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Derivation of Maxwell Stress

Starting from the equation

∇ ·τe = ρE = ∇ · (ε̂E)E, (S1)

the derivation of the Maxwell stress makes use of two vector identities:

∇(A ·B) = A ·∇B+B ·∇A

∇ · (AB) = (∇ ·A)B+A ·∇B,
(S2)

for two vectors A and B, valid when ∇×A = 0 and ∇×B = 0. Using the permittivity operator

ε̂ = ε(1− `c
2
∇2), the expression can be split into two terms that can be analyzed separately,

∇ ·τe = ∇ · (εE)E−∇ · (ε`c
2
∇

2E)E. (S3)

With the requirement of ∇×E = 0, the first term can be written as
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with constant ε , where I is the identity tensor. The second term can be similarly expanded:
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At this point, another product rule must be used:

a∇a =
1
2

∇(a2), (S6)

where a is a scalar. Applying the above identity gives:
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with constant ε and `c. The final expression for the Maxwell stress is therefore:
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One-component plasma around a cylinder

Additional results for the one-component plasma around a cylinder are exhibited in Figs. S1 and

S2, using the correlation length scaling δc = Ξ/ξ (the correlation hole size in the needle limit1).

The figures show the occurrence of Manning criticality in MC simulations, which cannot be repro-

duced by the BSK theory over the finite domain over which the equations are being solved. Even

so, the BSK theory can reproduce the transition to the strong coupling limit. While the conden-

sation phenomenon should only occur at infinite dilution, a finite system size must be chosen for

the numerical solution of the BSK equation. The parameter ∆ = ln(Rout/Rcyl) is varied between

6.2 and 13 to ensure numerical accuracy of the solutions over the large domain, depending on the

value of δc.

Figure S1: Re-plotted version of Fig. 4 in the main text using a different correlation length scaling.
BSK theory compared to additional MC simulations from1 using δc = Ξ/ξ for the counterion
density around a charged cylinder for ξ = 4. The labels are identical to Fig. 4 in the main text.
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Figure S2: BSK theory compared to additional MC simulations from1 using δc = Ξ/ξ for the
counterion density around a charged cylinder for (a) ξ = 1.2 and (b) ξ = 1.4. The labels are
identical to Fig. 4 in the main text.

Comparison to full electrolyte data set

The comparisons the data from2 is explored more extensively in Figs. S3, S4, and S5 for `c =

0.50Rhole. Respectively, they show the difference of the BSK theory compared to PB theory, the

full charge density profiles, and zoomed in profiles into the overscreening region. The BSK theory

can closely match the structure of the charge density for many of the plots, including predicting

the occurrence of overscreening, with the same correlation length scaling as the one-component

plasma. However, at large concentrations, the excess electrochemical potential and ion size effects

play a bigger role, leading to inaccuracies of the theory. Even so, the theory is quite adequate up

to to provide the correct qualitative corrections up to 1M for the symmetric ions. Note that the MC

profiles are shifted by one ion radius, so that the zero x values of the theory and the simulations

match. In other words, only the diffuse layer charge density is plotted.
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Empirical correlation length scaling in electrolytes

Given the large amount of simulation data on the restricted primitive model, it is possible to lever-

age the simulation data to fit the correlation length scaling. To define a correlation length that

could be used uniformly across many different charge densities, concentrations, and valencies, we

used the Grand Canonical MC data from,2 and fit the correlation length by matching to the charge

density profile from an isolated surface with ε = 78.5ε0 for a range of conditions: 1:1, 2:1, 3:1,

1:2, and 1:3 (zcounterion : zcoion) electrolytes, Cref of 0.01 M, 0.1 M, and 1 M, and qs of 0.02, 0.04,

0.06, 0.08, 0.1, 0.175, 0.25, 0.375, and 0.5 C/m2. The finite size of ions with symmetric 0.3 nm

diameter is not taken into account in solving the BSK equation. Instead, only the diffuse part of

the double layer is plotted, so that the x-axis is shifted by one ionic radius. In some cases, the

contact densities for the simulations do not match PB, particularly at higher concentrations and

lower charge densities, due to problems with the current assumption of µex
i = 0. In these cases,

the profiles cannot be adequately fit by varying the correlation length, and this leads to large errors

in the fits. We choose not to add more complexity to the model to capture these exceptional data

points, and to rather focus on the electrostatic correlation component. Therefore, we distinguish

which fitted values of the correlation length correspond to good fits and which correspond to bad

fits. The sum of square error of the fit between the BSK solution and the MC data in units of the

PB contact density is chosen as a metric to distinguish between good fits and bad fits. Good fits

are defined as those having sum of square error < 0.005.

