Supporting Information for

Direct CVD Growth of Graphene/MoS₂ Heterostructure with Interfacial Bonding for Two-Dimensional Electronics

Eunho Lee¹, Seung Goo Lee², Wi Hyoung Lee³, Hyo Chan Lee¹, Nguyen Ngan Nguyen¹, Min Seok Yoo¹, and Kilwon Cho¹*

AUTHOR AFFILIATIONS

¹Department of Chemical Engineering and Center for Advanced Soft Electronics, Pohang University of Science and Technology, Pohang 37673, Korea

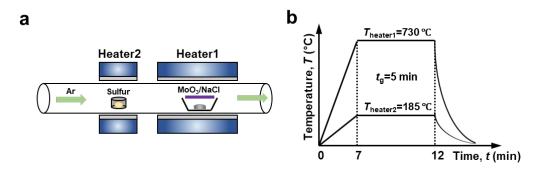
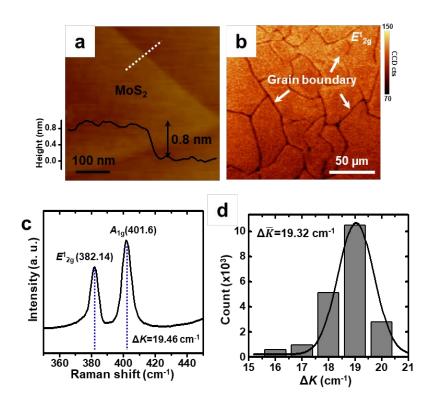
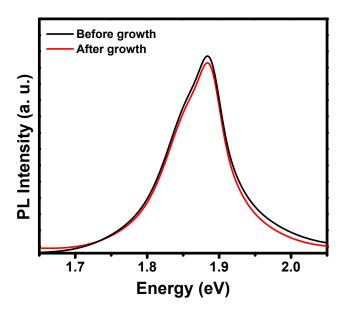
*E-mail: kwcho@postech.ac.kr

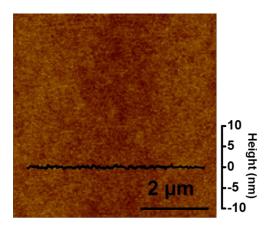
²Department of Chemistry, University of Ulsan, Ulsan 44610, Korea

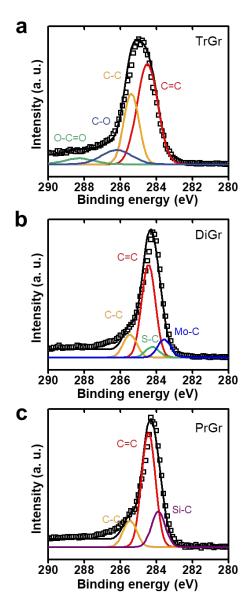
³Department of Organic and Nano System Engineering, Konkuk University, Seoul 05029, Korea

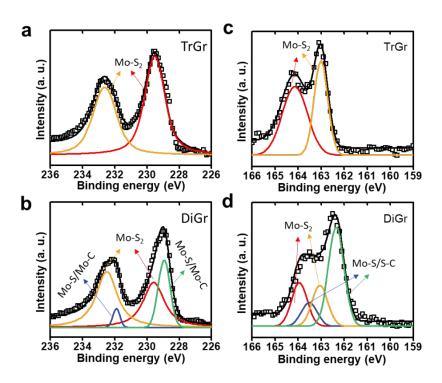
KEYWORDS

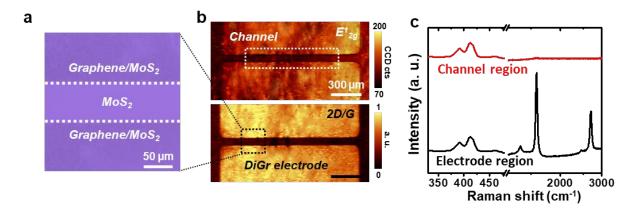
Graphene, Direct growth, Heterostructure, Transition metal dichalcogenides, Contact resistance

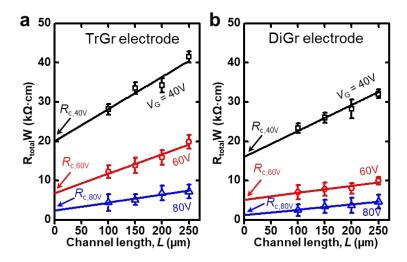




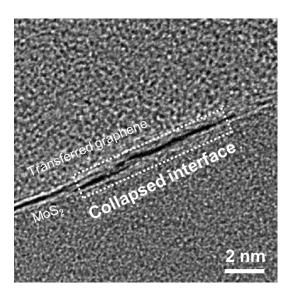

Figure S1. (a) Schematic diagram of the CVD experimental setup (b) and growth condition for MoS_2 synthesis.


Figure S2. (a) AFM morphology of the MoS_2 monolayer for measuring thickness. (b) E^1_{2g} Raman mapping data and (c) single Raman spectrum of the synthesized MoS_2 monolayer on SiO_2/Si substrate. (d) The statistics of the Raman peak difference between E^1_{2g} and A_{1g} peak of the synthesized MoS_2 layer.


Figure S3. Photoluminescence spectra of the MoS_2 before (black) and after (red) graphene growth at the excitation wavelength of 514 nm.


Figure S4. AFM morphology of synthesized graphene/MoS₂ heterostructure.


Figure S5. C1s XPS analysis of deconvoluted peaks of the interface between (a) $MoS_2/TrGr$, (b) $MoS_2/DiGr$, respectively. (c) C1s XPS analysis of the peak of the directly-grown graphene on SiO_2/Si substrate (PrGr).


Figure S6. Mo3d XPS analysis of deconvoluted peaks of the interface between (a) MoS₂/TrGr and (b) MoS₂/DiGr. S2p XPS analysis of deconvoluted peaks of the interface between (c) MoS₂/TrGr and (d) MoS₂/DiGr.

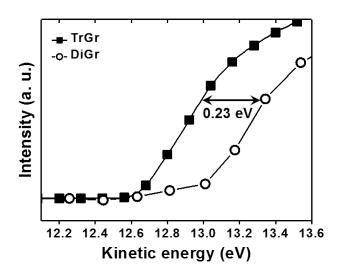

Figure S7. (a) Optical microscopy image of the channel region in the fabricated MoS_2 -FETs. (b) (top) E^1_{2g} and (bottom) 2D/G Raman mapping data of directly grown patterned graphene on MoS_2 monolayer. (c) Single Raman spectrum of the channel region (white dashed area) and electrode region.

Figure S8. Channel width-normalized R_{total} obtained from the MoS₂ FETs prepared with (a) transferred graphene electrodes (TrGr) and (b) directly-grown graphene electrodes (DiGr) on SiO₂/Si substrate.

Figure S9. High resolution cross-sectional TEM image of the transferred graphene/MoS $_2$ monolayer interface on SiO $_2$ /Si substrate.

Figure S10. UPS curves obtained from TrGr (closed rectangular) and DiGr (open circle), in the secondary electron emission region.