Reiterative chiral resolution/racemization/recycle (RRR synthesis) for an effective and scalable process for the enantioselective synthesis of a dual IDO1/TDO2 inhibitor imidazoisoindole derivative.

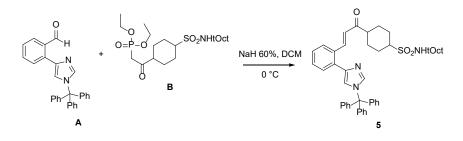
Authors: Cristina Crescenzi^x,^{*} Thomas Fuchss^z, Dimitri Ippoliti^x, Annunziata Langella^x, Antonia Di Mola,^y Antonio Massa,^y Diego Rozzi^x

Affiliation: ^x Merck Serono S.p.A., Via Luigi Einaudi, 11, 00012 Guidonia Montecelio (RM) Italy, an affiliate of Merck KGaA, Darmstadt, Germany.

^z Merck Healthcare KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany.

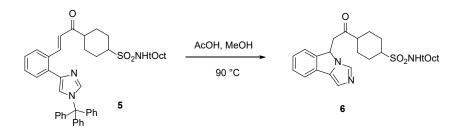
^y Dipartimento di Chimica e Biologia "A. Zambelli", Università degli studi di Salerno, Via Giovanni Paolo II, 84084-Fisciano (SA), Italy.

Corresponding author email: cristina.crescenzi@merckgroup.com

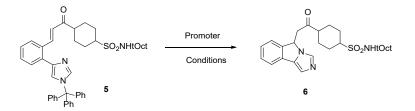

Supporting information

General remarks	
1. Procedure for the synthesis of compound 5	pag. 2
2. Procedure for the synthesis of compound 6	pag. 3
3. General procedure for deprotection/intra-molecular aza-Michael reaction from compound 7	pag. 3
4. Procedure for the synthesis of compound 7	pag. 5
5. General procedure for intra-molecular aza-Michael reaction from sulfonic salt 7	pag. 5
6. Procedures for crystallization screening	pag. 7
7. Procedures for racemization screening	pag. 9
¹ HNMR and ¹³ CNMR Spectra	pag. 11
HPLC traces	pag. 15

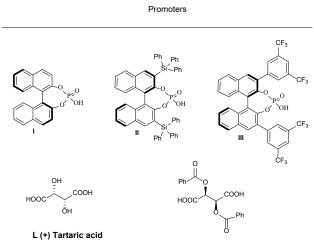
General remarks


Anhydrous solvents dichloromethane (DCM) and tetrahydrofuran (THF) were obtained from Sigma-Aldrich, but the usual solvents ethyl acetate (EtOAc), dichloromethane (DCM), hexanes, methanol (MeOH) were purchased from Carlo Erba. Thin-layer chromatography (TLC) and flash-column chromatography were performed on 0.25 mm silica gel 60 F_{254} plates (E. Merck; Darmstadt, Germany) and with 230–400 mesh ASTM silica gel 60. HPLC purity for compound 1 was determined with a Waters HPLC (mod.e2695) with PDA (waters mod. 2998).HPLC purity for compound 6 was determined with a Waters 1525 Binary Pump with Waters 2487 Dual λ Absorbance Detector Nuclear magnetic resonance (NMR) spectra were recorded at 400 MHz and 300 MHz for ¹H and 100 MHz and 75 MHz for ¹³C on a Bruker Avance 400 digital spectrometer and Bruker Avance 300 digital spectrometer (Billerica, MA). The chemical shifts (δ) were expressed in ppm and referenced to chloroform (7.26 and 77.0 ppm), methanol (3.49 and 49.7 ppm) or dimethyl sulfoxide (2.50 and 39.5 ppm) for ¹H and ¹³C NMR, respectively. High-resolution mass spectra (HRMS) were recorded on Bruker Solarix XR Fourier Transform (Bremen, Germany) equipped with a turbo ion-spray source. Melting points were determined on a Gallenkamp melting point apparatus (England). Compound **5** and compound **6** were prepared according to literature procedure.^{1,2}

