Supporting Information

A Simple Protocol for the Stereoselective Construction of Enaminyl Sulfonyl Fluorides

Jing Leng, ${ }^{\text {a, } \dagger}$ Wenjian Tang, ${ }^{\text {b, } \dagger}$ Wan-Yin Fang, ${ }^{a}$ Chuang Zhao, ${ }^{\text {a }}$ and Hua-Li Qin *a
${ }^{a}$ State Key Laboratory of Silicate Materials for Architectures; and School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan, 430070, China. E-mail: qinhuali@whut.edu.cn
${ }^{\mathrm{b}}$ School of Pharmacy, Anhui Medical University, Hefei, 230032, China
${ }^{\dagger}$ These authors contributed equally

Table of content

1. General considerations...S2
2. Optimization of the reaction conditions..S2
3. General procedure for synthesis $\mathbf{A}, \mathbf{B}, \mathbf{1}, \mathbf{3}, \mathbf{5}, \mathbf{I}$ and $\mathbf{8} \ldots \ldots \ldots \ldots \ldots . ~ 4 ~$
4. Determination of minimum inhibitory concentrations (MICs).........................S7

5. References.. S190

1. General considerations

All reactions were carried out under an air atmosphere. Unless otherwise specified, NMR spectra were recorded in CDCl_{3} or $\mathrm{DMSO}_{-} \mathrm{d}_{6}$ on a 500 MHz (for ${ }^{1} \mathrm{H}$), 471 MHz (for ${ }^{19} \mathrm{~F}$), or 126 MHz (for ${ }^{13} \mathrm{C}$) spectrometer. The chemical shifts converted to the TMS scale $\left(\mathrm{CDCl}_{3}: \delta \mathrm{H}=7.26 \mathrm{ppm}, \delta \mathrm{C}=77.16 \mathrm{ppm} ;\right.$ DMSO- $\mathrm{d}_{6}: \delta \mathrm{H}=2.50 \mathrm{ppm}, \delta \mathrm{C}=$ 39.52 ppm). Data for ${ }^{19}$ F NMR was reported in terms of chemical shift (ppm) relative to added internal standard $\left(\mathrm{CFCl}_{3}\right.$ at 0 ppm$)$. All coupling constants (J values) were reported in Hertz (Hz). The HPLC experiments were carried out on a Waters e2695 instrument (column: J\&K, RP-C18, $5 \mu \mathrm{~m}, 4.6 \times 150 \mathrm{~mm}$), and the yields of the products were determined by using the corresponding pure compounds as the external standards. The following abbreviations are used to explain the multiplicities: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet, $\mathrm{br}=$ broad. Melting points are reported uncorrected. MS experiments were performed on a TOF-Q ESI or CI/EI instrument. Oil bath was used for the heating reaction. Reagents used in the reactions were all purchased from commercial sources and used without further purification.

2. Optimization of the reaction conditions

Table S1 Screening of solvents for the synthesis of BTESF ${ }^{\text {a,b }}$

${ }^{\text {a }}$ Reaction condition: $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mol} \%, 12.5 \mathrm{mg})$, sodium ascorbate ($10 \mathrm{~mol} \%$ 19.8 mg) were dissolved in corresponding solvent (5 mL), phenylacetylene (1 mmol ,
$102 \mathrm{mg})$ and $\mathbf{B}(1 \mathrm{mmol}, 232 \mathrm{mg})$ were added to the solvent and the mixture was stirred at room temperature for 12 hours. ${ }^{\mathrm{b}}$ Isolated yield.

Table S2 Screening of ratio of B and alkyne for the synthesis of BTESF ${ }^{\text {a,b }}$

Entry	Ratio (B : alkyne)	Yield $1{ }^{\text {b }}$ (\%)
1	1:1	63
2	1:1.2	74
3	1:1.5	85
4	1:2	99
5	1.2:1	83
6	1.5:1	95

${ }^{\text {a }}$ Reaction condition: $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mol} \%, 12.5 \mathrm{mg})$, sodium ascorbate ($10 \mathrm{~mol} \%$ 19.8 mg) were dissolved $\mathrm{MeOH}(5 \mathrm{~mL})$, \mathbf{B} and phenylacetylene were added to MeOH and the mixture was stirred at room temperature for 12 hours. ${ }^{\mathrm{b}}$ Isolated yield.

Table S3. Optimization for the synthesis of \boldsymbol{N}-ESF ${ }^{\text {a,b }}$

Entry	Solvent	2b (equiv)	Yield (\%) $^{\text {b }}$
1	$\mathrm{CH}_{3} \mathrm{CN}$	1.2	39
2	Acetone	1.2	2
3	THF	1.2	21
4	MeOH	1.2	6
$\mathbf{5}$	$\mathbf{1 , 4 - D i o x a n e}$	$\mathbf{1 . 2}$	$\mathbf{5 8}$
6	DMSO	1.2	23
7	DMF	1.2	40
8	DCE	1.2	46
9	Toluene	1.2	51
10	NMP	1.2	37

11	1,4-Dioxane	1.0	54
12	1,4-Dioxane	1.5	74
$\mathbf{1 3}$	$\mathbf{1 , 4 - D i o x a n e}$	$\mathbf{2 . 0}$	$\mathbf{9 9}$

${ }^{\text {a }}$ Reaction conditions: $\mathbf{1}(0.1 \mathrm{mmol}, 33.4 \mathrm{mg})$ and $\mathbf{2 b}$ were dissolved in the corresponding solvent $(2 \mathrm{~mL})$ and stirred for 12 h at room temperature. ${ }^{\mathrm{b}}$ The yield was determined by HPLC using pure 3b as external standard. [$\mathrm{t}_{\mathbf{3} \mathbf{b}}=5.100 \mathrm{~min}$, $\lambda_{\max }=240.5$ $\mathrm{nm}, \mathrm{CH}_{3} \mathrm{CN} /$ water $\left.=50: 50(\mathrm{v} / \mathrm{v})\right]$.

3. General procedure for synthesis $A, B, 1,3,5, I$ and 8

3.1 Procedure for synthesis of A

Ethenesulfonyl fluoride (ESF), $33 \mathrm{~g}(300 \mathrm{mmol})$ was dissolved in $300 \mathrm{mLCH}_{2} \mathrm{Cl}_{2}$ and placed in a 500 mL round-bottom flask equipped with a stirred bar under the irradiation of 50 W white light. To the flask was added $96 \mathrm{~g}(600 \mathrm{mmol}, 31 \mathrm{~mL})$ bromine in three portions in 30 minutes, the reaction was stirred for about 12-16 hours. When the flask was swirled, the temperature rose rapidly to about $45^{\circ} \mathrm{C}$, the flask was cooled under ice-bath to maintain the temperature at near $25^{\circ} \mathrm{C}$. The reaction was monitored by TLC using KMnO_{4} as chromogenic agent. After the ethenesulfonyl fluoride was completely consumed, the mixture turned dark organic, the solution was washed with sodium thiosulfate solution until the color turned light yellow. Then dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to dryness and used directly in the next step without further purification.

3.2 Procedure for synthesis of B

An oven-dried round-bottle flask (250 mL) was charged with 1, 2-dibromoethane-1sulfonyl fluoride $\mathbf{A}(100 \mathrm{mmol}, 26.7 \mathrm{~g})$ and $100 \mathrm{~mL} \mathrm{MeOH} . \mathrm{NaN}_{3}(100 \mathrm{mmol}, 6.5 \mathrm{~g})$ was then added to the solution slowly. The mixture was stirred at room temperature for

3h with monitoring by TLC using stained KMnO_{4}. After the reaction, the solution was concentrated to dryness and the residue was purified through silica gel chromatography using ethyl acetate / petroleum ether (EA / PE) $=1: 10(\mathrm{v} / \mathrm{v})$ to afford 2-azido-1-bromoethane-1-sulfonyl fluoride B in 80% yield as a colorless liquid (18.5 g).

Caution: During the preparation and handling of organic azide B, safety precautions must be taken. And the azide \mathbf{B} should be stored below $5{ }^{\circ} \mathrm{C}$ away from line-of-sight to reduce the risk of explosion.

3.3 Procedure for synthesis of 1

An oven-dried round-bottle flask (250 mL) was charged with $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mol} \%$, 250 mg), sodium ascorbate ($10 \mathrm{~mol} \%, 396 \mathrm{mg}$), alkyne ($40 \mathrm{mmol}, 4.08 \mathrm{~g}$), 2-azido-1-bromoethane-1-sulfonyl fluoride $\mathbf{B}(20 \mathrm{mmol}, 4.64 \mathrm{~g})$ and 100 mL MeOH . The mixture was stirred at room temperature for 12-24 h with monitoring by TLC. After the reaction was completed, the solution was concentrated to dryness and the residue was purified through silica gel chromatography using EA / PE = 1:2 (v/v) to afford desired product 1 in 92% yield as white solid (6.15 g)

3.4 General procedure for synthesis of 3

Procedure A: An oven-dried reaction tube (20 mL) was charged with BTESF 1 (0.5 $\mathrm{mmol}, 167 \mathrm{mg}$), amine (1 mmol) and $5 \mathrm{~mL} \mathrm{1,4-dioxane}$. room temperature for 3-12 h with monitoring by TLC. After the reaction was completed, the solution was concentrated to dryness and the residue was purified through silica gel chromatography using a mixture of DCM and PE to afford the desired 2-amino ethenesulfonyl fluorides 3a-3aj.

When $\mathbf{2} \cdot \mathbf{H C l}$ or $\mathbf{2} \cdot \mathbf{H B r}$ were used ($\mathbf{2 k}, \mathbf{2 s}, \mathbf{2 w}, \mathbf{2 a d}$ and $\mathbf{2 a f}), \mathrm{Et}_{3} \mathrm{~N}(1 \mathrm{mmol}, 101 \mathrm{mg})$ was added to the reaction mixture; for the substrates of $\mathbf{2 k}, \mathbf{2 x}, \mathbf{2 z}, \mathbf{2 a d}, \mathbf{2 a f}, \mathbf{2 a h} \mathbf{2 a j}$, $\mathrm{Et}_{3} \mathrm{~N}(1 \mathrm{mmol}, 101 \mathrm{mg})$ was added to the reaction to improve the yields.

Procedure B: An oven-dried reaction tube (20 mL) was charged with BTESF 1 (0.6 $\mathrm{mmol}, 200.4 \mathrm{mg})$, amine (0.5 mmol), $\mathrm{Et}_{3} \mathrm{~N}(0.5 \mathrm{mmol}, 50.5 \mathrm{mg})$ and 5 mL DCE. The mixture was stirred at room temperature for 12-18 h with monitoring by TLC. After the
reaction was completed, the solution was concentrated to dryness and the residue was purified through silica gel chromatography using pure EA followed by $\mathrm{MeOH} / \mathrm{DCM}$ $=1: 10(\mathrm{v} / \mathrm{v})$ as eluent to afford the desired 2-amino ethenesulfonyl fluorides 3ak-3aq. Large scale synthesis of $\mathbf{3 b}$

A round-bottom flask (100 mL) was charged with BTESF $1(5 \mathrm{mmol}, 1.67 \mathrm{~g})$, pyrrolidine $\mathbf{2 b}(10 \mathrm{mmol}, 711 \mathrm{mg})$ and 50 mL 1 , 4-dioxane. The mixture was stirred at room temperature for 12 h with monitoring by TLC. After the reaction was completed, the solution was concentrated to dryness and the residue was purified through silica gel chromatography using a mixture of DCM and PE from pure PE to $\mathrm{DCM} / \mathrm{PE}=1: 1$ (v $/ \mathrm{v}$) to afford the desired product $\mathbf{3 b}$ in 92% yield as a white solid (895 mg).

3.5 General procedure for synthesis of 5

An oven-dried reaction tube (20 mL) was charged with 2-amino ethenesulfonyl fluoride 3 (0.5 mmol), corresponding phenol 4 (1 mmol), $\mathrm{KOH}(1 \mathrm{mmol}, 56 \mathrm{mg}$) and 5 mL $\mathrm{CH}_{3} \mathrm{CN}$. The mixture was stirred at $50^{\circ} \mathrm{C}$ under oil bath for $5-15 \mathrm{~h}$ with monitoring by TLC. After the reaction was completed, the solution was concentrated to dryness and the residue was purified through silica gel chromatography using a mixture of DCM and PE to afford the desired sulfonate products 5.

