Discovery of New Proxyphylline Based Chiral Cocrystals: Solid State Landscape and Dehydration Mechanism

Lina C. Harfouche,[†] Nicolas Couvrat,[†] Morgane Sanselme,[†] Clément Brandel,[†] Yohann Cartigny,^{†*} Samuel Petit,[†] and Gérard Coquerel^{†‡}

[†] Normandie Univ, UNIROUEN, SMS, 76000 ROUEN, FRANCE.

[‡] Department of Chemical and Materials Engineering, National Central University, 300 Zhongda Road, Zhongli District, Taoyuan City 32001, Taiwan R.O.C.

Content:

Table S 1. Purity and suppliers list of the used coformers2
Table S 2. Preparation methods to obtain new cocrystal forms of PXL with six different coformers2
Table S 3. SHG activity for the solid forms obtained with 1:1 molar ratio mixtures of (RS)-PXL and
different coformers
Figure S 1. ¹ H NMR of the cocrystal obtained between PXL and OA in MeOD. Hydrogens of OA were not
detected by NMR in MeOD
Figure S 2. ¹ H NMR of the cocrystal between PXL and AA in CDCl ₃ 4
Figure S 3. ¹ H NMR of the cocrystal between PXL and Ant in CDCl ₃ 4
Figure S 4. ¹ H NMR of the cocrystal between PXL and HBA in (CD ₃) ₂ SO5
Figure S 5. ¹ H NMR of the cocrystal between PXL and DMCA in MeOD5
Figure S 6. ¹ H NMR of the cocrystal obtained between PXL and DCIBA
Figure S 7. ¹ H NMR of the cocrystal obtained between PXL and SA6
Figure S 8. a) XRPD pattern of the starting material (RS)-PXL, Oxalic acid (OA) and (RS)-PXL:OA cocrystal
and b) DSC plot of the obtained cocrystal7
Figure S 9. a) XRPD pattern of (RS)-PXL, AA, E-PXL, (RS)-PXL:AA cocrystal and E-PXL:AA cocrystal in 1:1
molar ratio and b) DSC plot of the obtained cocrystals7
Figure S 10. a) XRPD pattern of (RS)-PXL, Ant and their mixture in 1:1 molar ratio. b) DSC plot for the
obtained cocrystal
Figure S 11. a) Powder X-ray diffraction for (RS)-PXL, HBA and (RS)-PXL:HBA cocrystal and b) DSC melting
curves of the cocrystal
Figure S 12. a) XRPD for (RS)-PXL, DCIBA and PXL-DCIBA cocrystal and b) DSC melting curve of the new
cocrystal form9
Figure S 13. a) XRPD for (RS)-PXL, DMCA and (RS)-PXL-DMCA cocrystal and b) DSC melting curve of the
obtained cocrystal9
Figure S 14. Conformational similarity between the PXL molecules from the asymmetric unit of Form-H
(Blue) and Form-A2 (Pink)10
Figure S 15. Conformational similarity between the SA molecules from the asymmetric unit of Form-H
(Blue) and Form-A2 (Pink)

Figure S 16. Sorption-desorption cycle performed at 25 °C for SA with DVS vacuum. Mass change (%) is	S
referred to the mass at the end of the first drying step	.11
Figure S 17. XRPD patterns of (RS)-A1, (RS)-A2, E-A1 and the obtained solid after annealing (RS)-A1 at	
95oC	11
Figure S 18. DSC of the anhydrous form A3	12
Figure S 19. Experimental and calculated patterns of (E)-H and (RS)-A2 respectively	.13

Coformer Purity Supplier 4-methoxybenzoic acid Alfa Aesar > 98% 3-chlorobenzoic acid > 99% Acros Organics 4-dimethylaminobenzoic acid > 98% Acros organics 3-hydroxy-4-nitrobenzoic acid > 98% Acros organics 3,4-dichlorobenzoic acid > 99% Acros organics 2,6-dichlorobenzoic acid > 98% Acros organics Benzamide > 98% Alfa Aesar Urea > 98% **VWR** Chemicals Adipic acid > 99% Alfa Aesar Saccharin > 98% Acros organics Stearic acid > 97% Acros organics Methyl urea > 97% Acros organics Citric acid > 98% Acros organics Salicylic acid > 99% Acros organics Acetylsalicylic acid > 99% Acros organics Anthranilic acid > 99% Merck Oxalic acid > 98% Alfa Aesar 3,4-dimethoxycinnamic acid > 99% Alfa Aesar > 97% 2,5-dichlorobenzoic acid **Acros Organics** 3-hydroxybenzoic acid > 99% Acros organics

Table S 1. Purity and suppliers list of the used coformers.