1. Procedure for the synthesis of (E)-*N*-(2,4,4-trimethylpentan-2-yl)-4-(3-(2-(1-trityl-1H-imidazol-4-yl)phenyl)acryloyl)cyclohexane-1-sulfonamide (compound 5)

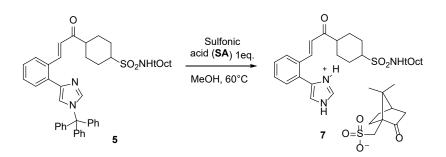

At 0 °C, to a suspension of sodium hydride (60%, 87 mg, 3.6 mmol) in dichloromethane (16 mL) was added phosphonate **B** (1.20 g, 2.65 mmol) slowly. After stirring for additional 15 min at 0 °C, the reaction mixture was treated with a solution of 2-[l-(triphenylmethyl)-lH-imidazol-4yl]benzaldehyde **A** (1.00 g, 2.41 mmol) in dichloromethane (12 mL). The resulting mixture was then stirred at room temperature for 2.5 h. The reaction was quenched by water (100 mL) and the mixture was extracted with dichloromethane (70 mL x 2). The organic phases were combined, washed with brine, and dried over Na₂SO₄. After the solvent was removed under reduced pressure, the light yellow solid was purified by flash chromatography eluting with Hexane 80/Ethyl acetate 20 to give a white solid. Yield: 89% (1.530 g). M.p. 181-182°C. HR-MS (ESI) *m/z* calculated for $[C_{45}H_{51}N_3O_3S + H^+]$ 714.3723. Found: 714.3748. ¹HNMR (CDCl₃+ CD₃OD, 400 MHz) δ 7.99 (d, 1H, *J*= 15.91 Hz), 7.71 (d, 1H, *J*= 7.61 Hz), 7.63 (d, 1H, *J*= 7.61 Hz), 7.60 (s, 1H), 7.45-7.37 (m, 11H), 7.23 (d, 6H, *J*=7.61 Hz), 6.96 (s, 1H), 6.81 (d, 1H, *J*= 15.91 Hz), 2.85 (t, 1H, *J*= 9.21 Hz), 2.66 (t, 1H, *J*= 12.12 Hz), 2.31 (d, 2H, *J*= 11.41 Hz), 2.05 (d, 2H, *J*= 12.12 Hz), 1.71 (s, 2H), 1.61 (q, 2H, *J*= 10.40 Hz), 1.41 (s, 8H), 1.07 (s, 9H).¹³CNMR (CDCl₃, 100 MHz) δ 201.6, 143.2, 142.1, 139.2, 139.1, 134.8, 132.5, 129.129.8, 129.6, 128.1, 127.2, 127.0, 125.5, 121.2, 75.5, 62.9, 58.7, 55.6, 47.2, 31.6, 31.5, 29.6, 27.4, 25.8.

2. Procedure for the synthesis of 4-(2-5H-Imidazo[5,1-a]isoindol-5-yl-acetyl)-cyclohexanesulfonic acid (1,1,3,3-tetramethyl-butyl)-amide as racemate (compound 6).

