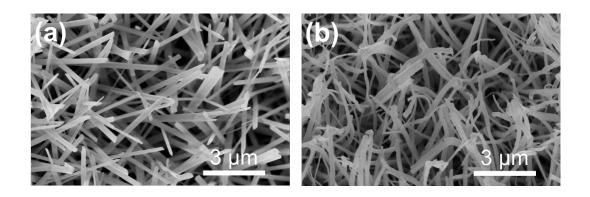
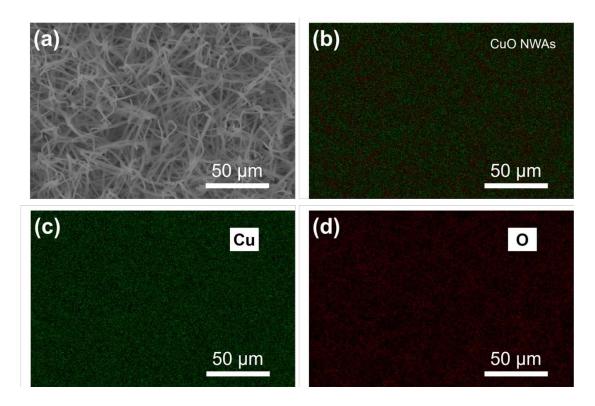
Supporting Information

Stable Lithium Metal Anode Achieved by In Situ Grown CuO

Nanowire Arrays on Cu Foam


Jiaqi Cao,[†] Liying Deng,[†] Xinghui Wang,^{*, †, ‡} Wangyang Li,[†] Yonghui Xie,[†] Jie Zhang^{†,‡} and Shuying Cheng^{*, †, ‡}

[†] College of Physics and Information Engineering, Institute of Micro-Nano Devices and Solar Cells, Fuzhou University, Fuzhou, People's Republic of China.


[‡] Jiangsu Collaborative Innovation Center of Photovolatic Science and Engineering, Changzhou, People's Republic of China.

*E-mail: seaphy23@fzu.edu.cn,

* E-mail: <u>sycheng@fzu.edu.cn</u>.

Figure S1. The high magnification SEM images of a) Cu(OH)₂ NWAs/Cu and b) CuO NWAs/Cu.

Figure S2. The SEM images of a) the CuO NWAs/Cu and the corresponding EDX elemental mapping of b) CuO NWAs, c) Cu and d) O.

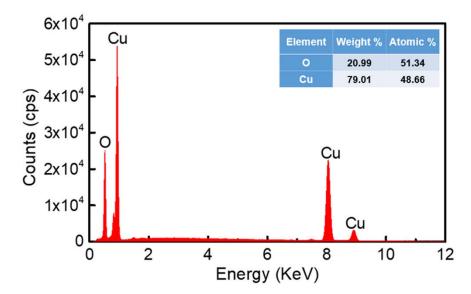
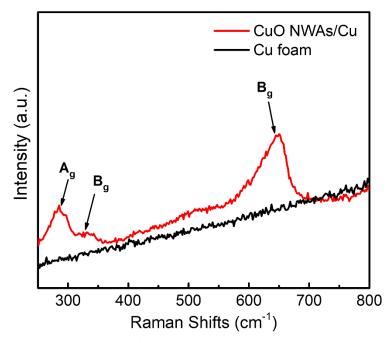



Figure S3. The EDX analysis of the CuO NWAs/Cu.

Figure S4. The Raman spectra of the Cu foam and CuO NWAs/Cu. The three peaks located at 280, 328, and 648 cm⁻¹ are corresponded to the A_g , B_g , and B_g vibration modes of CuO, respectively.

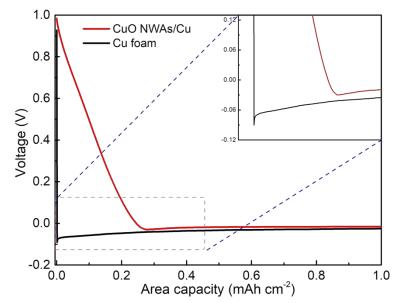
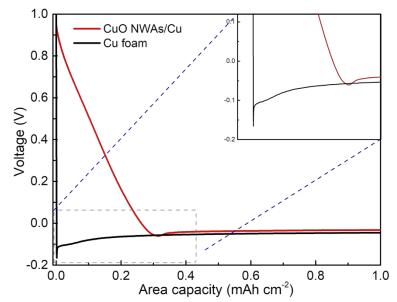
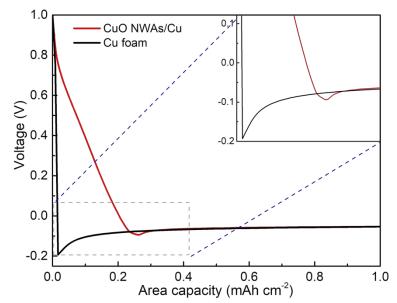
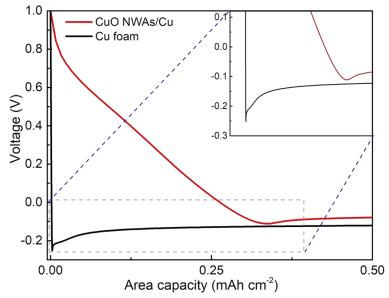
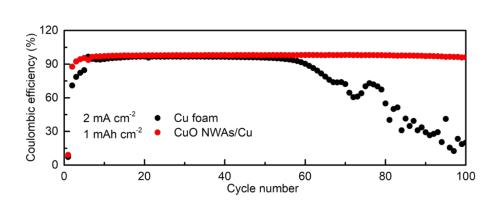
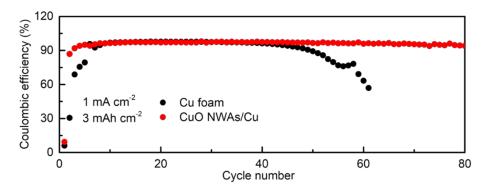