3.6 Procedure for synthesis of I

An oven-dried reaction tube (20 mL) was charged with BTESF $1(0.5 \mathrm{mmol}, 167 \mathrm{mg})$, $\mathrm{Et}_{3} \mathrm{~N}(2 \mathrm{mmol}, 202 \mathrm{mg})$ and 5 mL 1, 4-dioxane. The mixture was stirred at room temperature for 48 h with monitoring by TLC. After the reaction was completed, the solution was concentrated to dryness and the residue was purified through silica gel chromatography using a mixture of DCM and PE from $\mathrm{DCM} / \mathrm{PE}=1: 5$ to $\mathrm{DCM} / \mathrm{PE}$ $=1: 1$ to afford the desired product \mathbf{I} in 61% yield as a white solid $(77 \mathrm{mg})$.

3.7 Procedure for synthesis of 8

An oven-dried reaction tube (10 mL) was charged with $7^{[1]}(0.2 \mathrm{mmol}, 51 \mathrm{mg})$, pyrrolidine $\mathbf{2 b}$ ($0.4 \mathrm{mmol}, 28.5 \mathrm{mg}$) and 2 mL 1 , 4-dioxane. The mixture was stirred at
room temperature for 12 h with monitoring by TLC. After the reaction was completed, the solution was concentrated to dryness and the residue was purified through silica gel chromatography using a mixture of EA and PE from EA / PE = 1:2 (v / v) to pure EA to afford the desired product $\mathbf{8}$ in 98% yield as a white solid (60 mg).

4. Determination of minimum inhibitory concentrations (MICs)

The antimicrobial potential of seven drugs and their fluorosulfonylvinylated products 3ak-3aq were evaluated against a panel of bacteria and fungi in Mueller-Hinton (MH) broth, including two Gram-positive bacteria: Staphylococcus aureus ATCC 25923 and Methicillin Resistant Staphylococcus aureus isolated from clinical; two Gram-negative bacteria: Pseudomonas aeruginosa ATCC 9027 and Escherichia coli ATCC 8739; and one fungi: Candida albicans ATCC 10231, respectively. The MICs of title compounds were determined in Mueller-Hinton (MH) broth according to the methodology of the Clinical Laboratory Standards Institute (CLSI), ${ }^{[2]}$ using the micro-broth dilution method in 96-well micro-test plates. The bacterial inoculation was prepared by growing colonies from MH agar in MH broth. The final test concentration of compounds ranged from $0.09-200 \mu \mathrm{M}$ and bacterial inocula of $10^{5} \mathrm{CFU} / \mathrm{mL}$. The MICs were recorded as the lowest concentration of the test compound inhibiting visual growth, after incubation at $37^{\circ} \mathrm{C}$ for 18-20 hours. MICs were performed in at least duplicate and the mean MIC is reported. Each sample was tested in triplicate and each experiment was repeated three times.

5. NMR spectra of $B, 1,3,5-6, I$ and 8

B
2-Azido-1-bromoethane-1-sulfonyl fluoride (B). Colorless liquid, $18.5 \mathrm{~g}, 80 \%$ EA / $\mathrm{PE}=1: 10(\mathrm{v} / \mathrm{v})$ as eluent for column chromatography. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 5.14-5.11 (m, 1H), $4.13(\mathrm{dd}, J=13.9,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{dd}, J=13.8,6.9 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 55.8\left(\mathrm{~d}, J=20.6 \mathrm{~Hz}\right.$), $52.8(\mathrm{~s}) .{ }^{19} \mathrm{~F}$ NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
$\delta 47.4$ (s, 1F). EI-MS HRMS calculated for $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{FO}_{2} \mathrm{SBr}[\mathrm{M}]^{+}$230.9108, found 230.9105 .

1-Bromo-2-(4-phenyl-1H-1,2,3-triazol-1-yl)ethane-1-sulfonyl fluoride (1). White solid, $6.15 \mathrm{~g}, 92 \%$. M.p. $162-163{ }^{\circ} \mathrm{C}$. $\mathrm{EA} / \mathrm{PE}=1: 2(\mathrm{v} / \mathrm{v})$ as eluent for column chromatography. ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO) $\delta 8.66(\mathrm{~s}, 1 \mathrm{H}), 7.85(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H})$, 7.47 (t, $J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.37(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.00-6.97(\mathrm{~m}, 1 \mathrm{H}), 5.47(\mathrm{dd}, J=15.1$, $5.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.30(\mathrm{dd}, J=15.1,7.6 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , DMSO) $\delta 146.5$ (s), 130.2 (s), 129.1 (s), 128.2 (s$), 125.3$ (s$), 122.6$ (s$), 55.4$ (d, $J=18.9 \mathrm{~Hz}$), 50.3 (s$).{ }^{19} \mathrm{~F}$ NMR (471 MHz, DMSO) $\delta 47.1$ (s, 1F). ESI-MS HRMS calculated for $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{BrFN}_{3} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 333.9656$, found 333.9655 .

3a
(E)-2-(azetidin-1-yl)ethene-1-sulfonyl fluoride (3a). Yellow liquid, $80 \mathrm{mg}, 97 \%$. A mixture of DCM and PE from pure PE to $\mathrm{DCM} / \mathrm{PE}=1: 1(\mathrm{v} / \mathrm{v})$ as eluent for column chromatography. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.29(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.63(\mathrm{dd}, J$ $=12.2,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.14-4.13(\mathrm{~m}, 2 \mathrm{H}), 4.06-3.87(\mathrm{~m}, 2 \mathrm{H}), 2.49-2.43(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 151.9(\mathrm{~s}), 81.2\left(\mathrm{~d}, J=25.9 \mathrm{~Hz}\right.$), $53.8(\mathrm{~s}), 51.5(\mathrm{~s}), 16.6(\mathrm{~s}) .{ }^{19} \mathrm{~F}$ NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 70.7$ (s, 1F). EI-MS HRMS calculated for $\mathrm{C}_{5} \mathrm{H}_{8} \mathrm{FNO}_{2} \mathrm{~S}[\mathrm{M}]^{+}$ 165.0254, found 165.0254.

3b
(E)-2-(pyrrolidin-1-yl)ethene-1-sulfonyl fluoride (3b). white solid, $89 \mathrm{mg}, 99 \%$. M.p.
$105-107{ }^{\circ} \mathrm{C}$. A mixture of DCM and PE from pure PE to DCM / PE = 1:1 (v/v) as eluent for column chromatography. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.61(\mathrm{~d}, J=12.3 \mathrm{~Hz}$, $1 \mathrm{H}), 4.77$ (dd, $J=12.3,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.53(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.14(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H})$, 2.08-2.03 (m, 2H), 1.99-1.93 (m, 2H). ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 150.5(\mathrm{~s}), 81.9$ (d, $J=25.5 \mathrm{~Hz}$), 52.7 (s), 47.3 (s), 25.4 (s), $25.2(\mathrm{~s}) .{ }^{19} \mathrm{~F}$ NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 70.9 (s, 1F). EI-MS HRMS calculated for $\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{FNO}_{2} \mathrm{~S}[\mathrm{M}]^{+}$179.0411, found 179.0410.

3c
(E)-2-(piperidin-1-yl)ethene-1-sulfonyl fluoride (3c). White solid, $96 \mathrm{mg}, 99 \%$. M.p. $74-75^{\circ} \mathrm{C}$. A mixture of DCM and PE from pure PE to $\mathrm{DCM} / \mathrm{PE}=1: 1(\mathrm{v} / \mathrm{v})$ as eluent for column chromatography. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.34(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H})$, 4.89 (dd, $J=12.5,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.39-3.29$ (m, 2H), 3.23-3.11 (m, 2H), 1.72-1.62 (m, $6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.1(\mathrm{~s}), 81.1(\mathrm{~d}, J=25.3 \mathrm{~Hz}), 55.1(\mathrm{~s}), 46.5(\mathrm{~s})$, 26.3 (s), 24.6 (s), 23.6 (s). ${ }^{19}$ F NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 71.1$ (d, $\left.J=4.1 \mathrm{~Hz}, 1 \mathrm{~F}\right)$. EIMS HRMS calculated for $\mathrm{C}_{7} \mathrm{H}_{12} \mathrm{FNO}_{2} \mathrm{~S}[\mathrm{M}]^{+}$193.0567, found 193.0565.

3d
(E)-2-(azepan-1-yl)ethene-1-sulfonyl fluoride (3d). White solid, $99 \mathrm{mg}, 96 \%$. M.p. 55$57^{\circ} \mathrm{C}$. A mixture of DCM and PE from pure PE to $\mathrm{DCM} / \mathrm{PE}=1: 1(\mathrm{v} / \mathrm{v})$ as eluent for column chromatography. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.45(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.82$ (dd, $J=12.5,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.45(\mathrm{t}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.20(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.81-1.72$ $(\mathrm{m}, 4 \mathrm{H}), 1.65-1.57(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 154.0(\mathrm{~s}), 80.9(\mathrm{~d}, J=25.3$ Hz), 56.3 (s), 49.3 (s), 30.2 (s), 28.1 (s), 27.0 (s), 25.3 (s). ${ }^{19}$ F NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 71.0$ (s, 1F). EI-MS HRMS calculated for $\mathrm{C}_{8} \mathrm{H}_{14} \mathrm{FNO}_{2} \mathrm{~S}[\mathrm{M}]^{+}$207.0724, found 207.0722.

3e
(E)-2-(4-hydroxypiperidin-1-yl)ethene-1-sulfonyl fluoride (3e). Yellow liquid, 93 mg , 89%. A mixture of DCM and PE from pure PE to $\mathrm{DCM} / \mathrm{PE}=10: 1(\mathrm{v} / \mathrm{v})$ as eluent for column chromatography. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.34(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.92$ (dd, $J=12.6,4.6 \mathrm{~Hz}, 1 \mathrm{H}), ~ 4.02-3.99(\mathrm{~m}, 1 \mathrm{H}), 3.67-3.53(\mathrm{~m}, 1 \mathrm{H}), 3.49-3.36(\mathrm{~m}, 1 \mathrm{H})$, 3.30-3.20 (m, 1H), 3.13-3.00 (m, 1H), 2.09 (s, 1H), 1.97-1.87 (m, 2H), 1.70-1.60 (m, 2 H). ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.0(\mathrm{~s}), 81.8(\mathrm{~d}, J=25.3 \mathrm{~Hz}), 65.5(\mathrm{~s}), 50.9(\mathrm{~s})$, 42.4 (s), 34.1 (s), 32.4 (s). ${ }^{19} \mathrm{~F}$ NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 71.0$ ($\mathrm{s}, 1 \mathrm{~F}$). EI-MS HRMS calculated for $\mathrm{C}_{7} \mathrm{H}_{12} \mathrm{FNO}_{3} \mathrm{~S}[\mathrm{M}]^{+}$209.0516, found 209.0514.

$3 f$
(E)-2-(4-bromopiperidin-1-yl)ethene-1-sulfonyl fluoride (3f). Yellow liquid, 134 mg , 99%. A mixture of DCM and PE from pure PE to $\mathrm{DCM} / \mathrm{PE}=1: 1(\mathrm{v} / \mathrm{v})$ as eluent for column chromatography. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.35(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.99$ (dd, $J=12.6,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.48-4.44(\mathrm{~m}, 1 \mathrm{H}), 3.76-3.61(\mathrm{~m}, 1 \mathrm{H}), 3.50-3.40(\mathrm{~m}, 1 \mathrm{H})$, 3.38-3.29 (m, 1H), 3.23-3.12 (m, 1H), 2.19-2.15 (m, 2H), 2.08-2.03 (m, 2H). ${ }^{13}$ C NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 152.0(\mathrm{~s}), 82.0(\mathrm{~d}, J=26.0 \mathrm{~Hz}), 50.3(\mathrm{~s}), 46.1(\mathrm{~s}), 42.1(\mathrm{~s}), 34.3$ (s), 32.7 (s). ${ }^{19}$ F NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 70.5$ (s, 1F). EI-MS HRMS calculated for $\mathrm{C}_{7} \mathrm{H}_{11} \mathrm{BrFNO}_{2} \mathrm{~S}[\mathrm{M}]^{+}$270.9672, found 270.9671.

