Supporting Information

Ligand-Free Pd-Catalyzed Synthesis of 3-Allylbenzofurans by Merging

Decarboxylative Allylation and Nucleophilic Cyclization

Jie Zhang, Jia-Yin Wang, Min-Hua Huang, Wen-Juan Hao, * Xing-Chao Tu, * Shu-Jiang Tu, Bo
Jiang*

School of Chemistry \& Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P. R. China. E-mail: wjhao@jsnu.edu.cn(WJH); tuxingchao@jsnu.edu.cn(XCT), jiangchem@jsnu.edu.cn(BJ).

Context

The ORTEP Drawing of $\mathbf{5 b}$ S2
Copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra for Substrates 3a-3dd S3-S62
Copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra for Substrates 5a-5c S63-S68
Copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra for Compound $\mathbf{6 a}$ S69-S70

Figure S1 The ORTEP Drawing of $\mathbf{5 b}$ (The ellipsoid contour 30\% probability levels)
A single crystal 5b was obtained by slowly evaporating $95 \% \mathrm{EtOH}$ solvent at room temperature under the air conditions. Its dimensions of $0.40 \mathrm{~mm} \times 0.13 \mathrm{~mm} \times 0.07 \mathrm{~mm}$ was mounted on a Siemens P1 diffractometer equipped with a graphite mono-chromated $\operatorname{MoKa}(\lambda=0.71073 \AA$) radiation at $293(2) \mathrm{K}$. A total of 8438 reflections were collected in the $2.73<\theta<66.03^{\circ}$ range by using an ω scan mode and 3646 were independent ($R_{\text {int }}=0.0611$), of which 1809 with $I>2 \sigma(I)$ were observed. The calculations were performed with SHELXS-97 and SHELXS-97 programs and corrections for $L p$ factors and absorptions were applied. The structure was solved by direct methods. The non-hydrogen atoms were refined anisotropically, and the hydrogen atoms were determined by theoretical calculations. The final cycle of refinement gave $R=0.1172$ and $w R=0.3104$ ($\mathrm{w}=$ $1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.1389 P)^{2}+5.1948 P\right]$, where $\left.P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}^{2}\right) / 3\right) . S=1.056,(\Delta / \sigma)_{\max }=0.000,(\Delta \rho)_{\min }=$ $0.550 \mathrm{e} / \AA^{3}$ and $(\Delta \rho)_{\max }=-0.254 \mathrm{e} / \AA^{3}$.

The crystal of compound $\mathbf{5 b}$ belongs to Orthorhombic, space group Pbca with $a=4.9482(6)$ Å, $b=26.280(3) \AA, c=26.280(3) \AA, \alpha=\beta=\gamma=90^{\circ}, V=4208.5(8) \AA^{3}, M r=389.47, Z=8, D c=$ $1.229 \mathrm{~g} / \mathrm{cm}^{3}, \mu(\mathrm{Mo} K \alpha)=0.572 \mathrm{~mm}^{-1}, F(000)=1648$, the final $R=0.1172$ and $w R=0.3104$.

$400 \mathrm{MHz} . \mathrm{CDCl}_{3}$

$400 \mathrm{MHz} . \mathrm{CDCl}_{3}$

${ }^{1} \mathrm{H}$ NMR Spectrum of Compound 3c

$400 \mathrm{MHz} . \mathrm{CDCl}_{3}$

$\stackrel{N}{\text { N }}$
$\stackrel{N}{N}$

交気落

$\stackrel{\circ}{\stackrel{\circ}{i}}$

$100 \mathrm{MHz} . \mathrm{CDCl}_{3}$

$100 \mathrm{MHz} . \mathrm{CDCl}_{3}$
8 $29^{\circ} \angle 9-$

へ $\stackrel{\sim}{\sim}$

-59.962

$100 \mathrm{MHz} . \mathrm{CDCl}_{3}$

70	160	150	140	130	120	110	100	90			60	50	40	30	20	10	0	-10

${ }^{13}$ C NMR Spectrum of Compound 3 g

$400 \mathrm{MHz} . \mathrm{CDCl}_{3}$

 푼

-59.960

$100 \mathrm{MHz} . \mathrm{CDCl}_{3}$

O

$\stackrel{セ}{0}$

ボN弋	W才す	$\bar{\sim}$	
$\dot{+}{ }_{\sim}^{\infty}$	$\stackrel{\sim}{\sim}$	$\stackrel{\infty}{0}$	$\stackrel{\sim}{\sim}$
「「		i	\sim

$\stackrel{\stackrel{+}{\infty}}{\stackrel{+}{+}}$

${ }^{\mathbf{1}} \mathbf{H}$ NMR Spectrum of Compound 3p

$100 \mathrm{MHz} . \mathrm{CDCl}_{3}$
 $9 \angle 6^{\circ} \varepsilon$
$\varepsilon 66^{\circ} \varepsilon^{-}$
8 8でカ－

$400 \mathrm{MHz} . \mathrm{CDCl}_{3}$

 N

¢ ¢ ¢		아앙
∞		$\stackrel{+}{\dot{+}}$

$400 \mathrm{MHz} . \mathrm{CDCl}_{3}$

S41

${ }^{1}$ H NMR Spectrum of Compound 3u

$100 \mathrm{MHz} . \mathrm{CDCl}_{3}$

$400 \mathrm{MHz} . \mathrm{CDCl}_{3}$

S47

$100 \mathrm{MHz} . \mathrm{CDCl}_{3}$

${ }^{1} \mathrm{H}$ NMR Spectrum of Compound $3 \mathbf{x}$

ন

${ }^{13}$ C NMR Spectrum of Compound 3x

$400 \mathrm{MHz} . \mathrm{CDCl}_{3}$

${ }^{\mathbf{1}} \mathrm{H}$ NMR Spectrum of Compound $3 \mathbf{y}$

-2.393

6Z8 19

Z6どレて عレO \downarrow－

$400 \mathrm{MHz} . \mathrm{CDCl}_{3}$


``` N
```


${ }^{\mathbf{1}} \mathbf{H}$ NMR Spectrum of Compound 5b

$\stackrel{5}{6}$ 웅웅
 $\stackrel{\infty}{\infty}$

L86.92-

${ }^{13}$ C NMR Spectrum of Compound 6a