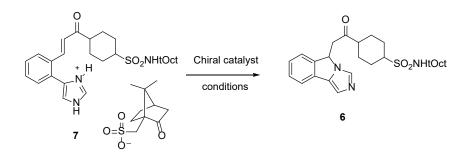

To a suspension of **5** (0.150 g, 0.21 mmol) in methanol (1.2 mL) was added acetic acid (350 μ L) slowly at room temperature. The resulting reaction mixture was stirred at 90 °C for 2 h. The solvent was removed under reduced pressure and the residue was dissolved in ethyl acetate (8 mL). The diluted solution was washed with sat. NaHCO₃ solution (5 mL x 2) and brine, and then dried over Na₂SO₄. The solvent was removed under reduced pressure and the residue was purified by flash chromatography eluting DCM 98/MeOH 2 to yield a white-grey solid. Yield: 91% (0.90 g). M.p. 152-153°C. HR-MS (ESI) *m/z* calculated for [C₂₆H₃₇N₃O₃S + H⁺] 472.2628. Found: 472.2633. ¹HNMR (CD₃OD, 300 MHz) δ 7.61 (s, 1H), 7.58 (d, 1H, *J*= 7.48 Hz), 7.45 (d, 1H, *J*= 7.53 Hz), 7.38 (t, 1H, *J*= 7.36 Hz), 7.28 (t, 1H, *J*= 7.48 Hz), 7.11 (s, 1H), 5.68 (dd, 1H, *J*= 3.36, 8.80 Hz), 3.46 (dd, 1H, *J*= 3.63, 18.68 Hz), 3.02 (dd, 1H, *J*= 9.08, 18.81), 2.85 (t, 1H, *J*=13.48), 2.49 (t, 1H, *J*= 11.81 Hz), 2.30-2.26 (m, 2H), 2.13-2.06 (m, 2H), 1.68 (s, 2H), 1.61-1.40 (m + s, 10H), 1.05 (s, 9H). ¹³C (CD₃OD, 75 MHz) δ 210.8, 144.5, 137.6, 132.9, 129.3, 128.4, 126.7, 123.3, 119.6, 116.6, 62.5, 57.6, 56.2, 54.6, 48.9, 46.4, 31.0, 30.8, 28.9, 26.7, 26.6, 25.6, 25.5. HPLC: AD-H column, 60/40 Hexane/Isopropanol, flow: 0.8 mL/min, λ : 254 nm and 274 nm. Retention times: 15 min and 24 min.

3. General procedure for deprotection/intra-molecular aza-Michael reaction using chiral promoters

To a solution of compound **5** (0.05 mmol) in solvent (see Table 1 for details) chiral promoter was added and the reaction was stirred for the time and at temperature reported. The solvent was removed under vacuum and the crude purified by flash chromatography (from Hexane 50/Ethyl acetate 50 to DCM 98/MeOH 2). HPLC: AD-H column, 60/40 Hexane/Isopropanol, flow: 0.8 mL/min, λ : 254 nm and 274 nm. Retention times: 15 min and 24 min. [α]_D^{20:} -3.2 (c 0.5, MeOH).

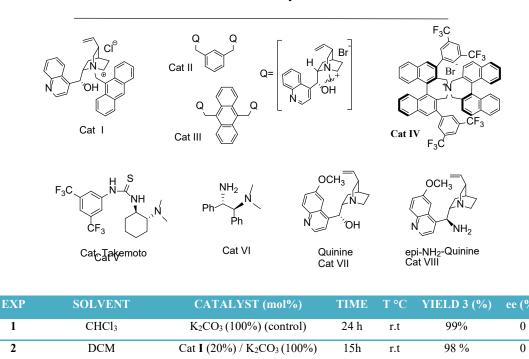

Table S1

D (+) (2,3)-Dibenzoyl tartaric acid


EXP	SOLVENT	PROMOTER (mol%)	TIME	T °C	YIELD 3 (%)	ee (%)
1	DCM	I (20%)	5 days	r.t	Traces	
2	Toluene	I (20%)	2 days	60°C	42	3%
3	Toluene	I (20%)	3 days	40°C	Traces	
4	Toluene	I (20%)	7 days	60°C	40	6%
5	MeOH	I (20%)	7 days	r.t	43	5%
6	DCM	I (50%)	7 days	r.t	31	-14%
7	DCM	I (50%)	7 days	r.t	30	-14%
8	DCM	I (100%)	7 days	r.t	66	-13%
9	Toluene	I (50%)	3 days	60°C	56	8%
10	THF	I (50%)	7 days	r.t	NO REACTION	
11	AcOEt	I (50%)	7 days	r.t	Traces	
12	CHCl ₃	I (50%)	8 days	r.t	74	-12%
13	MeOH	I (50%)	2 days	r.t	99	8%
14	CHCl ₃ /H ₂ O (1:1)	I (50%)	7 days	r.t	31	-13%
15	DCM	I /(20%) / AgNO ₃ (20%)	4 days	r.t	14	-12%
16	DCM	I (50%) / AgOtf(50%)	3 days	r.t	100	-8%
17	CHCl ₃	I (20%) / TFA (100mol%)	2 days	r.t	87	0
18	CHCl ₃	II (100%)	7 days	r.t	Traces	
19	CHCl ₃	III (100%)	7 days	r.t	Traces	
20	DCM	III (100%)	7 days	r.t	Traces	
21	MeOH	L-Tartaric acid (100%)	7 days	r.t	99	6%
22	MeOH	D-(2,3)-Dibenzoyl tartaric acid (100%)	4 days	r.t	88	-2%
23	CHCl ₃	D-(2,3)-Dibenzoyl tartaric acid (100%)	7 days	r.t	99	0