3g
Methyl (E)-1-(2-(fluorosulfonyl)vinyl)piperidine-4-carboxylate (3g). White solid, 99 $\mathrm{mg}, 76 \%$. M.p. $68-69^{\circ} \mathrm{C}$. A mixture of DCM and PE from pure PE to $\mathrm{DCM} / \mathrm{PE}=1: 1$ (v/v) as eluent for column chromatography. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.34$ (d, J $=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.96(\mathrm{dd}, J=12.6,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.56-3.41(\mathrm{~m}, 2 \mathrm{H}), 3.36-$
$3.24(\mathrm{~m}, 1 \mathrm{H}), 3.08-2.94(\mathrm{~m}, 1 \mathrm{H}), 2.61-2.57(\mathrm{~m}, 1 \mathrm{H}), 2.03-2.00(\mathrm{~m}, 2 \mathrm{H}), 1.81-1.79(\mathrm{~m}$, $2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.9(\mathrm{~s}), 153.0(\mathrm{~s}), 82.6(\mathrm{~d}, J=25.8 \mathrm{~Hz}), 53.0(\mathrm{~s})$, 52.2 (s), 44.7 (s), 39.8 (s), 28.3 (s), $26.6(\mathrm{~s}) .{ }^{19} \mathrm{~F}$ NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 70.6(\mathrm{~s}, 1 \mathrm{~F})$. EI-MS HRMS calculated for $\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{FNO}_{4} \mathrm{~S}[\mathrm{M}]^{+}$251.0622, found 251.0620 .

3h
(E)-2-(1,4-dioxa-8-azaspiro[4.5]decan-8-yl)ethene-1-sulfonyl fluoride (3h). White solid, $112 \mathrm{mg}, 89 \%$. M.p. $196-199^{\circ} \mathrm{C}$. A mixture of DCM and PE from pure PE to $\mathrm{DCM} / \mathrm{PE}=1: 1(\mathrm{v} / \mathrm{v})$ as eluent for column chromatography. ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.35(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.95(\mathrm{dd}, J=12.6,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.99-3.96(\mathrm{~m}, 4 \mathrm{H})$, 3.54-3.44 (m, 2H), 3.35-3.26 (m, 2H), 1.80-1.74 (m, 4H). ${ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(126} \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.0(\mathrm{~s}), 105.9(\mathrm{~s}), 82.3(\mathrm{~d}, J=25.6 \mathrm{~Hz}), 64.7(\mathrm{~s}), 52.2(\mathrm{~s}), 43.6(\mathrm{~s}), 35.4(\mathrm{~s}), 33.7(\mathrm{~s})$. ${ }^{19}$ F NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 70.7(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 1 \mathrm{~F})$. EI-MS HRMS calculated for $\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{FNO}_{4} \mathrm{~S}[\mathrm{M}]^{+}$251.0622, found 251.0622.

$3 i$
(E)-2-(4-benzylpiperidin-1-yl)ethene-1-sulfonyl fluoride (3i). White solid, 109 mg , 77%. M.p. $94-95^{\circ} \mathrm{C}$. A mixture of DCM and PE from pure PE to $\mathrm{DCM} / \mathrm{PE}=1: 1(\mathrm{v} /$ v) as eluent for column chromatography. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.34(\mathrm{~d}, J=$ $12.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.22(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H})$, 4.91 (dd, $J=12.5,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.47-3.44(\mathrm{~m}, 2 \mathrm{H}), 3.25-3.21(\mathrm{~m}, 1 \mathrm{H}), 2.88-2.84(\mathrm{~m}$, $1 \mathrm{H}), 2.58(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.83-1.78(\mathrm{~m}, 1 \mathrm{H}), 1.77-1.75(\mathrm{~m}, 2 \mathrm{H}), 1.29-1.26(\mathrm{~d}, J=$ $11.2 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.0(\mathrm{~s}), 139.4$ (s), 129.1 (s), 128.5 (s), 126.4 (s), 81.5 (d, $J=25.4 \mathrm{~Hz}$), 54.4 (s), 45.7 (s), 42.7 (s), 37.4 (s), 32.3 (s$), 30.6$ (s$).$ ${ }^{19} \mathrm{~F}$ NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 71.0(\mathrm{~s}, 1 \mathrm{~F})$. EI-MS HRMS calculated for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{FNO}_{2} \mathrm{~S}$ $[\mathrm{M}]^{+}$283.1037, found 283.1035.

3j
(E)-2-([1,4'-bipiperidin]-1'-yl)ethene-1-sulfonyl fluoride (3j). Yellow solid, 115 mg , 83%. M.p. $89-91^{\circ} \mathrm{C}$. A mixture of DCM and PE from pure PE to $\mathrm{DCM} / \mathrm{PE}=5: 1(\mathrm{v} /$ v) as eluent for column chromatography. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.32(\mathrm{~d}, J=$ $12.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.91(\mathrm{dd}, J=12.5,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.58-3.48(\mathrm{~m}, 2 \mathrm{H}), 3.31-3.22(\mathrm{~m}, 1 \mathrm{H})$, 2.96-2.84 (m, 1H), 2.55-2.46 (m, 5H), 1.91-1.89 (m, 2H), 1.60-1.56 (m, 6H), 1.47-1.41 $(\mathrm{m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 152.9(\mathrm{~s}), 81.8(\mathrm{~d}, J=25.4 \mathrm{~Hz}), 61.3(\mathrm{~s}), 53.6$ (s), 50.2 (s), 45.0 (s), 28.4 (s), 26.7 (s), 26.2 (s), 24.6 (s). ${ }^{19} \mathrm{~F}$ NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 70.9$ (s, 1F). EI-MS HRMS calculated for $\mathrm{C}_{12} \mathrm{H}_{21} \mathrm{FN}_{2} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}]^{+}$276.1302, found 276.1301 .

3k
(E)-2-(4,4-difluoropiperidin-1-yl)ethene-1-sulfonyl fluoride (3k). Yellow solid, 60 mg , 52%. M.p. $75-77^{\circ} \mathrm{C}$. A mixture of DCM and PE from pure PE to $\mathrm{DCM} / \mathrm{PE}=1: 1(\mathrm{v} /$ v) as eluent for column chromatography. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.37(\mathrm{~d}, J=$ $12.7 \mathrm{~Hz}, 1 \mathrm{H}$), $5.06(\mathrm{dd}, J=12.7,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.51-3.37(\mathrm{~m}, 4 \mathrm{H}), 2.14-2.06(\mathrm{~m}, 4 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 152.9(\mathrm{~s}), 120.5(\mathrm{t}, J=242.8 \mathrm{~Hz}), 84.6(\mathrm{~d}, J=26.4 \mathrm{~Hz})$, 50.6 (s), 42.3 (s), 32.3 (s), $32.8(\mathrm{~s}) .{ }^{19} \mathrm{~F}$ NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 70.1(\mathrm{~d}, J=4.2 \mathrm{~Hz}$, $1 \mathrm{~F})$, -99.1--99.2 (m, 2F). EI-MS HRMS calculated for $\mathrm{C}_{7} \mathrm{H}_{10} \mathrm{~F}_{3} \mathrm{NO}_{2} \mathrm{~S}[\mathrm{M}]^{+}$229.0379, found 229.0378 .

31
(E)-2-thiomorpholinoethene-1-sulfonyl fluoride (31). White solid, $75 \mathrm{mg}, 71 \%$. M.p. $64-66^{\circ} \mathrm{C}$. A mixture of DCM and PE from pure PE to $\mathrm{DCM} / \mathrm{PE}=1: 1(\mathrm{v} / \mathrm{v})$ as eluent
for column chromatography. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.35(\mathrm{~d}, J=12.7 \mathrm{~Hz}, 1 \mathrm{H})$, $4.99(\mathrm{dd}, J=12.7,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.73-3.61(\mathrm{~m}, 2 \mathrm{H}), 3.58-3.47(\mathrm{~m}, 2 \mathrm{H}), 2.74-2.66(\mathrm{~m}$, 4H). ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 152.9$ (s , 83.6 (d, $J=26.3 \mathrm{~Hz}$), 56.5 (s$), 48.3$ (s), 28.2 (s), 26.2 (s). ${ }^{19}$ F NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 70.3$ ($\mathrm{s}, 1 \mathrm{~F}$). EI-MS HRMS calculated for $\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{FNO}_{2} \mathrm{~S}_{2}[\mathrm{M}]^{+}$211.0131, found 211.0131.

3m
(E)-2-morpholinoethene-1-sulfonyl fluoride (3m). White solid, $84 \mathrm{mg}, 86 \%$. M.p. 67$70^{\circ} \mathrm{C}$. A mixture of DCM and PE from pure PE to $\mathrm{DCM} / \mathrm{PE}=1: 1(\mathrm{v} / \mathrm{v})$ as eluent for column chromatography. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.36(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.99$ (dd, $J=12.6,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{t}, J=4.6 \mathrm{~Hz}, 4 \mathrm{H}), 3.47-3.31(\mathrm{~m}, 2 \mathrm{H}), 3.29-3.12(\mathrm{~m}$, $2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.2(\mathrm{~s}), 83.2(\mathrm{~d}, J=26.1 \mathrm{~Hz}), 66.7(\mathrm{~s}), 65.4(\mathrm{~s})$, 52.9 (s), 45.7 (s). ${ }^{19} \mathrm{~F}$ NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 70.4(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{~F})$. EI-MS HRMS calculated for $\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{FNO}_{3} \mathrm{~S}[\mathrm{M}]^{+}$195.0360, found 195.0357.

3n
(E)-2-(piperazin-1-yl)ethene-1-sulfonyl fluoride (3n). White solid, $95 \mathrm{mg}, 98 \%$. M.p. $79-80^{\circ} \mathrm{C}$. A mixture of $\mathrm{EA}, \mathrm{MeOH}$ and DCM from pure EA to $\mathrm{MeOH} / \mathrm{DCM}=1: 20$ (v / v) as eluent for column chromatography. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.34(\mathrm{~d}, J$ $=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.93(\mathrm{dd}, J=12.6,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.46(\mathrm{~s}, 1 \mathrm{H}), 3.42-3.32(\mathrm{~m}, 2 \mathrm{H}), 3.24-$ 3.13 (m, 2H), 2.93-2.91 (m, 4H). ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.2$ (s), 81.9 (d, $J=$ 25.6 Hz), 54.5 (s), 46.6 (s), 46.2 (s), 44.7 (s). ${ }^{19}$ F NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 70.7$ (s, 1F). EI-MS HRMS calculated for $\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{FN}_{2} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}]^{+} 194.0520$, found 194.0520 .

30
(E)-2-(4-methylpiperazin-1-yl)ethene-1-sulfonyl fluoride (30). White solid, 103 mg , 99%. M.p. $101-102^{\circ} \mathrm{C}$. A mixture of DCM and PE from pure PE to DCM / PE = 5:1 (v $/ \mathrm{v}$) as eluent for column chromatography. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.33(\mathrm{~d}, J=$ $12.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.93$ (dd, $J=12.6,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.47-3.32(\mathrm{~m}, 2 \mathrm{H}), 3.30-3.16(\mathrm{~m}, 2 \mathrm{H})$, 2.45-2.43 (m, 4H), $2.31(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.0(\mathrm{~s}), 82.4(\mathrm{~d}, J=$ 25.8 Hz), 54.8 (s), 53.2 (s), 46.03 (s), 46.02 (s), 45.3 (s). ${ }^{19} \mathrm{~F}$ NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 70.7$ (s, 1F). EI-MS HRMS calculated for $\mathrm{C}_{7} \mathrm{H}_{13} \mathrm{FN}_{2} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}]^{+}$208.0676, found 208.0674.

3p
(E)-2-(3,5-dimethylpiperazin-1-yl)ethene-1-sulfonyl fluoride (3p). White solid, 107 $\mathrm{mg}, 96 \%$. M.p. $86-87{ }^{\circ} \mathrm{C}$. A mixture of $\mathrm{EA}, \mathrm{MeOH}$ and DCM from pure EA to MeOH / $\mathrm{DCM}=1: 40(\mathrm{v} / \mathrm{v})$ as eluent for column chromatography. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.33(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.92(\mathrm{dd}, J=12.6,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.27-3.25(\mathrm{~m}, 2 \mathrm{H}), 2.94-$ $2.83(\mathrm{~m}, 3 \mathrm{H}), 2.56-2.52(\mathrm{~m}, 1 \mathrm{H}), 2.03(\mathrm{~s}, 1 \mathrm{H}), 1.09-1.03(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 152.8(\mathrm{~s}), 82.1(\mathrm{~d}, J=25.7 \mathrm{~Hz}), 60.0(\mathrm{~s}), 52.1(\mathrm{~s}), 51.3(\mathrm{~s}), 49.9(\mathrm{~s}), 19.3(\mathrm{~s})$, 19.0 (s). ${ }^{19} \mathrm{~F}$ NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 70.7$ (s, 1F). EI-MS HRMS calculated for $\mathrm{C}_{8} \mathrm{H}_{15} \mathrm{FN}_{2} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}]^{+}$233.0911, found 233.0910.