Table S 2. Preparation methods to obtain new cocrystal forms of PXL with six different
coformers.

Coformer	Neat Grinding	LAG	Evaporation
Oxalic acid (OA)		Acetone, IPA, DCM,	/
	т	CHCl₃	/
Acetylsalicylic acid (AA)	+	Acetone, heptane,	MeOH
		DCM, MeOH, EtOH	IVIEOT
Anthranilic acid (Ant)	+	Acetone, EtOH, MeOH,	/
		DCM	1
3-hydroxybenzoic acid (HBA)	/	MeOH	/
3,4-dimethoxycinnamic acid (DMCA)	+	/	/
2,5-dichlorobenzoic acid (DClBA)	+	/	Heptane

+ : co-crystal formation

/ : no new solid phase was identified

Coformer	SHG signal	SHG intensity
Oxalic acid (OA)	-	0
Acetylsalicylic acid (AA)	+	7
Anthranilic acid (Ant)	+	10
3-hydroxybenzoic acid (HBA)	+	5
3,4-dimethoxycinnamic acid (DMCA)	+	135
2,5-dichlorobenzoic acid (DClBA)	+	2258

Table S 3. SHG activity for the solid forms obtained with 1:1 molar ratio mixtures of (RS)-PXL and different coformers.

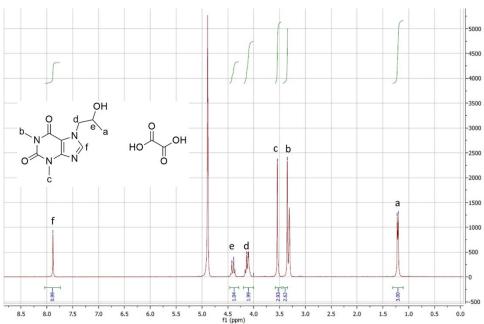


Figure S 1. ¹H NMR of the cocrystal obtained between PXL and OA in MeOD. Hydrogens of OA were not detected by NMR in MeOD.

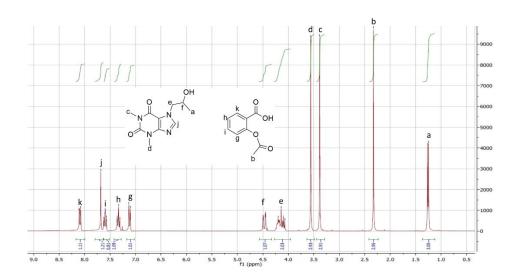


Figure S 2. ¹H NMR of the cocrystal between PXL and AA in $CDCl_3$.

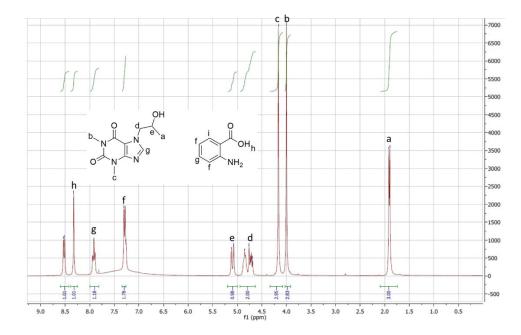


Figure S 3. ¹H NMR of the cocrystal between PXL and Ant in CDCl₃.

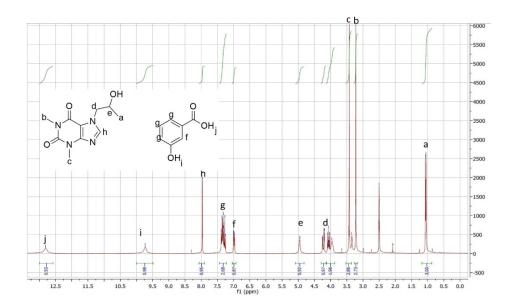


Figure S 4. ¹H NMR of the cocrystal between PXL and HBA in $(CD_3)_2SO$.

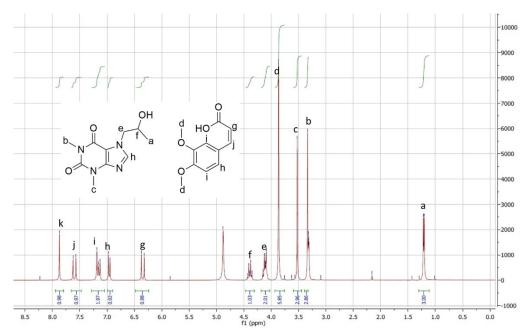


Figure S 5. ¹H NMR of the cocrystal between PXL and DMCA in MeOD.