4. Procedure for the synthesis of (E)-4-(2-(3-oxo-3-(4-(N-(2,4,4-trimethylpentan-2-yl)sulfamoyl)cyclohexyl)prop-1-en-1-yl)phenyl)-1H-imidazol-3-ium camphorsulfonic salt (compound 7)

To a white suspension of compound **5** (1 mmol) in MeOH (20 mL), (1*R*)-(-)-10-Camphorsulfonic acid monohydrate 98% (1 mmol, 250 mg), was added and the reaction was stirred for 1h at 60°C. The solvent was removed under vacuum and the crude was dissolved in CHCl₃ and precipitated by adding hexane, to yield a white solid. Yield: 70%. (500 mg). HR-MS (ESI) *m/z* calculated for $[C_{26}H_{38}N_3SO_3]^+$ 472.2633. Found: 472.2639. ¹HNMR (CDCl₃, 400 MHZ) δ 9.05 (s, 1H), 7.76-7.68 (m, 3H), 7.53-7.45 (m, 3H), 7.34-7.30 (m, 1H), 6.76 (d, 1H, *J*= 15.88 Hz), 4.51 (s, 1H), 3.36 (d, 1H, *J*= 14.64 Hz), 2.94-2.81 (d + m, 2H), 2.73 (t, *J*= 11.76 Hz, 1H), 2.54 (dt, *J*= 3.24, 14.64 Hz, 1H), 2.40-2.30 (m, 3H), 2.13-2.06 (m, 4H), 1.91-1.86 (m, 4H), 1.68 (s, 2H), 1.67-1.66 (m, 2H), 1.45 (s, 8H), 1.06 (s, 9H), 1.05 (s, 3H), 0.84 (s, 3H).


5. General procedure for intra-molecular aza-Michael reaction from sulfonic salt 7

Sulfonic salt 7 (0.05 mmol) was dissolved in solvent (see Table S2 for details) and chiral catalyst was added: the reaction was stirred for the time and at temperature reported. The solvent was removed under vacuum and the crude purified by flash chromatography (from Hexane 50/Ethyl acetate 50 to DCM 98/MeOH 2). HPLC: AD-H column, 60/40 Hexane/Isopropanol, flow: 0.8 mL/min, λ : 254 nm and 274 nm. Retention times: 15 min and 24 min.

Table S2

Chiral catalysts

Cat I (20%) / K₂CO₃ (100%)

Cat I (20%) / K₂CO₃ (100%)

Cat II (20%) / K2CO3 (100%)

Cat II (20%) / K2CO3 (100%)

Cat III (20%) / K₂CO₃ (100%)

Cat IV (20%)

Cat IV / K₂CO₃ (100%)

Cat. II (20%)

Cat. II (20%)

Cat. V (20%)

Cat. VI (30%)

Cat. VI (30%)

Cat. VII (20%)

Cat. VII (100%)

Cat. VIII (20%)

18h

4 days

4 h

14 h

14 h

24 h

24 h

24 h

24 h

7 days

18 h

4 days

14 h

14 h

30h

r.t

0°C

r.t

r.t

r.t

r.t

r.t

r.t

r.t

r.t

r.t

0°C

r.t

r.t

r.t

99%

75%

99%

92%

95%

99%

99%

99%

99%

50%

99%

99%

99%

99%

89%

0

0

2%

0

0

0

0

0

0

0

0

0

0

0

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

DCM

DCM

CHCl₃

CHCl₃

CHCl₃

DCM/H₂O (1/1)