(E)-2-(4-(2-chloro-6-fluorobenzyl)piperazin-1-yl)ethene-1-sulfonyl fluoride (3q). Yellow solid, $144 \mathrm{mg}, 86 \%$. M.p. $97-99^{\circ} \mathrm{C}$. A mixture of DCM and PE from pure PE
to $\mathrm{DCM} / \mathrm{PE}=5: 1(\mathrm{v} / \mathrm{v})$ as eluent for column chromatography. ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.33(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.25-7.20(\mathrm{~m}, 2 \mathrm{H}), 7.02-6.98(\mathrm{~m}, 1 \mathrm{H}), 4.92(\mathrm{dd}, J$ $=12.6,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.75-3.74(\mathrm{~m}, 2 \mathrm{H}), 3.44-3.30(\mathrm{~m}, 2 \mathrm{H}), 3.27-3.14(\mathrm{~m}, 2 \mathrm{H}), 2.62-$ $2.60(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 162.1(\mathrm{~d}, J=249.4 \mathrm{~Hz}), 152.9(\mathrm{~s}), 136.7$ (d, $J=5.6 \mathrm{~Hz}$), $129.8(\mathrm{~d}, J=9.8 \mathrm{~Hz}), 125.7(\mathrm{~d}, J=3.4 \mathrm{~Hz}), 123.0(\mathrm{~d}, J=17.9 \mathrm{~Hz})$, 114.2 (d, $J=23.3 \mathrm{~Hz}$), 82.4 (d, $J=25.9 \mathrm{~Hz}$), 53.4 (s), 52.5 (s$), 52.2$ (s), 51.1 (s$), 45.5$ (s). ${ }^{19}$ F NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 70.6$ (s, 1F), -112.7 (s, 1F). EI-MS HRMS calculated for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{ClF}_{2} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}]^{+} 335.0427$, found 335.0425 .

(E)-2-(4-(2-methoxyphenyl)piperazin-1-yl)ethene-1-sulfonyl fluoride (3r). White solid, $131 \mathrm{mg}, 87 \%$. M.p. $171-172{ }^{\circ} \mathrm{C}$. A mixture of DCM and PE from pure PE to $\mathrm{DCM} / \mathrm{PE}$ $=5: 1(\mathrm{v} / \mathrm{v})$ as eluent for column chromatography. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.42$ $(\mathrm{d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{t}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.95-6.90(\mathrm{~m}, 3 \mathrm{H}), 5.01(\mathrm{~d}, J=12.5 \mathrm{~Hz}$, $1 \mathrm{H}), 3.88-3.87(\mathrm{~m}, 3 \mathrm{H}), 3.63-3.51(\mathrm{~m}, 2 \mathrm{H}), 3.45-3.30(\mathrm{~m}, 2 \mathrm{H}), 3.17-3.06(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.1$ (s), 152.4 (s), 140.1 (s), 124.2 (s), 121.2 (s), 118.8 (s), 111.6 (s), 82.6 ($\mathrm{d}, ~ J=25.9 \mathrm{~Hz}$), 55.6 (s$), 53.6$ (s$), 50.9(\mathrm{~s}), 49.4(\mathrm{~s}), 45.8(\mathrm{~s}) .{ }^{19}$ F NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 70.7(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{~F})$. EI-MS HRMS calculated for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{FN}_{2} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}]^{+} 300.0938$, found 300.0936 .

(E)-2-(4-((4-chlorophenyl)(phenyl)methyl)piperazin-1-yl)ethene-1-sulfonyl fluoride (3s). White solid, $150 \mathrm{mg}, 80 \%$. M.p. $68-69^{\circ} \mathrm{C}$. A mixture of DCM and PE from pure PE to $\mathrm{DCM} / \mathrm{PE}=5: 1(\mathrm{v} / \mathrm{v})$ as eluent for column chromatography. ${ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$,
$\left.\mathrm{CDCl}_{3}\right) \delta 7.37-7.34(\mathrm{~m}, 5 \mathrm{H}), 7.31(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.29-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.23(\mathrm{t}, J=$ $7.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.91(\mathrm{dd}, J=12.6,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.28(\mathrm{~s}, 1 \mathrm{H}), 3.47-3.32(\mathrm{~m}, 2 \mathrm{H}), 3.28-3.11$ (m, 2H), 2.46-2.44 (m, 4H). ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 152.9$ (s), 141.1 (s), 140.4 (s), 133.2 (s), 129.1 (s), 129.1 (s$), 129.0(\mathrm{~s}), 127.78$ (s$), 127.75$ (s$), 82.4(\mathrm{~d}, J=25.6 \mathrm{~Hz})$, 75.0 (s), 53.3 (s), 51.6 (s), 50.2 (s), 45.6 (s). ${ }^{19} \mathrm{~F}$ NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 70.7$ ($\mathrm{s}, 1 \mathrm{~F}$). EI-MS HRMS calculated for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{ClFN}_{2} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}]^{+}$394.0913, found 394.0913.

3t
(E)-2-(2,5-dihydro-1H-pyrrol-1-yl)ethene-1-sulfonyl fluoride (3t). Yellow solid, 75 mg , 85%. M.p. $88-89^{\circ} \mathrm{C}$. A mixture of DCM and PE from pure PE to $\mathrm{DCM} / \mathrm{PE}=1: 1(\mathrm{v} /$ v) as eluent for column chromatography. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.65(\mathrm{~d}, J=$ $12.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.92-5.83(\mathrm{~m}, 2 \mathrm{H}), 4.82(\mathrm{dd}, J=12.3,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.40-4.32(\mathrm{~m}, 2 \mathrm{H})$, 4.02-3.93 (m, 2H). ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 150.5(\mathrm{~s}), 125.9(\mathrm{~s}), 125.3(\mathrm{~s}), 83.2$ (d, $J=26.0 \mathrm{~Hz}$), $58.4(\mathrm{~s}), 54.5(\mathrm{~s}) .{ }^{19} \mathrm{~F}$ NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 70.5$ (s, 1F). EI-MS HRMS calculated for $\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{FNO}_{2} \mathrm{~S}[\mathrm{M}]^{+}$177.0254, found 177.0253.

(E)-2-(octahydroquinolin-1(2H)-yl)ethene-1-sulfonyl fluoride (3u). White solid, 122 $\mathrm{mg}, 99 \%$. M.p. $95-96^{\circ} \mathrm{C}$. A mixture of DCM and PE from pure PE to $\mathrm{DCM} / \mathrm{PE}=1: 1$ (v / v) as eluent for column chromatography. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.48(\mathrm{~d}, J$ $=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.92(\mathrm{dd}, J=12.4,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.60-3.57(\mathrm{~m}, 1 \mathrm{H}), 2.92-2.87(\mathrm{~m}, 1 \mathrm{H})$, $2.82-2.78(\mathrm{~m}, 1 \mathrm{H}), 2.00-1.95(\mathrm{~m}, 2 \mathrm{H}), 1.82-1.70(\mathrm{~m}, 4 \mathrm{H}), 1.63-1.59(\mathrm{~m}, 1 \mathrm{H}), 1.52-1.44$ $(\mathrm{m}, 1 \mathrm{H}), 1.33-1.19(\mathrm{~m}, 4 \mathrm{H}), 1.11-1.03(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 147.9$ (s), 80.9 (d, $J=24.9 \mathrm{~Hz}), 66.0(\mathrm{~s}), 48.5$ (s$), 43.2$ (s), 32.9 (s$), 32.1$ (s), 29.1 (s$), 25.4$ (s$)$, 25.3 (s), 24.7 (s). ${ }^{19}$ F NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 71.2$ (s, 1F). EI-MS HRMS calculated for $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{FNO}_{2} \mathrm{~S}[\mathrm{M}]^{+}$247.1039, found 247.1030.

3v
(E)-2-(octahydro-2H-isoindol-2-yl)ethene-1-sulfonyl fluoride (3v). White solid, 91 mg , 78%. M.p. $64-66^{\circ} \mathrm{C}$. A mixture of DCM and PE from pure PE to $\mathrm{DCM} / \mathrm{PE}=1: 1(\mathrm{v} /$ v) as eluent for column chromatography. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.58(\mathrm{~d}, J=$ $12.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.75$ (dd, $J=12.3,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.57-3.54(\mathrm{~m}, 1 \mathrm{H}), 3.38-3.35(\mathrm{~m}, 1 \mathrm{H})$, 3.18-3.14 (m, 1H), 3.00-2.96(m, 1H), 2.44-2.37 (m, 1H), 2.28-2.23(m, 1H), 1.66-1.61 $(\mathrm{m}, 2 \mathrm{H}), 1.53-1.45(\mathrm{~m}, 4 \mathrm{H}), 1.38-1.33(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 151.3$ (s), 81.6 (d, $J=25.6 \mathrm{~Hz}$), 56.9 (s$), 51.0(\mathrm{~s}), 37.2(\mathrm{~s}), 37.1$ (s$), 25.7(\mathrm{~s}), 25.6(\mathrm{~s}), 22.9(\mathrm{~s})$, 22.2 (s). ${ }^{19}$ F NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 70.9$ (s, 1F). EI-MS HRMS calculated for $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{FNO}_{2} \mathrm{~S}[\mathrm{M}]^{+}$233.0880, found 233.0876.

3w
(E)-2-(hexahydrocyclopenta[c]pyrrol-2(1H)-yl)ethene-1-sulfonyl fluoride (3w). White solid, $65 \mathrm{mg}, 59 \%$. M.p. $80-81^{\circ} \mathrm{C}$. A mixture of DCM and PE from pure PE to DCM / $\mathrm{PE}=1: 1(\mathrm{v} / \mathrm{v})$ as eluent for column chromatography. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $7.51(\mathrm{~d}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.74(\mathrm{dd}, J=12.3,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.73-3.70(\mathrm{~m}, 1 \mathrm{H}), 3.37-3.33$ $(\mathrm{m}, 1 \mathrm{H}), 3.30-3.27(\mathrm{~m}, 1 \mathrm{H}), 2.89-2.86(\mathrm{~m}, 1 \mathrm{H}), 2.82-2.77(\mathrm{~m}, 1 \mathrm{H}), 2.74-2.69(\mathrm{~m}, 1 \mathrm{H})$, 1.91-1.82 (m, 2H), 1.77-1.69 (m, 1H), 1.68-1.60 (m, 1H), 1.51-1.39 (m, 2H). ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 150.3$ (s$), 81.7(\mathrm{~d}, J=25.3 \mathrm{~Hz}$), 58.8 (s$), 53.5(\mathrm{~s}), 43.1(\mathrm{~s}), 42.7$ (s), 32.5 (s), 31.5 (s), 25.5 (s). ${ }^{19}$ F NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 70.9$ (s, 1F). EI-MS HRMS calculated for $\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{FNO}_{2} \mathrm{~S}[\mathrm{M}]^{+}$219.0724, found 219.0723.

3x
(E)-2-(thiazolidin-3-yl)ethene-1-sulfonyl fluoride (3x). White solid, $60 \mathrm{mg}, 61 \%$. M.p.
$94-96^{\circ} \mathrm{C}$. A mixture of DCM and PE from pure PE to $\mathrm{DCM} / \mathrm{PE}=1: 1(\mathrm{v} / \mathrm{v})$ as eluent for column chromatography. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.63(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H})$, 4.95 (dd, $J=12.6,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.50-4.01(\mathrm{~m}, 2 \mathrm{H}), 3.90-3.37(\mathrm{~m}, 2 \mathrm{H}), 3.23-3.00(\mathrm{~m}$, $2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 149.6(\mathrm{~s}), 85.0(\mathrm{~d}, J=26.7 \mathrm{~Hz}$), $55.8(\mathrm{~s}), 48.9(\mathrm{~s})$, 30.4 (s). ${ }^{19}$ F NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 69.9$ (s, 1F). EI-MS HRMS calculated for $\mathrm{C}_{5} \mathrm{H}_{8} \mathrm{FNO}_{2} \mathrm{~S}_{2}[\mathrm{M}]^{+}$196.9975, found 196.9973.