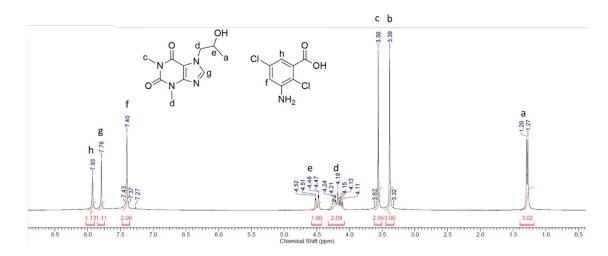


Figure S 6. ¹H NMR of the cocrystal obtained between PXL and DCIBA.

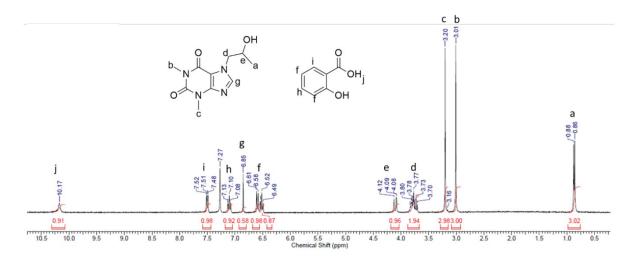
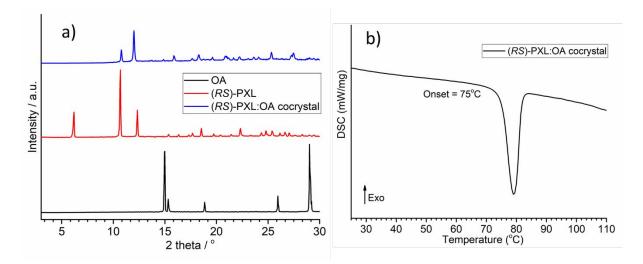



Figure S 7. ¹H NMR of the cocrystal obtained between PXL and SA.

Figure S 8. a) XRPD pattern of the starting material (RS)-PXL, Oxalic acid (OA) and (RS)-PXL:OA cocrystal and b) DSC plot of the obtained cocrystal.

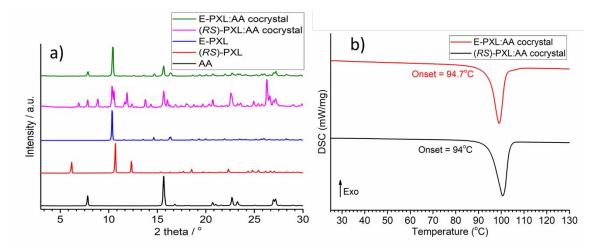
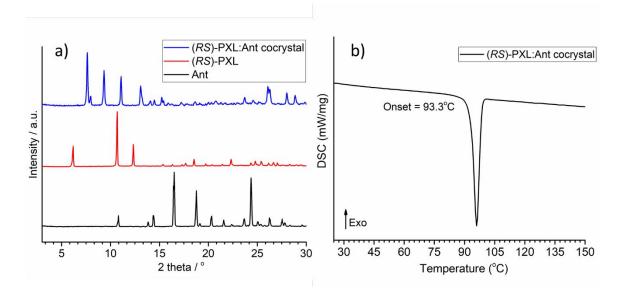
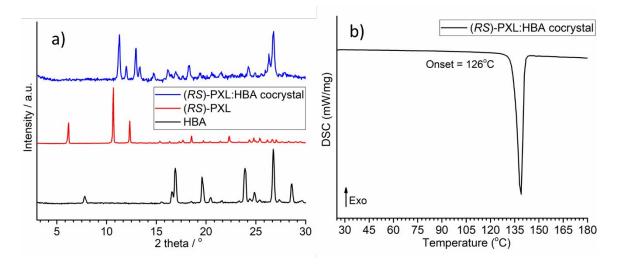




Figure S 9. a) XRPD pattern of (RS)-PXL, AA, E-PXL, (RS)-PXL:AA cocrystal and E-PXL:AA cocrystal in 1:1 molar ratio and b) DSC plot of the obtained cocrystals.

Figure S 10. a) XRPD pattern of (RS)-PXL, Ant and their mixture in 1:1 molar ratio. b) DSC plot for the obtained cocrystal.

Figure S 11. a) Powder X-ray diffraction for (RS)-PXL, HBA and (RS)-PXL:HBA cocrystal and b) DSC melting curves of the cocrystal.