Figure S5. The voltage profiles for Li nucleation on the Cu foam and CuO NWAs/Cu with an area capacity of 1 mAh cm⁻² at 0.5 mA cm⁻²

Figure S6. The voltage profiles for Li nucleation on the Cu foam and CuO NWAs/Cu with an area capacity of 1 mAh cm⁻² at 1 mA cm⁻²


Figure S7. The voltage profiles for Li nucleation on the Cu foam and CuO NWAs/Cu with an area capacity of 1 mAh cm⁻² at 2 mA cm⁻²


Figure S8. The voltage profiles for Li nucleation on the Cu foam and CuO NWAs/Cu with an area capacity of 0.5 mAh cm⁻² at 3 mA cm⁻²

Area capacity	Current density	Cu foam	CuO NWAs/Cu
		Nucleation overpotential	
1 mAh cm ⁻²	0.5 mA cm ⁻²	-65 mV	-15 mV
	1 mA cm ⁻²	-125 mV	-30 mV
	2 mA cm ⁻²	-140 mV	-40 mV
0.5 mAh cm ⁻²	3 mA cm ⁻²	-130 mV	-35 mV

 Table S1. Values of nucleation overpotential at different current densities

Figure S9. The Coulombic efficiency of Cu foam and CuO NWAs/Cu with an area capacity of 1 mAh cm⁻² at 2 mA cm⁻².

Figure S10. The Coulombic efficiency of Cu foam and CuO NWAs/Cu with an area capacity of 3 mAh cm⁻² at 1 mA cm⁻².

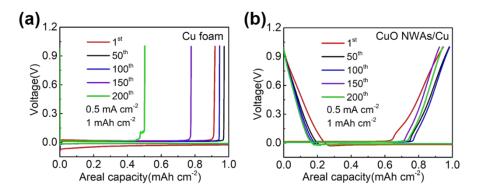
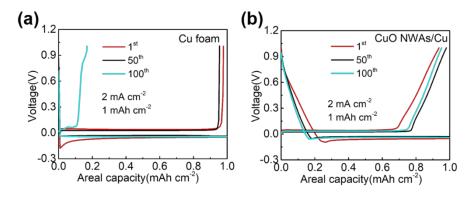
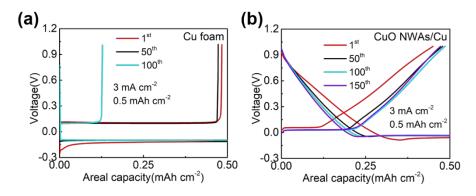
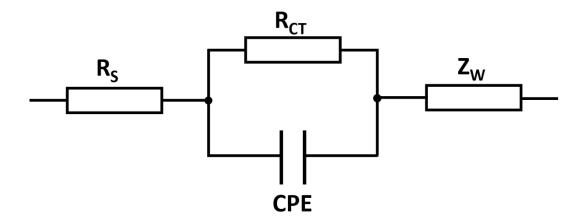




Figure S11. Voltage profiles of a) Cu foam and b) CuO NWAs/Cu with an area capacity


of 1 mAh cm⁻² at 0.5 mA cm⁻².

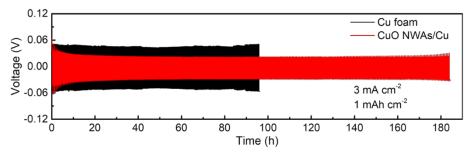

Figure S12. Voltage profiles of a) Cu foam and b) CuO NWAs/Cu with an area capacity of 1 mAh cm⁻² at 2 mA cm⁻².

Figure S13. Voltage profiles of a) Cu foam and b) CuO NWAs/Cu with an area capacity of 0.5 mAh cm⁻² at 3 mA cm⁻².

Figure S14. Equivalent electrical circuit model corresponding to the Nyquist plots. The Rs is equivalent series resistance, R_{CT} is interfacial charge transfer resistance and Zw is Warburg impedance.

Figure S15. The voltage-time curves of the Cu foam and CuO NWAs/Cu in a symmetric cell test with the area capacity of 1 mAh cm^{-2} at 3 mA cm^{-2} .