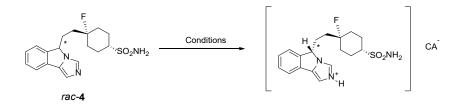
DCM

DCM

CHCl₃/H₂O (1/1)

CHCl₃

CHCl₃


CHCl₃

CHCl₃

CHCl₃

DCM

Procedures for preliminary crystallization screening on 20 mg scale.

The racemic Drug Substance (batch scale: 20mg) and the chiral acid (100 mol%) were charged into the glass tube vial and the solvent (10Vol-40Vol) was added at room temperature. The obtained mixture was mixed at room temperature for a few minutes in order to observe if dissolution occurs. Then, the mixture was heated to 65° C (water bath) and stirred for 1 hour. The hot mixture was cooled down to room temperature. In case no precipitation occurred, the mixture was further cooled down to +5°C (refrigerated conditions overnight).

The solid was separated from the mother liquors and both of them were analyzed by means of the chiral HPLC method.

Solvent	Chiral acid	Chiral HPLC results Solid	Chiral HPLC results Mother Liquors.
2-Propanol	D-(-)-tartaric acid	(R) 49.50% -(S) 50.50%	
-	R-(-)-Mandelic acid	(R) 49.86% -(S) 50.14%	
	(1R)-(-)-10-Camphorsulfonic acid	no precipitation	
	(+)-2,3-Dibenzoyl-D-tartaric acid	Nearly racemic	
	(S)-(+)-OAcetylmandelic acid	Nearly racemic	
	(+)-O,O'-Di-p-toluoyl-D-tartaric acid	Nearly racemic	
	D-(-)-quinic acid	Nearly racemic	
	(1R,3S)-(+)-Camphoric acid	Nearly racemic	
	L-(-)-Malic acid	Nearly racemic	
Acetone	D-(-)-tartaric acid	(R) 49.50% -(S) 50.50%	(R) 51.62% -(S) 48.38%
	R-(-)-Mandelic acid	(R) 49.86% -(S) 50.14%	(R) 49.73% -(S) 50.27%
	(1R)-(-)-10-Camphorsulfonic acid	no precipitation	
	(+)-2,3-Dibenzoyl-D-tartaric acid	(R) 15.09% -(S) 84.91%	(R) 72.31% -(S) 27.69%
	(S)-(+)-O-Acetylmandelic acid	no precipitation	
	(+)-O,O'-Di-p-toluoyl-D-tartaric acid	no precipitation	
	D-(-)-quinic acid	Nearly racemic	
	(1R,3S)-(+)-Camphoric acid	Nearly racemic	
	L-(-)-Malic acid	no precipitation	
		(D) 40 720/ (C) 50 270/	
Acetonitrile	D-(-)-tartaric acid	(R) 49.73% -(S) 50.27%	
	R-(-)-Mandelic acid	(R) 50.62% -(S) 49.38%	
	(1R)-(-)-10-Camphorsulfonic acid	Nearly racemic	
	(+)-2,3-Dibenzoyl-D-tartaric acid	(R) 35.70% -(S) 64.30%	(R) 60.78% -(S) 39.22%
	(S)-(+)-O-Acetylmandelic acid	Nearly racemic	
	(+)-O,O'-Di-p-toluoyl-D-tartaric Acid	Nearly racemic	
	D-(-)-quinic acid	Nearly racemic	
	(1R,3S)-(+)-Camphoric acid	Nearly racemic	
	L-(-)-Malic acid	no precipitation	

Table S3. Some of the results deriving from the screening of chiral acids and solvents of Table 1.

Other tested solvents gave nearly racemic or no precipitation.

- Investigation of water as crystallization co-solvent.

