Supporting Information

Zeolitic Imidazolate Framework-67 Derived CeO₂@Co₃O₄ Core-shell Microspheres with Enhanced Catalytic Activity towards Toluene Oxidation

Wei Fang^a, Jinghuan Chen^{a,*}, Xiangyuan Zhou^a, Jianjun Chen^{b, c}, Zhiping Ye^a, Junhua Li^{b, c}

^a Key Laboratory of Microbial Technology for Industrial Pollution Control, College of Environment, Zhejiang University of Technology, Hangzhou 310032, China

^b National Engineering Laboratory for Multi Flue Gas Pollution Control Technology and Equipment, School of Environment, Tsinghua University, Yancheng 224001, China

^c State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China

E-mail address: chenjh@zjut.edu.cn Tel/Fax: +86 571 88320881

Contents

Preparation of the CoCe-P catalyst.

Figure S1. SEM image (A) of CoCe-P; XRD pattern (B), Toluene conversion (C) and Arrhenius plots (D) of $CeO_2@,Co_3O_4$ and CoCe-P.

Table S1: The catalytic activity results of CeO₂@Co₃O₄ and CoCe-P for toluene

Figure S2. N₂ adsorption/desorption isotherms (A) and pore size distributions (B) of (a) Co₃O₄, (b) CeO₂@Co₃O₄ and (c) CeO₂.

Figure S3. EDX image of the CeO₂@Co₃O₄ sample.

Figure S4. XPS spectra of CeO₂@Co₃O₄ before and after reaction.

Figure S5. Correlations between the O_{ads}/O_{lat} ratios and the catalytic activity at 50% conversion of the three catalysts.

Preparation of the CoCe-P catalyst

The CoCe-P catalyst was synthesized with a modified co-precipitation method. ¹ Firstly, 667.6 mg Co(NO₃)₂·6H₂O and 306.4 mg Ce(NO₃)₃·6H₂O were dissolved in 40 ml ethanol and water mixed solution (v/v=1:1). Then, 10 vol.% aqueous ammonia solution was added dropwise to the above solution with continuous stirring until the pH was 9.30 ± 0.02 . Subsequently, the precipitants were collected by centrifugation, washed for at least 3 times and dried at 80 °C overnight. Finally, the product was calcined at 400 °C for 2 h and marked as CoCe-P.

Figure S1. SEM image (A) of CeCe-P; XRD pattern (B), Toluene conversion (C) and Arrhenius plots (D) of CeO₂@Co₃O₄ and CoCe-P.

As shown in Figure S1A, the SEM image of CoCe-P exhibited clusters of irregular particles,

which was similar with the previous work. ² From Figure S1B, the XRD pattern of CoCe-P could be ascribed to CeO_2 and Co_3O_4 . No other phases were detected.

Furthermore, the catalytic activity towards toluene oxidation (C) and Arrhenius plots (D) of CoCe-P were also given in Figure 1, and the results were summarized in Table 1. From Figure 1C-D and Table 1, the CeO₂@Co₃O₄ sample showed better activity than CoCe-P. Additionally, the E_a of the core-shell catalyst was lower than that of the CoCe-P sample, which further verified that core-shell CeO₂@Co₃O₄ was superior to the CeCo catalyst prepared by the co-precipitation method.

Sample	<i>T</i> ₅₀ (°C)	T ₉₀ (°C)	$E_{\rm a}$ ^a (kJ/mol)
CeO ₂ @Co ₃ O ₄	204	225	82.0
CoCe-P	215	259	102.1

Table S1: The catalytic activity results of $CeO_2(a)Co_3O_4$ and CoCe-P for toluene

^a Apparent activation energy for toluene oxidation obtained from the Arrhenius plot.

Figure S2. N_2 adsorption/desorption isotherms (A) and pore size distributions (B) of (a) Co_3O_4 , (b) $CeO_2@Co_3O_4$ and (c) CeO_2 .

Figure S3. EDX image of the $CeO_2@Co_3O_4$ sample.

Figure S4. XPS spectra of CeO₂@Co₃O₄ before and after reaction.

Figure S5. Correlations between the O_{ads}/O_{lat} ratios and the catalytic activity at 50% conversion of the three catalysts.

References

(1) Chen, J.; Zhang, X.; Arandiyan, H.; Peng, Y.; Chang, H.; Li, J., Low temperature complete combustion of methane over cobalt chromium oxides catalysts. *Catal. Today* **2013**, *201*, 12-18.

(2) Liotta, L. F.; Ousmane, M.; Di Carlo, G.; Pantaleo, G.; Deganello, G.; Marcì, G.; Retailleau, L.; Giroir-Fendler, A., Total oxidation of propane at low temperature over Co_3O_4 –CeO₂ mixed oxides: Role of surface oxygen vacancies and bulk oxygen mobility in the catalytic activity. *App. Catal., A* **2008**, *347* (1), 81-88.