(E)-2-(dibenzylamino)ethene-1-sulfonyl fluoride (3y). Yellow solid, 91 mg , 60\%. M.p. $86-88^{\circ} \mathrm{C}$. A mixture of DCM and PE from pure PE to $\mathrm{DCM} / \mathrm{PE}=1: 1(\mathrm{v} / \mathrm{v})$ as eluent for column chromatography. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.75(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H})$, 7.40-7.34 (m, 6H), 7.19-7.13 (m, 4H), 5.11 (dd, $J=12.6,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(\mathrm{~s}, 2 \mathrm{H}), 4.24$ (s, 2H). ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 154.2$ (s), 134.7 (s), 133.6 (s), 129.3 (s), 128.9 (s), 128.4 (s), 128.0 (s), 127.3 (s), 84.2 (d, $J=26.1 \mathrm{~Hz}$), 59.7 (s$), 51.5$ (s). ${ }^{19}$ F NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 70.4$ (s, 1F). EI-MS HRMS calculated for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{FNO}_{2} \mathrm{~S}[\mathrm{M}]^{+}$ 305.0880 , found 305.0871 .

Note: In the ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 y}$, theoretically, there should be twelve peaks. Due to the compact overlaying, it is difficult to specify the overlaying peaks.

$3 z$
(E)-2-((4-bromobenzyl)(methyl)amino)ethene-1-sulfonyl fluoride (3z). White solid, $151 \mathrm{mg}, 99 \%$. M.p. $86-87^{\circ} \mathrm{C}$. A mixture of DCM and PE from pure PE to $\mathrm{DCM} / \mathrm{PE}=$ 1:1 (v/v) as eluent for column chromatography. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.63-$ $7.51(\mathrm{~m}, 3 \mathrm{H}), 7.07(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.96(\mathrm{dd}, J=12.4,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.39-4.26(\mathrm{~m}$, 2 H), 3.11-2.73 (m, 3H). ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 154.2$ (s), 133.9 (s), 132.4 (s),
129.3 (s), 122.8 (s), $83.4\left(\mathrm{~d}, J=26.2 \mathrm{~Hz}\right.$), $61.2(\mathrm{~s}), 35.5(\mathrm{~s}) .{ }^{19} \mathrm{~F}$ NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 70.2$ ($\mathrm{s}, 1 \mathrm{~F}$). EI-MS HRMS calculated for $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{BrFNO}_{2} \mathrm{~S}[\mathrm{M}]^{+}$306.9672, found 306.9672 .

3 aa
(E)-2-(diethylamino)ethene-1-sulfonyl fluoride (3aa). Colorless liquid, $80 \mathrm{mg}, 89 \%$. A mixture of DCM and PE from pure PE to $\mathrm{DCM} / \mathrm{PE}=1: 1(\mathrm{v} / \mathrm{v})$ as eluent for column chromatography. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.38(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.86(\mathrm{dd}, J$ $=12.6,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.31(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.18(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.24(\mathrm{t}, J=7.2$ $\mathrm{Hz}, 3 \mathrm{H}), 1.18(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 152.6(\mathrm{~s}), 81.1(\mathrm{~d}, J$ $=25.4 \mathrm{~Hz}), 50.8(\mathrm{~s}), 43.2(\mathrm{~s}), 14.6(\mathrm{~s}), 11.0(\mathrm{~s}) .{ }^{19} \mathrm{~F}$ NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 71.0(\mathrm{~s}$, 1H). EI-MS HRMS calculated for $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{FNO}_{2} \mathrm{~S}[\mathrm{M}]^{+}$181.0567, found 181.0562 .

3ab
(E)-2-(dimethylamino)ethene-1-sulfonyl fluoride (3ab). Yellow liquid, $70 \mathrm{mg}, 92 \%$. A mixture of DCM and PE from pure PE to $\mathrm{DCM} / \mathrm{PE}=1: 1(\mathrm{v} / \mathrm{v})$ as eluent for column chromatography. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.40(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.82(\mathrm{dd}, J$ $=12.4,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.13(\mathrm{~s}, 3 \mathrm{H}), 2.83(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 154.7$ (s), $81.8(\mathrm{~d}, J=25.6 \mathrm{~Hz}), 45.2(\mathrm{~s}), 37.5(\mathrm{~s}) .{ }^{19} \mathrm{~F}$ NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 70.8(\mathrm{~s}, 1 \mathrm{~F})$. EI-MS HRMS calculated for $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{FNO}_{2} \mathrm{~S}[\mathrm{M}]^{+}$153.0254, found 153.0253.

(E)-2-(diallylamino)ethene-1-sulfonyl fluoride (3ac). Yellow liquid, $69 \mathrm{mg}, 67 \%$. A mixture of DCM and PE from pure PE to $\mathrm{DCM} / \mathrm{PE}=1: 1(\mathrm{v} / \mathrm{v})$ as eluent for column
chromatography. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.46(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.82-5.65$ (m, 2H), 5.33-5.18 (m, 4H), $4.96(\mathrm{dd}, J=12.6,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 2 \mathrm{H})$, 3.73 (d, $J=4.5 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.4$ (s), 131.9 (s), 129.2 (s), 120.3 (s), 119.1 (s), $83.6(\mathrm{~d}, J=25.9 \mathrm{~Hz}), 58.6(\mathrm{~s}), 51.0(\mathrm{~s}) .{ }^{19} \mathrm{~F}$ NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 70.4$ (d, $J=3.4 \mathrm{~Hz}, 1 \mathrm{~F}$). EI-MS HRMS calculated for $\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{FNO}_{2} \mathrm{~S}[\mathrm{M}]^{+}$205.0567, found 205.0561 .

(E)-2-(methylamino)ethene-1-sulfonyl fluoride (3ad). Colorless liquid, $62 \mathrm{mg}, 89 \%$. A mixture of DCM and PE from pure PE to $\mathrm{DCM} / \mathrm{PE}=5: 1(\mathrm{v} / \mathrm{v})$ as eluent for column chromatography. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.55(\mathrm{dd}, J=12.6,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.39$ (brs, 1 H), $5.02(\mathrm{dd}, J=12.6,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.82(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 152.4(\mathrm{~d}, J=6.8 \mathrm{~Hz}), 83.5(\mathrm{dd}, J=26.3,16.9 \mathrm{~Hz}), 30.4(\mathrm{~d}, J=3.4 \mathrm{~Hz}) .{ }^{19} \mathrm{~F}$ NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 69.7$ (s, 1F). EI-MS HRMS calculated for $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{FNO}_{2} \mathrm{~S}[\mathrm{M}]^{+}$ 139.0098 , found 139.0097 .

Ethyl (E)-(2-(fluorosulfonyl)vinyl)-L-phenylalaninate (3ae). Yellow liquid, 113 mg , 75%. A mixture of DCM and PE from pure PE to $\mathrm{DCM} / \mathrm{PE}=5: 1(\mathrm{v} / \mathrm{v})$ as eluent for column chromatography. $[\alpha]_{\mathrm{D}}{ }^{25}=+35.2(\mathrm{c}=1.0, \mathrm{MeOH}) .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.53-7.38(\mathrm{~m}, 1 \mathrm{H}), 7.33-7.28(\mathrm{~m}, 3 \mathrm{H}), 7.10(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 5.64(\mathrm{~s}, 1 \mathrm{H}), 5.21-$ $4.96(\mathrm{~m}, 1 \mathrm{H}), 4.26-4.20(\mathrm{~m}, 2 \mathrm{H}), 4.18-4.14(\mathrm{~m}, 1 \mathrm{H}), 3.21-3.17(\mathrm{~m}, 1 \mathrm{H}), 3.09-3.06(\mathrm{~m}$, $1 \mathrm{H}), 1.28(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.1(\mathrm{~s}), 149.5(\mathrm{~s}), 134.6$ (s), 129.4 (s), 129.0 (s$), 127.9$ (s), 81.2 (d, $J=23.9 \mathrm{~Hz}$), 63.0 (s$), 62.5$ (s$), 40.2$ (s), 14.2 (s). ${ }^{19} \mathrm{~F}$ NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 69.1$ (s, 1F). EI-MS HRMS calculated for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{FNO}_{4} \mathrm{~S}[\mathrm{M}]^{+}$301.0779, found 301.0771.

3af
Methyl (E)-(2-(fluorosulfonyl)vinyl)-L-prolinate (3af). Yellow liquid, $107 \mathrm{mg}, 90 \%$. A mixture of DCM and PE from pure PE to $\mathrm{DCM} / \mathrm{PE}=1: 1(\mathrm{v} / \mathrm{v})$ as eluent for column chromatography. $[\alpha]_{\mathrm{D}}{ }^{25}=-50.3(\mathrm{c}=1.23, \mathrm{MeOH}) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.59-$ $7.56(\mathrm{~m}, 1 \mathrm{H}), 4.96-4.76(\mathrm{~m}, 1 \mathrm{H}), 4.32-4.01(\mathrm{~m}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.61-3.31(\mathrm{~m}, 1 \mathrm{H})$, 3.23-2.32 (m, 1H), 2.24-1.96(m, 4H). ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.5(\mathrm{~s}), 150.7$ (s), 84.9 (d, $J=26.3 \mathrm{~Hz}$), 64.2 (s), 53.0 (s$), 47.9$ (s), 29.9 (s$), 23.6$ (s$).{ }^{19}$ F NMR (471 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 69.9(\mathrm{~s}, 1 \mathrm{~F})$. EI-MS HRMS calculated for $\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{FNO}_{4} \mathrm{~S}[\mathrm{M}]^{+}$237.0466, found 237.0463.

(E)-2-(4-(8-chloro-5,6-dihydro-11H-benzo[5,6]cyclohepta[1,2-b]pyridin-11-ylidene)piperidin-1-yl)ethene-1-sulfonyl fluoride (3ag). White solid, $196 \mathrm{mg}, 94 \%$. M.p. $110-113{ }^{\circ} \mathrm{C}$. A mixture of DCM and PE from pure PE to $\mathrm{DCM} / \mathrm{PE}=1: 1(\mathrm{v} / \mathrm{v})$ as eluent for column chromatography. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.38(\mathrm{~d}, J=4.2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.44$ (d, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.39$ (d, $J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.18-7.17$ (m, 1H), 7.15$7.08(\mathrm{~m}, 3 \mathrm{H}), 4.91(\mathrm{dd}, J=12.5,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.57-5.50(\mathrm{~m}, 1 \mathrm{H}), 3.38-3.28(\mathrm{~m}, 4 \mathrm{H})$, 3.15-3.01 (m, 1H), 2.89-2.76 (m, 2H), 2.69-2.64 (m, 1H), 2.55-2.45 (m, 1H), 2.45-2.35 (m, 2H). ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 156.2$ (s), 152.9 (s$), 146.9$ (s), 139.7 (s), 138.0 (s), 137.4 (s), 136.2 (s), 134.5 (s), 133.5 (s), 130.2 (s), 129.2 (s), 126.5 (s), 122.7 (s), 82.3 (d, $J=23.9 \mathrm{~Hz}$), 54.2 (d, $J=12.2 \mathrm{~Hz}$), 46.4 (s), 31.6 (s), 31.1 (d, $J=44.1 \mathrm{~Hz}$), 28.9 (d, $J=24.6 \mathrm{~Hz}$). ${ }^{19} \mathrm{~F}$ NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 70.7$ (s, 1F). EI-MS HRMS
calculated for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{ClFN}_{2} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}]^{+} 418.0913$, found 418.0913 .

3ah
(E)-2-(3-(3,4,5-trimethoxybenzamido)piperidin-1-yl)ethene-1-sulfonyl fluoride (3ah). White solid, $195 \mathrm{mg}, 97 \%$. M.p. $126-127^{\circ} \mathrm{C}$. A mixture of DCM and PE from pure PE to $\mathrm{DCM} / \mathrm{PE}=5: 1(\mathrm{v} / \mathrm{v})$ as eluent for column chromatography. ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.34(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{~s}, 2 \mathrm{H}), 6.26(\mathrm{~s}, 1 \mathrm{H}), 5.03-4.96(\mathrm{~m}, 1 \mathrm{H}), 4.11$ $(\mathrm{s}, 1 \mathrm{H}), 3.87(\mathrm{~s}, 6 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.68-3.62(\mathrm{~m} \mathrm{1H}), 3.39-3.09(\mathrm{~m}, 3 \mathrm{H}), 2.09-2.05(\mathrm{~m}$, $1 \mathrm{H}), 1.91-1.83(\mathrm{~m}, 1 \mathrm{H}), 1.75-1.66(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.3(\mathrm{~s})$, 153.4 (s), 153.3 (s), 141.3 (s), 129.5 (s), 104.6 (s), 82.7 (d, $J=25.3 \mathrm{~Hz}$), 61.0 (s$), 58.0$ (s), 56.4 (s), 49.8 (s), 45.7 (s), 29.2 (s), 23.8 (s). ${ }^{19}$ F NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 70.9$ (d, $J=46.3 \mathrm{~Hz}, 1 \mathrm{~F})$. EI-MS HRMS calculated for $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{FN}_{2} \mathrm{O}_{6} \mathrm{~S}[\mathrm{M}]^{+} 402.1255$, found 402.1251.

