Supporting Information

Fabrication of Ionic Liquid-based Pickering Emulsion and Its Enhancement for Tri-isobutene Formation in *Iso*butene Oligomerization

Lunchao Lv^{†,‡}, Hongyan Wang[‡], Jian Chen^{‡,§}, Yingying Cao^{‡,§}, Hui Wang^{‡,§,*}, Baozeng Ren^{†,*}, Suojiang Zhang^{‡,§,*}

*School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001 P.R. China
*Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190 P.R. China, Innovation Academy for Green Manufacture, Chinese Academy of Sciences

[§]University of Chinese Academy of Sciences, Beijing, 100049 P.R. China

*Corresponding authors: E-mail addresses: huiwang@ipe.ac.cn (H. Wang), renbz@zzu.edu.cn (B.

Ren), sjzhang@ipe.ac.cn (S. Zhang), Fax: 86 10 82627080.

a ¹⁰⁰	Element	wt%	Atomic (%)
	С	31.02	39.42
200- Ng -	0	56.26	53.67
8 - 100-	Si	12.64	6.87
	S	0.08	0.04
- [C/ [NIS] 0- [Total:	100.00	100.00
b	Element	wt%	Atomic (%)
4-1	С	68.95	75.06
ps/eV	0	29.84	24.38
[∞] 2 1	Si	1.21	0.56
: 9 - 0 당규	S	0.00	0.00
0-11-5-10-15 10 15 keV	Total:	100.00	100.00
c	Element	wt%	Atomic (%)
4	С	75.84	81.02
52/eV	0	23.00	18.45
۲ <u>د</u>	Si	1.16	0.53
O B _R	S	0.00	0.00
0-11-12-0-5 10 15 keV	Total:	100.00	100.00
d 🗄	Element	wt%	Atomic (%)
200 -	С	34.97	43.88
54/eV	0	52.43	49.38
00	Si	12.38	6.64
	S	0.21	0.10
0- 0- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1	Total:	100.00	100.00
e ₈₀₀ -	Element	wt%	Atomic (%)
	С	32.77	41.58
00 	0	53.61	51.06
100-	Si	13.22	7.17
	S	0.40	0.19
	Total:	100.00	100.00

1. EDS analysis of the emulsifiers

Figure S1. EDS spectra and C, O, Si, S element contents of the silica based nanoparticles: (a) SiO₂,
(b) C₁-SiO₂-C₁, (c) C₈-SiO₂, (d) C₈-SiO₂-SO₃H, (e) C₁₈-SiO₂-SO₃H.

2. Contact angle analysis

Figure S2. Contact angles of unmodified silica (a), C_1 -SiO₂- C_1 (b), C_8 -SiO₂ (c), C_8 -SiO₂-SO₃H (d), and C_{18} -SiO₂-SO₃H (e).

3. Macro and micro analysis of the emulsions fabricated by different emulsifiers

Figure S3. Photos of the emulsions constructed by (a) C_1 -SiO₂-C₁, (b) C_8 -SiO₂, (c) C_8 -SiO₂-SO₃H and (d) C_{18} -SiO₂-SO₃H; Micrographs and droplet size distributions of the emulsions constructed by C_1 -SiO₂-C₁ (e₁ and e₂), C_8 -SiO₂-SO₃H (f₁ and f₂), C_{18} -SiO₂-SO₃H (g₁ and g₂); Scale bar: 200 μ m. Note: the ionic liquid content was 20% based on the mass of the aqueous phase.

4. Stability of the functionalized silica in IL/H₂SO₄

Figure S4. FTIR spectra of SiO_2 and modified silica nanoparticles. Note: "a" represents the spectra of the freshly modified silica and "b" represents the spectra of the recovered modified silica after the emulsion was constructed.

5. Photos of the emulsions containing ionic liquid of various concentrations

Figure S5. Photos of the emulsions constructed by C_8 -SiO₂-SO₃H with the ionic liquid concentrations in the acid phase of: (a) 0%, (b) 10%, (c) 20%, (d) 40%, (e) 60%; Photos of the emulsions constructed by C_{18} -SiO₂-SO₃H with the ionic liquid concentrations in the acid phase of: (f) 0%, (g) 10%, (h) 20%, (i) 40%, (j) 60%.

6. Effect of ionic liquid concentration on emulsion droplet size

Figure S6. Micrographs of the emulsions constructed by C_8 -SiO₂-SO₃H using different concentrations of IL in the acid phase: (a) 0%, (b) 10%, (c) 20%, (d) 40%, (e) 60%; Micrographs of the emulsions constructed by C_{18} -SiO₂-SO₃H with various IL concentrations: (f) 0%, (g) 10%, (h) 20%, (i) 40%, (j) 60%. Note: Due to the low refractive index in the system containing no IL, the droplet profile can only be observed by adding methyl orange (a and f). Scale bar: 200 µm.

7. Photos of the emulsions stored for different time intervals

Figure S7. Emulsions constructed by 2% C₈-SiO₂-SO₃H stored for different time intervals: (a) 0 h, (b) 5 h, (c) 15 h, (d) 24 h, (e) 48 h, (f) 72 h; Emulsions constructed by 2% C₁₈-SiO₂-SO₃H stored for different time intervals: (g) 0 h, (h) 5 h, (i) 15 h, (j) 24 h, (k) 48 h, (l) 72 h.

8. Photos of the emulsions stored at different temperatures

Figure S8. Emulsions constructed by 2% C₈-SiO₂-SO₃H at different temperatures: (a) 30 °C, (b) 50 °C, (c) 60 °C, (d) 70 °C, (e) 80 °C; Emulsions constructed by 2% C₁₈-SiO₂-SO₃H at different temperatures: (f) 30 °C, (g) 50 °C, (h) 60 °C, (i) 70 °C, (j) 80 °C.

9. Effect of centrifugation speed on the emulsion volume

Figure S9. Emulsion volume at different centrifugal speeds for systems fabricated by C_{8} - and C_{18} -SiO₂-SO₃H. Mass percentage of C_{8} -SiO₂-SO₃H: (a) 1%, (b) 2%, (c) 4%; Mass percentage of C_{18} -SiO₂-SO₃H: (d) 1%, (e) 2%, (f) 4%.

10. GC analysis of oligomerization products

Figure S10. Typical GC chromatogram of reaction product in *iso* butene oligomerization. Reaction temperature: 40 °C, time: 60 min, pressure: 1.6 MPa, catalyst: IL/H₂SO₄/C₈-SiO₂-SO₃H.

11. Effect of IL concentration on production distribution

Figure S11. Product distribution (wt%) as a function of IL concentration for *iso*butene oligomerization catalyzed by ionic liquid/sulfuric acid in the absence/presence of C_8 -SiO₂-SO₃H (reaction temperature: 40 °C, reaction time: 60 min, pressure: 1.6 MPa).

12. Effect of reaction temperature/time on *iso*butene conversion

Figure S12. (a) *Iso*butene conversion as a function of temperature catalyzed by 60 wt% ionic liquid/sulfuric acid in the absence/presence of C_8 -SiO₂-SO₃H (reaction time: 60 min, pressure: 1.6 MPa); (b) *Iso*butene conversion as a function of reaction time for *iso*butene oligomerization by 60 wt% ionic liquid/sulfuric acid in the absence/presence of C_8 -SiO₂-SO₃H (temperature: 40 °C, pressure: 1.6 MPa).