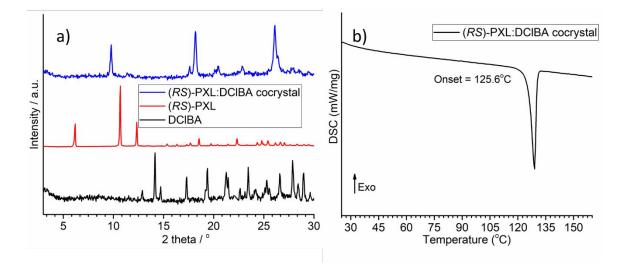
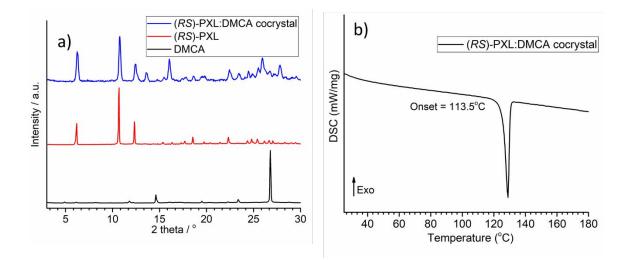
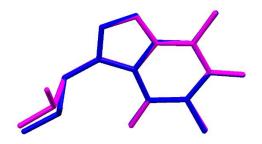
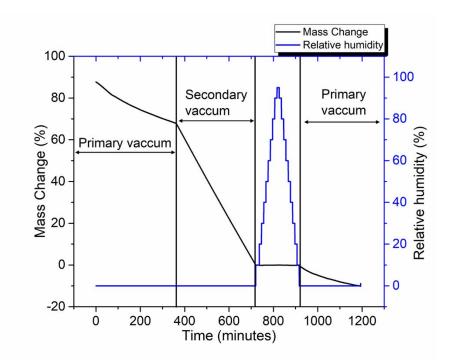


Figure S 12. a) XRPD for (RS)-PXL, DCIBA and PXL-DCIBA cocrystal and b) DSC melting curve of the new cocrystal form.


Figure S 13. a) XRPD for (RS)-PXL, DMCA and (RS)-PXL-DMCA cocrystal and b) DSC melting curve of the obtained cocrystal.

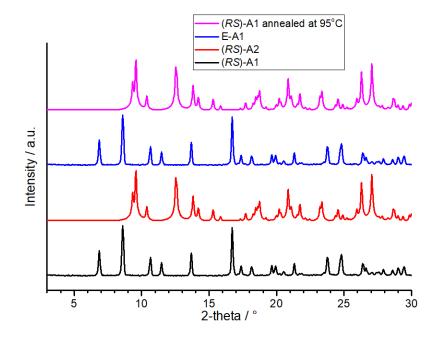

Figure S 14. Conformational similarity between the PXL molecules from the asymmetric unit of Form-H (Blue) and Form-A2 (Pink).

Figure S 15. Conformational similarity between the SA molecules from the asymmetric unit of Form-H (Blue) and Form-A2 (Pink).

Figure S 16. Sorption-desorption cycle performed at 25 °C for SA with DVS vacuum. Mass change (%) is referred to the mass at the end of the first drying step.

Figure S 17. XRPD patterns of (RS)-A1, (RS)-A2, E-A1 and the obtained solid after annealing (RS)-A1 at 95oC.

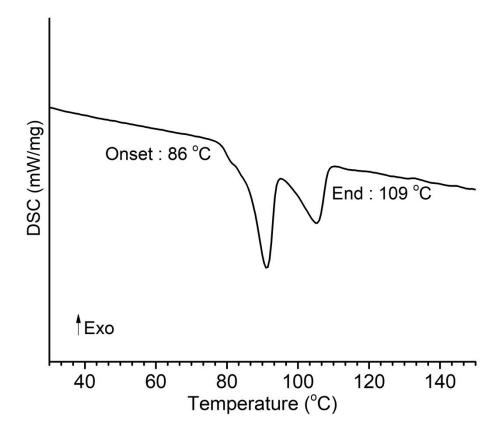


Figure S 18. DSC of the anhydrous form A3.

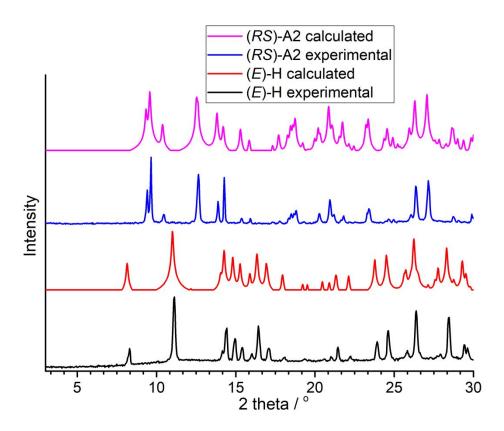


Figure S 19. Experimental and calculated patterns of (E)-H and (RS)-A2 respectively.