Racemic Drug Substance (50,000 mg; 0,138 mmol) was charged into a glass tube andAcetone-Water mixture (0.500 mL; 10 Vol) was added at room temperature. The resulting suspension was heated to reflux (external temperature, water bath 65°C) and after 10 min under stirring the mixture was a yellow solution. Then (+)-2,3-Dibenzoyl-D-tartaric acid (49,291 mg; 0,138 mmol) was added to the hot turbid solution. After 10 minutes of stirring at reflux the limpid yellow solution was left to cool naturally down to room temperature. After 15 min at room temperature the formation of a white solid was observed. The precipitate was separated from mother liquors

Table S4: Chiral HPLC results of diastereomeric salts

Entry	Co-solvent / solvent	Chiral HPLC results (solid)
1	5% H ₂ O/ 95% Acetone (v/v)	(R) 9.11% - (S) 90.89%
2	10% H ₂ O / 90% Acetone (v/v)	(R) 5.24% - (S) 94.76%

The trial 2 was replicated on a higher batch scale 500mg: 234mg of MSC2579448D as white solid were obtained (yield: 23.3%; chiral purity (S)%: 99.03 %;

- The effect of the dilution and the effect of the crystallization cooling temperature on the resolution efficiency and yield was investigated on 3g scale. Some representative examples are presented in the following table.

Table S5:	Table S5: Solvent/co-solvent effect												
Entry	T (°C)	Volume (mL/g rac-1)	Yield (%)	e.r.									
1	25°C	10	23.3	(R) 0.92% - (S) 99.08%									
2	25°C	5	28.30	(R) 0.86% - (S) 99.14%									
3	0/5°C	5	29.10	(R) 0.60% - (S) 99.40%									
4	-15/-20°C	5	33.70	(R) 0.20% - (S) 99.8%									

-Determination of the exact stoichiometry of the formed salt under the optimized conditions

Furthermore, it was investigated by ¹H-NMR analysis the molar ratio between the chiral agent and it was found that the precipitated salt if formed by two molecule of (*S*)-4 compound and one molecule of (+)-2,3-Dibenzoyl-D-tartaric acid. The molar yields reported in the manuscript have been accordingly calculated.

7- Screening of conditions for racemization

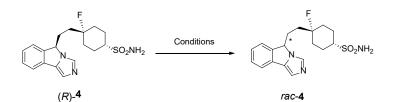
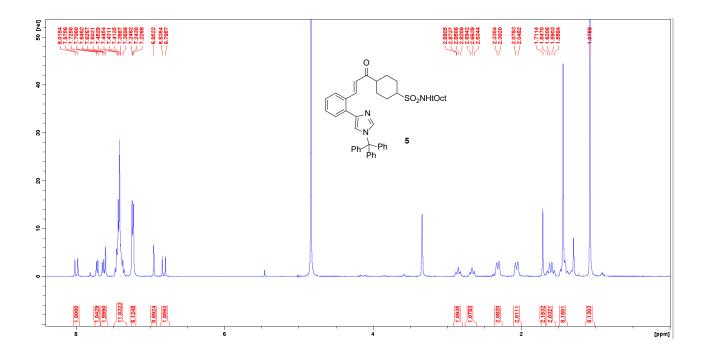
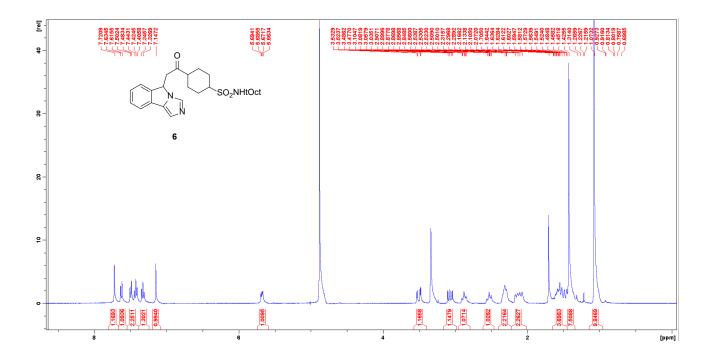
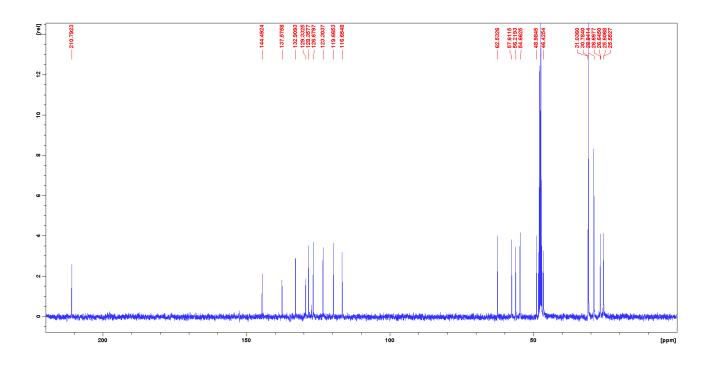