(E)-2-(methyl(2-(pyridin-2-yl)ethyl)amino)ethene-1-sulfonyl fluoride (3ai). White solid, $92 \mathrm{mg}, 75 \%$. M.p. $99-100^{\circ} \mathrm{C}$. A mixture of DCM and PE from pure PE to DCM $/ \mathrm{PE}=5: 1(\mathrm{v} / \mathrm{v})$ as eluent for column chromatography. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $8.55(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.32-7.26(\mathrm{~m}, 1 \mathrm{H}), 7.19-7.11(\mathrm{~m}, 2 \mathrm{H})$, 4.93-4.70 (m, 1H), 3.74-3.55 (t, $J=6.8 \mathrm{~Hz}, 2 \mathrm{H}$), 3.06-2.79 (m, 5H). ${ }^{13} \mathrm{C}$ NMR (126 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 157.1(\mathrm{~s}), 154.2(\mathrm{~s}), 149.9(\mathrm{~s}), 137.0(\mathrm{~s}), 123.7(\mathrm{~s}), 122.3$ (s), 82.2 (d, J $=25.9 \mathrm{~Hz}$), $57.7(\mathrm{~s}), 50.3(\mathrm{~s}), 37.2(\mathrm{~s}) .{ }^{19} \mathrm{~F}$ NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 70.6(\mathrm{~s}, 1 \mathrm{~F})$. EIMS HRMS calculated for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{FN}_{2} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}]^{+}$244.0676, found 244.0674.

3aj
(E)-2-(((1S,4S)-4-(3,4-dichlorophenyl)-1,2,3,4-tetrahydronaphthalen-1-
yl (methyl)amino)ethene-1-sulfonyl fluoride (3aj). White solid, $112 \mathrm{mg}, 54 \%$. M.p. 77$79^{\circ} \mathrm{C}$. A mixture of DCM and PE from pure PE to $\mathrm{DCM} / \mathrm{PE}=1: 1(\mathrm{v} / \mathrm{v})$ as eluent for column chromatography. $[\alpha]_{\mathrm{D}}{ }^{25}=+39.4(\mathrm{c}=0.97, \mathrm{MeOH}) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.60(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{t}, J$ $=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.17-7.13(\mathrm{~m}, 2 \mathrm{H}), 6.99(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{dd}, J=8.3,1.7 \mathrm{~Hz}$, $1 \mathrm{H}), 4.99(\mathrm{dd}, J=12.4,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.65(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{t}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H})$, $2.73(\mathrm{~s}, 3 \mathrm{H}), 2.26-2.19(\mathrm{~m}, 1 \mathrm{H}), 2.00-1.94(\mathrm{~m}, 1 \mathrm{H}), 1.92-1.89(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.9$ (s), 146.2 (s), 138.8 (s), 133.5 (s), 132.7 (s), 131.2 (s$), 130.70$ (s), 130.67 (s), 130.6 (s), 129.1 (s), 128.1 (s), 128.01 (s), 127.96 (s), 82.9 (d, $J=26.0 \mathrm{~Hz}$), 65.9 (s), 43.4 (s), 33.6 (s), 29.2 (s$), 24.5(\mathrm{~s}) .{ }^{19} \mathrm{~F}$ NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 70.3(\mathrm{~s}, 1 \mathrm{~F})$. EI-MS HRMS calculated for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{Cl}_{2} \mathrm{FNO}_{2} \mathrm{~S}[\mathrm{M}]^{+} 413.0414$, found 413.0411.

(E)-1-ethyl-6-fluoro-7-(4-(2-(fluorosulfonyl)vinyl)piperazin-1-yl)-4-oxo-1,4-dihydroquinoline-3-carboxylic acid (3ak). White solid, $176 \mathrm{mg}, 82 \%$. Decomposed at $190.1^{\circ} \mathrm{C}$. A mixture of EA, MeOH and DCM from pure EA to $\mathrm{MeOH} / \mathrm{DCM}=1: 10(\mathrm{v}$ $/ \mathrm{v}$) as eluent for column chromatography. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 15.28(\mathrm{~s}, 1 \mathrm{H})$,
$8.96(\mathrm{~s}, 1 \mathrm{H}), 7.95(\mathrm{~d}, J=13.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{~d}, J=7.1 \mathrm{~Hz}$, $1 \mathrm{H}), 5.61(\mathrm{dd}, J=12.5,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.60(\mathrm{q}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.78-3.71(\mathrm{~m}, 2 \mathrm{H}), 3.59-$ $3.53(\mathrm{~m}, 2 \mathrm{H}), 3.45-3.39(\mathrm{~m}, 4 \mathrm{H}), 1.42(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 176.2$ (s), 166.1 (s), 153.8 (s$), 152.8(\mathrm{~d}, J=249.2 \mathrm{~Hz}), 148.6$ (s), 144.8 (d, $J=10.4$ $\mathrm{Hz}), 137.1$ (s), 119.7 (d, $J=7.6 \mathrm{~Hz}$), 111.3 (d, $J=22.7 \mathrm{~Hz}$), 107.1 (s), 106.5 (d, $J=3.0$ $\mathrm{Hz}), 80.9$ (d, $J=23.1 \mathrm{~Hz}$), 51.6 (s), 49.7 (s$), 49.09$ (s$), 48.1$ (s), 45.0 (s), 14.4 (s). ${ }^{19} \mathrm{~F}$ NMR (471 MHz, DMSO) $\delta 74.0$ (s, 1F), -121.8 (dd, $J=13.0,7.2 \mathrm{~Hz}, 1 \mathrm{~F})$. EI-MS HRMS calculated for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{~F}_{2} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{~S}[\mathrm{M}]^{+} 427.1008$, found 427.1005.

(E)-1-ethyl-6-fluoro-7-(4-(2-(fluorosulfonyl)vinyl)piperazin-1-yl)-4-oxo-1,4-dihydro-1,8-naphthyridine-3-carboxylic acid (3al). White solid, $160 \mathrm{mg}, 75 \%$. Decomposed at $220.1^{\circ} \mathrm{C}$. A mixture of $\mathrm{EA}, \mathrm{MeOH}$ and DCM from pure EA to $\mathrm{MeOH} / \mathrm{DCM}=1: 10(\mathrm{v}$ $/ \mathrm{v}$) as eluent for column chromatography. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 15.23(\mathrm{~s}, 1 \mathrm{H})$, $8.96(\mathrm{~s}, 1 \mathrm{H}), 8.09(\mathrm{~d}, J=13.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.53(\mathrm{dd}, J=12.4$, $3.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.49$ (q, 7.0 Hz, 2H), 3.96-3.90 (m, 4H), 3.79-3.73 (m, 2H), 3.57-3.51 (m, 2 H), 1.39 ($\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}$). ${ }^{13} \mathrm{C} \operatorname{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 176.4$ (s), 165.8 (s$), 154.0$ (s), 153.9 (s), 149.9 (s), 140.0 (d, $J=248.9 \mathrm{~Hz}$), 145.9 (s$), 144.8$ (s), 113.0 (d, $J=3.6$ $\mathrm{Hz}), 108.2(\mathrm{~s}), 80.9(\mathrm{~d}, ~ J=23.1 \mathrm{~Hz}), 51.1(\mathrm{~s}), 47.2(\mathrm{~s}), 46.9(\mathrm{~d}, J=7.8 \mathrm{~Hz}), 45.0(\mathrm{~s})$, $44.8(\mathrm{~d}, J=7.8 \mathrm{~Hz}), 14.7(\mathrm{~s}) .{ }^{19} \mathrm{~F}$ NMR (471 MHz , DMSO) $\delta 73.9(\mathrm{~s}, 1 \mathrm{~F}),-127.9(\mathrm{~d}, J$ $=13.3 \mathrm{~Hz}, 1 \mathrm{~F})$. EI-MS HRMS calculated for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~F}_{2} \mathrm{~N}_{4} \mathrm{O}_{5} \mathrm{~S}[\mathrm{M}]^{+} 428.0960$, found 428.0959.

(E)-1-cyclopropyl-6-fluoro-7-(4-(2-(fluorosulfonyl)vinyl)piperazin-1-yl)-4-oxo-1,4-dihydroquinoline-3-carboxylic acid (3am). White solid, $251 \mathrm{mg}, 95 \%$. Decomposed at $199.0^{\circ} \mathrm{C}$. A mixture of $\mathrm{EA}, \mathrm{MeOH}$ and DCM from pure EA to $\mathrm{MeOH} / \mathrm{DCM}=1: 10(\mathrm{v}$ $/ \mathrm{v}$) as eluent for column chromatography. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 14.80(\mathrm{~s}, 1 \mathrm{H})$, $8.71(\mathrm{~s}, 1 \mathrm{H}), 7.77(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.67-7.61(\mathrm{~m}, 1 \mathrm{H}), 5.63-5.54(\mathrm{~m}, 1 \mathrm{H}), 4.19-4.15$ $(\mathrm{m}, 1 \mathrm{H}), 4.05-3.99(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.93-3.86(\mathrm{~m}, 1 \mathrm{H}), 3.77-3.71(\mathrm{~m}, 4 \mathrm{H}), 3.59-3.41$ $(\mathrm{m}, 4 \mathrm{H}), 1.40-1.30(\mathrm{~m}, 3 \mathrm{H}), 1.15-1.10(\mathrm{~m}, 2 \mathrm{H}), 1.06-1.02(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 176.3(\mathrm{~s}), 165.7(\mathrm{~s}), 153.9(\mathrm{~s}), 152.8(\mathrm{~d}, J=238.7 \mathrm{~Hz}), 148.0(\mathrm{~d}, J=42.5 \mathrm{~Hz})$, $144.5(\mathrm{~d}, J=10.2 \mathrm{~Hz}), 139.0(\mathrm{~s}), 119.0(\mathrm{~d}, J=7.7 \mathrm{~Hz}), 111.0(\mathrm{dd}, J=23.0,14.1 \mathrm{~Hz})$,
 7.6 (s). ${ }^{19} \mathrm{~F}$ NMR ($471 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 74.0(\mathrm{~s}, 1 \mathrm{~F}),-121.9(\mathrm{dd}, J=12.9,7.4 \mathrm{~Hz}, 1 \mathrm{~F})$. EI-MS HRMS calculated for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{~F}_{2} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{~S}[\mathrm{M}]^{+} 439.1008$, found 439.1008.

(E)-1-ethyl-6,8-difluoro-7-(4-(2-(fluorosulfonyl)vinyl)-3-methylpiperazin-1-yl)-4-oxo-1,4-dihydroquinoline-3-carboxylic acid (3an). White solid, $190 \mathrm{mg}, 69 \%$. Decomposed at $190.2^{\circ} \mathrm{C}$. A mixture of EA, MeOH and DCM from pure EA to MeOH / $\mathrm{DCM}=1: 10(\mathrm{v} / \mathrm{v})$ as eluent for column chromatography. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 14.78(\mathrm{~s}, 1 \mathrm{H}), 8.92(\mathrm{~s}, 1 \mathrm{H}), 7.87(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.66-7.59(\mathrm{~m}, 1 \mathrm{H}), 5.58(\mathrm{~d}, J=$ $11.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.62-4.56(\mathrm{~m}, 2 \mathrm{H}), 4.05-4.97(\mathrm{~m}, 1 \mathrm{H}), 3.75-3.65(\mathrm{~m}, 1 \mathrm{H}), 3.58-3.37(\mathrm{~m}$, $4 \mathrm{H}), 1.45(\mathrm{t}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.38-1.30(\mathrm{~m}, 3 \mathrm{H}), 1.24-1.21(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 $\mathrm{MHz}, \mathrm{DMSO}) \delta 175.50(\mathrm{~s}), 165.45(\mathrm{~s}), 159.7(\mathrm{~d}, J=249.5 \mathrm{~Hz}), 153.2(\mathrm{~d}, J=127.8 \mathrm{~Hz})$, $151.2(\mathrm{~s}), 146.5(\mathrm{~d}, J=248.9 \mathrm{~Hz}), 133.5(\mathrm{~s}), 127.2(\mathrm{~d}, J=6.6 \mathrm{~Hz}), 121.1(\mathrm{~d}, J=8.2 \mathrm{~Hz})$,
107.1 (s), 106.9 (s), 81.0 (dd, $J=76.4,23.0 \mathrm{~Hz}$), 56.7 (s), 53.7 (d, $J=15.8 \mathrm{~Hz}$), 50.4 (s), 49.3 (d, $J=36.9 \mathrm{~Hz}$), 48.2 (s), 16.1 (s$), 15.9(\mathrm{~d}, J=5.3 \mathrm{~Hz}) .{ }^{19} \mathrm{~F}$ NMR (471 MHz , DMSO) $\delta 74.0(\mathrm{~s}), 73.8(\mathrm{~s}),-119.4(\mathrm{~s}),-128.8(\mathrm{~s})$. EI-MS HRMS calculated for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{~S}[\mathrm{M}]^{+} 459.1070$, found 459.1069 .