We can then use the fitted correlation lengths with low error to relate the correlation length to

the intrinsic length scales in the system. For example, we can fit the constant α1 if we assume that

the correlation length scales with the `c = α1z2lb. We can choose α1 so as to minimize the error

between the fitted correlation lengths with low error and the predicted one that is proportional to

the Bjerrum length. However, if we fit the correlation length to be proportional to an individual

length scale in the system, we see that the fitted correlation length has some dependence on other

length scales in the system. For example, we can choose the correlation length scale determined

from the one-component plasma, `c = 0.50Rhole, and compare it to the fitted correlation lengths

S7



for the electrolyte data set. We find that there is some concentration dependencies, as shown in

Figs. S6b and S6e. A more extensive comparison of fitting individual correlation lengths is shown

in Fig. S6. One can also observe that the definition of the correlation length based on the Bjerrum

length `c ∼ z2lb is not the appropriate choice for the correlation length based on the poor agreement

between the fitted values and the predicted ones.

Because of the dependence on all length scales, Using only profiles that can be fit with low

error, we fit the fitted correlation length, δc,fit, to a power law relationship of dimensionless quan-

tities.

δc = α2

(
z2`B

`GC

)α3(z2`B

λD

)α4

, (S9)

The result is given in Fig. S7 and below:

δc = 0.35
(

z2`B

`GC

)−1/8(z2`B

λD

)2/3

, (S10)

where z is the counterion valency. This relationship gives the scaling `c ∼ `B
1/4(qs/e)−1/8Cref

−1/6.

The correlation length scaling is thus a combination of the intrinsic lengths in the system, `B,

(qs/e)−1/2, and Cref
−1/3. Note that the fitted quantities are represented as fractions so as to em-

phasize their dependence on the fundamental length scales of the system.

A set of comparisons for the fitted correlation length scaling in Eq. S10 is plotted in Figs.

S8 and S9, showing more uniform agreement than the correlation length of `c = 0.50Rhole. Even

given the fitted correlation length, it is apparent that for the case where the surface charge density

goes to zero, the definition of the correlation length must change. At very low surface charges, the

correlation length will be governed by the bulk correlation length of charges. Furthermore, here we

only assume a constant correlation length, but it is possible for this length to be dependent on the

local concentration or distance from a surface. More studies are necessary to elucidate the spatial

dependence of the correlation length, especially when considering multicomponent mixtures with

varying ion valency.
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Figure S3: Comprehensive comparison of BSK theory with MC simulations from2 for the corre-
lation length scaling `c = 0.50Rhole plotted as a difference compared to PB theory. Note that the
profiles are organized by zcounterion : zcoion in each row and by Cref in each column.
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Figure S4: Comprehensive comparison of BSK theory with MC simulations from2 for the corre-
lation length scaling `c = 0.50Rhole plotted as the total charge density. Note that the profiles are
organized by zcounterion : zcoion in each row and by Cref in each column.
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Figure S5: Comprehensive comparison of BSK theory with MC simulations from2for the corre-
lation length scaling `c = 0.50Rhole plotted as the total charge density. The axis are zoomed in to
isolate the extent of overscreening. Note that the profiles are organized by zcounterion : zcoion in each
row and by Cref in each column.
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Figure S6: Relating the correlation length to individual length scales in the system. Fitted δc values
for all simulations are plotted on the x-axis versus the δc given by δc = `c/λD = αi`i/λD, where
`i = z2`b (a,d), `i = (qs/(ze))−1/2 (b,e), and `i = c−1/3

0 (c,f). The top row is plotted on a linear
scale, whereas the bottom row is plotted on a log scale. Note that the value of αi is fit for a, c,
d, and f, but is fixed for b and e based on the value determined for the one component plasma
(`c = 0.50Rhole).
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Figure S7: The agreement of the fitted correlation lengths with the scaling from Eq. S10. Fitted
δc values for all simulations are plotted on the x-axis versus the δc given by Eq. S10. The profiles
that can be fit with low error are used to determine the fitted scaling (marked in blue).
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Figure S8: Comprehensive comparison of BSK theory with MC simulations from2 for the corre-
lation length scaling from Eq. S10 plotted as a difference compared to PB theory. Note that the
profiles are organized by zcounterion : zcoion in each row and by Cref in each column.
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Figure S9: Comprehensive comparison of BSK theory with MC simulations from2 for the corre-
lation length scaling from Eq. S10 plotted as the total charge density. The axis are zoomed in to
isolate the extent of overscreening. Note that the profiles are organized by zcounterion : zcoion in each
row and by Cref in each column.
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