene-13C. 32. fid
13 C
$\mathrm{CDCl}_{3}-101 \mathrm{MHz}$

m
m
M
0.

rac-4a

Supplementary References:

(1) Tymann D.; Tymann D.C.; Bednarzick U.; Iovkova-Berends L.; Rehbein J.; Hiersemann M. Angew. Chem. Int. Ed. 2018, 57, 15553-15557.
(2) Nonoyama S.; Yonezawa N.; Saigo K.; Hasegawa M.; litaka Y. Bull. Chem. Soc. Jpn. 1987, 60, 349354.
(3) Shimo T.; Somekawa K.; Wakikawa Y.; Uemura H.; Tsuge O.; Imada K.; Tanabe K. Bull. Chem. Soc. Jpn. 1987, 60, 621-626.
(4) Sheldrick G. Acta Crystallogr., Sect. A 2015, 71, 3-8.
(5) Sheldrick G. Acta Crystallogr., Sect. C 2015, 71, 3-8.
(6) Hübschle C.B.; Sheldrick G.M.; Dittrich B. J. Appl. Crystallogr. 2011, 44, 1281-1284.
(7) Wexler A.J.; Hyatt J.A.; Raynolds P.W.; Cottrell C.; Swenton J.S. J. Am. Chem. Soc. 1978, 100, 512520.
(8) Spek A. Acta Crystallogr., Sect. C 2015, 71, 9-18.
(9) Spek A. Acta Crystallogr., Sect. D 2009, 65, 148-155.
(10) Jiang Z.-X.; Qin Y.-Y.; Qing F.-L. J. Org. Chem. 2003, 68, 7544-7547.
(11) Majumdar K.C.; Kundu N. Synth. Commun. 2006, 36, 1879-1886.
(12) Alami M.; Crousse B.; Ferri F. J. Organomet. Chem. 2001, 624, 114-123.
(13) Del Valle D.J.; Krische M.J. J. Am. Chem. Soc. 2013, 135, 10986-10989.
(14) Kim J.I.I.; Patel B.A.; Heck R.F. J. Org. Chem. 1981, 46, 1067-1073.
(15) Hofstra J.L.; Cherney A.H.; Ordner C.M.; Reisman S.E. J. Am. Chem. Soc. 2018, 140, 139-142.
(16) Xu D.; Kaiser F.; Li H.; Reich R.M.; Guo H.; Kühn F.E. Org. Biomol. Chem. 2019, 17, 49-52.

[^0]:

[^1]:

[^2]:

[^3]: $\begin{array}{lllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130\end{array}$ $110 \underset{\mathrm{f} 1(\mathrm{ppm})}{100}$ $\begin{array}{llllllllll}1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}$

[^4]:

[^5]:

[^6]:

[^7]:

[^8]:

[^9]:

[^10]:

[^11]: $\begin{array}{llllllllllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}$