(E)-1-cyclopropyl-6-fluoro-7-(4-(2-(fluorosulfonyl)vinyl)-3-methylpiperazin-1-yl)-8-methoxy-4-oxo-1,4-dihydroquinoline-3-carboxylic acid (3a0). White solid, 226 mg , 78%. Decomposed at $181.6^{\circ} \mathrm{C}$. A mixture of EA, MeOH and DCM from pure EA to $\mathrm{MeOH} / \mathrm{DCM}=1: 10(\mathrm{v} / \mathrm{v})$ as eluent for column chromatography. ${ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, DMSO) $\delta 14.78(\mathrm{~s}, 1 \mathrm{H}), 8.71(\mathrm{~s}, 1 \mathrm{H}), 7.77(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.67-7.61(\mathrm{~m}, 1 \mathrm{H})$, 5.60-5.53 (m, 1H), 4.17 (hept, $J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.02-4.01(\mathrm{~m}, 1 \mathrm{H}), 3.79-3.69(\mathrm{~m}, 4 \mathrm{H})$, $3.57-3.46(\mathrm{~m}, 4 \mathrm{H}), 1.37-1.32(\mathrm{~m}, 3 \mathrm{H}), 1.26-1.19(\mathrm{~m}, 1 \mathrm{H}), 1.15-1.10(\mathrm{~m}, 2 \mathrm{H}), 1.06-1.01$ $(\mathrm{m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{DMSO}\right) \delta 176.4$ (s), 165.6 (s$), 155.5$ (d, $J=249.6 \mathrm{~Hz}$), 153.7 (s), 152.5 (d, $J=2.2 \mathrm{~Hz}$), 150.8 (s$), 146.3$ (s$), 134.2$ (s$), 121.5$ (d, $J=8.4 \mathrm{~Hz}$), 106.7 (d, $J=2.3 \mathrm{~Hz}$), 106.6 (s), 81.1 (d, $J=24.7 \mathrm{~Hz}$), $63.7(\mathrm{~d}, ~ J=27.3 \mathrm{~Hz}), 56.7$ (s), 55.3 (s), 49.3 (s), 45.1 (s), 40.7 (s), 16.3 (s), 9.0 (s). ${ }^{19}$ F NMR ($\left.471 \mathrm{MHz}, \mathrm{DMSO}\right) \delta$ $73.9(\mathrm{~s}, 1 \mathrm{~F}),-119.9(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{~F})$. EI-MS HRMS calculated for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{~F}_{2} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{~S}$ $[\mathrm{M}]^{+} 483.1270$, found 483.1270 .

(E)-1-cyclopropyl-6-fluoro-7-(3-((2-(fluorosulfonyl)vinyl)(methyl)amino)piperidin-1-
yl)-8-methoxy-4-oxo-1,4-dihydroquinoline-3-carboxylic acid (3ap). White solid, 265 $\mathrm{mg}, 89 \%$. Decomposed at $170.8^{\circ} \mathrm{C}$. A mixture of EA, MeOH and DCM from pure EA to $\mathrm{MeOH} / \mathrm{DCM}=1: 10(\mathrm{v} / \mathrm{v})$ as eluent for column chromatography. ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 14.64(\mathrm{~s}, 1 \mathrm{H}), 8.81(\mathrm{~s}, 1 \mathrm{H}), 7.87(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{~d}, J=12.3$ $\mathrm{Hz}, 1 \mathrm{H}), 4.94(\mathrm{dd}, J=12.2,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.03(\mathrm{hept}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.61-$ $3.58(\mathrm{~m}, 1 \mathrm{H}), 3.50-3.48(\mathrm{~m}, 2 \mathrm{H}), 3.19-3.10(\mathrm{~m}, 2 \mathrm{H}), 2.91(\mathrm{~s}, 3 \mathrm{H}), 2.15-2.13(\mathrm{~m}, 1 \mathrm{H})$, 1.99-1.96(m, 1H), 1.86-1.75 (m, 2H), 1.25-1.24 (m, 4H). ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 177.1(\mathrm{~s}), 166.7(\mathrm{~s}), 156.3(\mathrm{~d}, J=251.2 \mathrm{~Hz}), 151.8(\mathrm{~s}), 150.2(\mathrm{~s}), 145.9(\mathrm{~d}, J=5.4 \mathrm{~Hz})$, $139.1(\mathrm{~d}, J=12.2 \mathrm{~Hz}), 134.0(\mathrm{~s}), 122.7(\mathrm{~d}, J=9.1 \mathrm{~Hz}), 108.5(\mathrm{~d}, J=23.0 \mathrm{~Hz}), 108.1$ (s), 83.7 (d, J = 26.7 Hz), 63.3 (s), 62.92 (s$), 55.3$ (s), 51.0 (s$), 40.7$ (s$), 34.9$ (s$), 29.1$ (s), $25.5(\mathrm{~s}) .9 .74(\mathrm{~s}), 9.65(\mathrm{~s}) .{ }^{19} \mathrm{~F}$ NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 70.0(\mathrm{~s}, 1 \mathrm{~F}),-120.36(\mathrm{~d}$, $J=11.5 \mathrm{~Hz}, 1 \mathrm{~F})$. EI-MS HRMS calculated for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{~F}_{2} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{~S}[\mathrm{M}]^{+} 497.1427$, found 497.1426.

(E)-1-cyclopropyl-6-fluoro-7-(1-(2-(fluorosulfonyl)vinyl)octahydro-6H-pyrrolo[3,4-b]pyridin-6-yl)-8-methoxy-4-oxo-1,4-dihydroquinoline-3-carboxylic acid (3aq). White solid, $213 \mathrm{mg}, 70 \%$. Decomposed at $185.9{ }^{\circ} \mathrm{C}$. A mixture of EA, MeOH and DCM from pure EA to $\mathrm{MeOH} / \mathrm{DCM}=1: 10$ (v / v) as eluent for column chromatography. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 14.82(\mathrm{~s}, 1 \mathrm{H}), 8.78(\mathrm{~s}, 1 \mathrm{H}), 7.79(\mathrm{~d}, J$ $=13.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.12-5.10(\mathrm{~m}, 1 \mathrm{H}), 4.20-4.15(\mathrm{~m}, 1 \mathrm{H}), 4.12-$ $4.06(\mathrm{~m}, 1 \mathrm{H}), 4.02-3.97(\mathrm{~m}, 2 \mathrm{H}), 3.61(\mathrm{~s}, 3 \mathrm{H}), 3.36-3.34(\mathrm{~m}, 1 \mathrm{H}), 2.51-2.43(\mathrm{~m}, 1 \mathrm{H})$, 1.97-1.91 (m, 2H), 1.71-1.61 (m, 3H), 1.31-1.25 (m, 4H), 1.14-1.11 (m, 2H). ${ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 176.9(\mathrm{~s}), 166.9(\mathrm{~s}), 153.9(\mathrm{~d}, J=251.0 \mathrm{~Hz}), 152.1(\mathrm{~s}), 150.0(\mathrm{~s})$, $141.9(\mathrm{~d}, J=6.7 \mathrm{~Hz}), 136.6(\mathrm{~d}, J=10.7 \mathrm{~Hz}), 134.4(\mathrm{~s}), 119.8(\mathrm{~d}, J=8.8 \mathrm{~Hz}), 108.3(\mathrm{~d}$,
$J=23.9 \mathrm{~Hz}$), $107.9(\mathrm{~s}), 84.4(\mathrm{~d}, J=22.6 \mathrm{~Hz}), 62.7(\mathrm{~s}), 61.5(\mathrm{~s}), 56.1(\mathrm{~s}), 56.0(\mathrm{~s}), 50.3$ (s), 40.6 (s), 36.2 (s), 31.8 (s), 24.8 (s), 10.5 (s), 8.8 (s$).{ }^{19} \mathrm{~F}$ NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 69.9 ($\mathrm{s}, 1 \mathrm{~F}$), -121.5 ($\mathrm{s}, 1 \mathrm{~F}$). EI-MS HRMS calculated for $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{~F}_{2} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{~S}[\mathrm{M}]^{+}$509.1427, found 509.1425.

3,4-dimethylphenyl (E)-2-(pyrrolidin-1-yl)ethene-1-sulfonate (5a). White solid, 139 $\mathrm{mg}, 99 \%$. M.p. $81-82^{\circ} \mathrm{C} . \mathrm{DCM} / \mathrm{PE}=1: 1(\mathrm{v} / \mathrm{v})$ as eluent for column chromatography. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.32(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.03$ (d, $J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.96$ (dd, $J=8.1,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.72(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.45-3.35$ $(\mathrm{m}, 2 \mathrm{H}), 3.10-3.02(\mathrm{~m}, 2 \mathrm{H}), 2.23(\mathrm{~s}, 3 \mathrm{H}), 2.22(\mathrm{~s}, 3 \mathrm{H}), 2.04-1.96(\mathrm{~m}, 2 \mathrm{H}), 1.92-1.84(\mathrm{~m}$, $2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 148.9$ (s), 148.4 (s), 137.9 (s), 134.7 (s), 130.3 (s), 123.8 (s), 119.8 (s), 84.9 (s), 52.2 (s), 47.0 (s), 25.3 (s), 25.2 (s), 19.9 (s), 19.3 (s). EIMS HRMS calculated for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{NO}_{3} \mathrm{~S}[\mathrm{M}]^{+}$281.1080, found 281.1077.

Benzo[d][1,3]dioxol-5-yl
(E)-2-(4-(2-methoxyphenyl)piperazin-1-yl)ethene-1sulfonate ($\mathbf{5 b}$). Yellow liquid, $145 \mathrm{mg}, 69 \%$. $\mathrm{DCM} / \mathrm{PE}=1: 1(\mathrm{v} / \mathrm{v})$ as eluent for column chromatography. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.11(\mathrm{~d}, J=12.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{td}, J=$ $7.7,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{td}, J=7.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{dd}, J=7.9,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.79(\mathrm{~d}$, $J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.75-6.70(\mathrm{~m}, 2 \mathrm{H}), 5.97(\mathrm{~s}, 2 \mathrm{H}), 4.95(\mathrm{~d}, J=12.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H})$, 3.45-3.32 (m, 4H), $3.06(\mathrm{t}, J=5.1 \mathrm{~Hz}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 152.4(\mathrm{~s})$, 152.0 (s), 148.0 (s), 146.1 (s), 144.6 (s), 140.3 (s), 124.1 (s), 121.2 (s), 118.7 (s), 115.8 (s), 111.6 (s), 107.9 (s), 105.1 (s), 101.9 (s), 85.6 (s), 55.6 (s), 52.7 (s), 50.5 (s). EI-MS HRMS calculated for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S}[\mathrm{M}]^{+} 418.1193$, found 418.1193.

4-(Tert-butyl)phenyl (E)-2-morpholinoethene-1-sulfonate (5c). White solid, 143 mg , 88%. M.p. $116-118^{\circ} \mathrm{C} . \mathrm{DCM} / \mathrm{PE}=1: 1(\mathrm{v} / \mathrm{v})$ as eluent for column chromatography. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.35(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.15(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.05$ (d, $J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.98(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{t}, J=4.8 \mathrm{~Hz}, 4 \mathrm{H}), 3.21-3.15(\mathrm{~m}$, 4H), 1.30 ($\mathrm{s}, 9 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 151.8$ (s), 149.6 (s), 147.9 (s), 126.5 (s), 122.2 (s), 86.9 (s), 66.1 (s), 34.6 (s), 31.5 (s). EI-MS HRMS calculated for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{NO}_{4} \mathrm{~S}[\mathrm{M}]^{+}$325.1342, found 325.1333 .