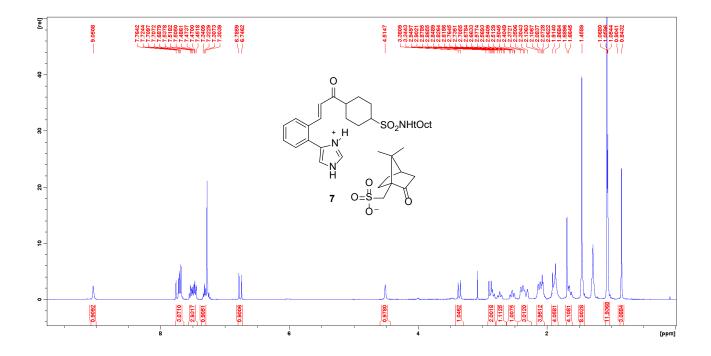
Table S6: Preliminary screening for racemization of enantioenriched (R)-4 (selected examples)

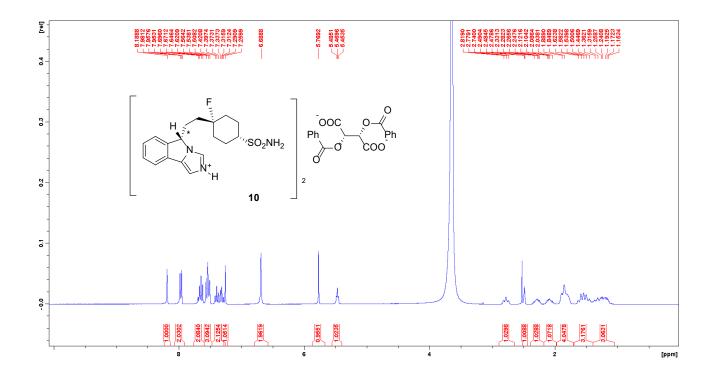

Entry	T (°C)	Solvent/base (conditions)	t (h)	e.r.
1	68°C	IPA / NaOHaq 0.1N (50%)	55	(R) 61.6% - (S) 38.4%
2	71°C	EtOH / NaOHaq 0.1N (50%)	40	(R) 50.7% - (S) 49.3%
3	78°C	IPA / Et ₃ N (2.2 eq)	55	(R) 98.3% - (S) 1.7%
4	72°C	EtOH / water = $75/25$, NaOH = 1.8 eq	16	(R) 50.0% - (S) 50.0%

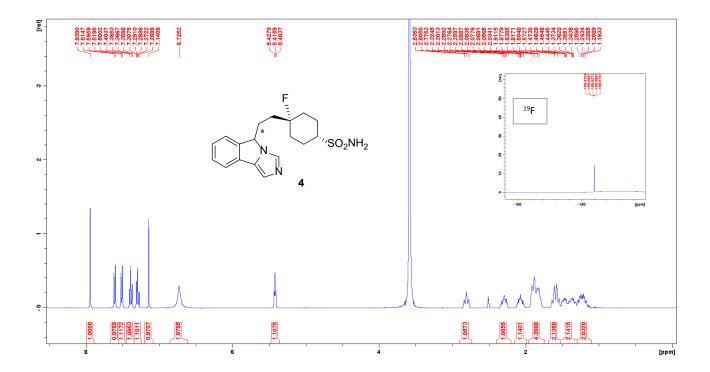
References

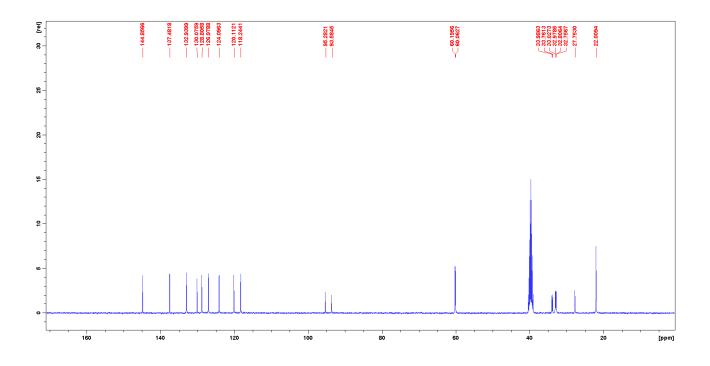

1. Mario Mautino, Sanjeev Kumar, Jesse Waldo, Firoz Jaipuri, Tanay Kesharwani. FUSED IMIDAZOLE DERIVATIVES USEFUL AS IDO INHIBITORS. WO2012142237A1. **2012**.

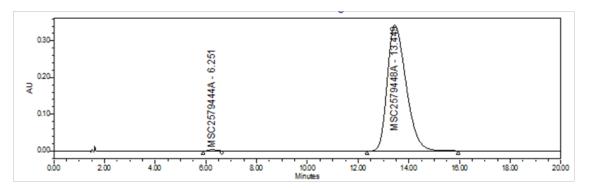

2. Sherer Brian A. CYCLOHEXYL-ETHYL SUBSTITUTED DIAZA- AND TRIAZA-TRICYCLIC COMPOUNDS AS INDOLE-AMINE-2,3-DIOXYGENASE (IDO) ANTAGONISTS FOR THE TREATMENT OF CANCER. WO 2016/037026 Al. **2016**.

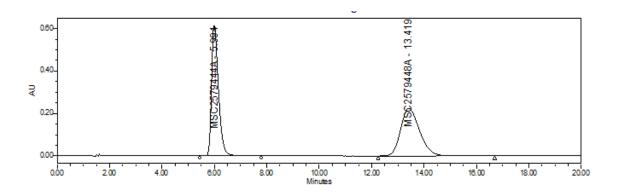

¹HNMR AND ¹³CNMR SPECTRA










HPLC traces

Name: MSC2579444A

	Vial	Inj	Name	RT	RT Ratio	Area	Height	% Area
1	2	2	MSC2579444A	6.25	0.465	75353.38	3750.71	0.43
Mean				6.25	0.465	75353.38	3750.71	0.43
Std. Dev.								
% RSD								
					Name: N	ISC25794	48A	

	Name. MSC2575446A														
	Vial	Inj	Name	RT	Area	Height	% Area	Resolution	Symmetry Factor						
1	2	2	MSC2579448A	13.45	17566415.04	342750.65	99.57	7.69	1.36						
Mean				13.45	17566415.04	342750.65	99.57	7.7	1.36						
Std. Dev.															
% RSD															

Name: MSC2579444A

	Vial	Inj	Name	RT	RT Ratio	Area	Height	% Area	Symmetry Factor
1	2	1	MSC2579444A	5.99	0.447	11368698.19	616085.63	50.34	1.48
Mean				5.99	0.447	11368698.19	616085.63	50.34	1.48
Std. Dev.									
% RSD									

Name: MSC2579448A

	Vial	Inj	Name	RT	Area	Height	% Area	Resolution	Symmetry Factor
1	2	1	MSC2579448A	13.42	11216772.55	224698.64	49.66	8.38	1.24
Mean				13.42	11216772.55	224698.64	49.66	8.4	1.24
Std. Dev.									
% RSD									