Note: In the ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{5 c}$, theoretically, there should be ten peaks. Due to the compact overlaying, it is difficult to specify the overlaying peaks.

4-(Benzyloxy)phenyl (E)-2-(4-(8-chloro-5,6-dihydro-11H-benzo[5,6]cyclohepta[1,2-b]pyridin-11-ylidene)piperidin-1-yl)ethene-1-sulfonate (5d). Yellow liquid, 296 mg , 99%. $\mathrm{DCM} / \mathrm{PE}=1: 1(\mathrm{v} / \mathrm{v})$ as eluent for column chromatography. ${ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 8.40(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.45-7.36(\mathrm{~m}, 5 \mathrm{H}), 7.32(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.19-$ 7.09 (m, 6H), 7.05 (d, $J=12.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.94-6.91$ (m, 2H), 5.04 (s, 2H), 4.88 (d, $J=$ $12.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.39-3.29(\mathrm{~m}, 4 \mathrm{H}), 3.20-2.95(\mathrm{~m}, 2 \mathrm{H}), 2.90-2.77(\mathrm{~m}, 2 \mathrm{H}), 2.62-2.57(\mathrm{~m}$, $1 \mathrm{H}), 2.45-2.36(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.2$ (s), 156.4 (s), 151.6 (s), 146.9 (s), 144.0 (s$), 139.7$ (s), 138.0 (s$), 137.5$ (s$), 136.8$ (s$), 135.8$ (s$), 135.1$ (s$), 133.5$ (s), 133.4 (s), 130.3 (s), 129.2 (s), 128.7 (s), 128.2(s), 127.6 (s), 126.5 (s), 124.0 (s), 122.7 (s), 115.5 (s), 85.3 (s), 70.5 (s), 31.7 (s), 31.6 (s). EI-MS HRMS calculated for $\mathrm{C}_{34} \mathrm{H}_{31} \mathrm{ClN}_{2} \mathrm{O}_{4} \mathrm{~S}[\mathrm{M}]^{+} 598.1688$, found 598.1687 .

Note: In the ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{5 d}$, theoretically, there should be twenty-eight peaks.

Due to the compact overlaying, it is difficult to specify the overlaying peaks.

4-Phenyl-1H-1,2,3-triazole (6). ${ }^{[3]}$ White solid, $72 \mathrm{mg}, 99 \%$. A mixture of DCM, PE and EA from pure DCM to PE / EA = 1:2 (v/v) as eluent for column chromatography. ${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO) $\delta 14.98$ (s, 1H), 8.24 (s, 1H), 7.86 (d, $J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.45$ (t, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H})$.

4-Phenyl-1-(2-(pyrrolidin-1-ylsulfonyl)ethyl)-1H-1,2,3-triazole (8). White solid, 60 $\mathrm{mg}, 98 \%$. M.p. $196-197^{\circ} \mathrm{C}$. A mixture of EA and PE from EA $/ \mathrm{PE}=1: 2(\mathrm{v} / \mathrm{v})$ to pure EA as eluent for column chromatography. ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO) $\delta 8.65(\mathrm{~s}, 1 \mathrm{H})$, $7.82(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.46(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.79(\mathrm{t}, J=$ $6.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.79(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.22(\mathrm{t}, J=6.7 \mathrm{~Hz}, 4 \mathrm{H}), 1.79-1.76(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz, DMSO) $\delta 146.4$ (s), 130.7 (s), 129.0 (s), 128.0 (s), 125.1 (s), 121.9 (s), 47.3 (s), 47.0 (s), 44.3 (s), 25.2 (s). ESI-MS HRMS calculated for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}$ $[\mathrm{M}+\mathrm{H}]^{+} 307.1223$, found 307.1222.

(E)-2-(4-phenyl-1H-1,2,3-triazol-1-yl)ethene-1-sulfonyl fluoride (I). White solid, 77 $\mathrm{mg}, 61 \%$. M.p. $119-120^{\circ} \mathrm{C}$. A mixture of DCM and PE from $\mathrm{DCM} / \mathrm{PE}=1: 5$ to DCM $/ \mathrm{PE}=1: 1(\mathrm{v} / \mathrm{v})$ as eluent for column chromatography. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $8.33(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.20(\mathrm{~s}, 1 \mathrm{H}), 7.86(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.53-7.47(\mathrm{~m}, 3 \mathrm{H})$,
$7.15(\mathrm{dd}, J=13.5,2.8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 152.9(\mathrm{~s}), 142.0(\mathrm{~d}, J=$ 3.0 Hz), 137.3 (s), 130.7 (s), 129.4 (s$), 128.0(\mathrm{~s}), 126.8(\mathrm{~s}), 108.8(\mathrm{~d}, J=31.9 \mathrm{~Hz}) .{ }^{19} \mathrm{~F}$ NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 65.2$ (s, 1F). EI-MS HRMS calculated for $\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{FN}_{3} \mathrm{O}_{2} \mathrm{~S}$ $[\mathrm{M}]^{+}$253.0316, found 253.0314 .

(100

3a
${ }^{1} \mathrm{H}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$\stackrel{\text { I }}{\stackrel{\infty}{+}}$

3d
${ }^{19} \mathrm{~F}\left(471 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

3 g
${ }^{19} \mathrm{~F}\left(471 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

3i
${ }^{19} \mathrm{~F}\left(461 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

31
${ }^{19} \mathrm{~F}\left(471 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

30
${ }^{19} \mathrm{~F}\left(471 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

3u
${ }^{19} \mathrm{~F}\left(471 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

3w
${ }^{19} \mathrm{~F}\left(461 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

3y
${ }^{19} \mathrm{~F}\left(471 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

(

3aa
${ }^{19} \mathrm{~F}\left(471 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$/_{\mathrm{N}}$

3ab
${ }^{19} \mathrm{~F}\left(471 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

3ad
${ }^{19} \mathrm{~F}\left(471 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

3aj
${ }^{19} \mathrm{~F}\left(471 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

(200

${ }^{1} \mathrm{H}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

T1T1T11T11T1T1T1T1T111T1T1T1111
$\begin{array}{llllllll}138 & 136 & 134 & 132 & 130 & 128 & 126 & 124\end{array}$

器䔡

5d
${ }^{3} \mathrm{C}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}\left(126 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right)$

6. Data of Crystal Structure of 3b

The purified compound $\mathbf{3 b}$ about 100 mg is dissolved in diethyl ether and placed in a dark cabinet to slowly evaporate. After several days, a colorless bulk crystal is obtained. The X-ray crystal-structure determinations were obtained on a Bruker Smart1000 CDCC diffractometer (graphite-monochromated Mo K α radiation, $\lambda=0.71073 \mathrm{~nm}$) at 298(2) K. The crystal structure has been deposited at the Cambridge Crystallographic Data Centre (CCDC 1941924).

The ellipsoid contour probability level in the caption is 50%.
Table S4. Crystal data and structure refinement for 190328 e.

Identification code	190328 e
Empirical formula	C 6 H 10 F N O 2 S
Formula weight	179.21
Temperature	$298(2) \mathrm{K}$
Wavelength	0.71073 A
Crystal system, space group	Monoclinic, P2(1)
Unit cell dimensions	$\mathrm{a}=5.1313(4) \mathrm{A} \quad$ alpha $=90 \mathrm{deg}$.
	$\mathrm{b}=9.5990(8) \mathrm{A} \quad$ beta $=91.1720(10)$ deg.
	$\mathrm{c}=8.4892(7) \mathrm{A} \quad$ gamma $=90 \mathrm{deg}$.
Volume	$418.05(6) \mathrm{A}^{\wedge} 3$
Z, Calculated density	$2,1.424 \mathrm{Mg} / \mathrm{m}^{\wedge} 3$
Absorption coefficient	$0.356 \mathrm{~mm} \wedge-1 \quad 188$
F(000)	$0.45 \times 0.40 \mathrm{x} 0.30 \mathrm{~mm}$
Crystal size	2.40 to 25.02 deg.
Theta range for data collection	$-6<=\mathrm{h}<=6,-9<=\mathrm{k}<=11,-7<=1<=10$
Limiting indices	

Reflections collected / unique	2085 / 1338 [R(int) $=0.0202]$
Completeness to theta $=25.02$	100.0%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.9008 and 0.8564
Refinement method	Full-matrix least-squares on F^2
Data / restraints / parameters	$1338 / 1 / 120$
Goodness-of-fit on F^2	1.081
Final R indices [I>2sigma(I)]	$\mathrm{R} 1=0.0515, \mathrm{wR} 2=0.1424$
R indices (all data)	$\mathrm{R} 1=0.0656$, wR2 $=0.1608$
Absolute structure parameter	$0.4(3)$
Extinction coefficient	$0.25(3)$
Largest diff. peak and hole	0.210 and -0.249 e. $\mathrm{A}^{\wedge}-3$

Table S5. Atomic coordinates ($\times 10 \wedge 4$) and equivalent isotropic
displacement parameters ($\mathrm{A}^{\wedge} 2 \times 10^{\wedge} 3$) for 190328 e .
$\mathrm{U}(\mathrm{eq})$ is defined as one third of the trace of the orthogonalized
Uij tensor.

	x	y	z	$\mathrm{U}(\mathrm{eq})$
$\mathrm{F}(1)$	$8054(6)$	$6076(14)$	$2046(3)$	$137(1)$
$\mathrm{N}(1)$	$5294(7)$	$6093(17)$	$7083(4)$	$93(1)$
$\mathrm{O}(1)$	$11160(20)$	$4795(6)$	$3401(12)$	$136(3)$
$\mathrm{O}(2)$	$11295(19)$	$7249(7)$	$3409(11)$	$127(3)$
$\mathrm{S}(1)$	$9873(2)$	$6065(5)$	$3521(1)$	$69(1)$
$\mathrm{C}(1)$	$7870(40)$	$5543(16)$	$5050(30)$	$58(6)$
$\mathrm{C}(2)$	$6800(40)$	$6500(30)$	$5850(20)$	$57(7)$
$\mathrm{C}(3)$	$4460(20)$	$7352(13)$	$7871(19)$	$128(5)$
$\mathrm{C}(4)$	$2510(30)$	$6800(12)$	$8973(15)$	$103(4)$
$\mathrm{C}(5)$	$2770(30)$	$5277(13)$	$9174(13)$	$106(4)$
$\mathrm{C}(6)$	$4240(20)$	$4873(10)$	$7750(13)$	$102(4)$
$\mathrm{C}\left(1^{\prime}\right)$	$8030(50)$	$6624(17)$	$4990(30)$	$58(8)$
$\mathrm{C}\left(2^{\prime}\right)$	$6890(40)$	$5560(30)$	$5920(30)$	$57(7)$

Table S6. Bond lengths [A] and angles [deg] for 190328e.

$\mathrm{F}(1)-\mathrm{S}(1)$	$1.547(3)$
$\mathrm{N}(1)-\mathrm{C}(2)$	$1.37(2)$
$\mathrm{N}(1)-\mathrm{C}\left(2^{\prime}\right)$	$1.39(3)$
$\mathrm{N}(1)-\mathrm{C}(6)$	$1.414(15)$
$\mathrm{N}(1)-\mathrm{C}(3)$	$1.451(16)$
$\mathrm{O}(1)-\mathrm{S}(1)$	$1.391(8)$
$\mathrm{O}(2)-\mathrm{S}(1)$	$1.355(8)$
$\mathrm{S}(1)-\mathrm{C}\left(1^{\prime}\right)$	$1.67(2)$
$\mathrm{S}(1)-\mathrm{C}(1)$	$1.75(2)$
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.27(4)$
$\mathrm{C}(1)-\mathrm{H}(1)$	0.9300
$\mathrm{C}(2)-\mathrm{H}(2)$	0.9300
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.481(16)$
$\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~A})$	0.9700
$\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~B})$	0.9700
$\mathrm{C}(4)-\mathrm{C}(5)$	$1.478(8)$
$\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~A})$	0.9700
$\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~B})$	0.9700
$\mathrm{C}(5)-\mathrm{C}(6)$	$140.3(15)$
$\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~A})$	
$\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~B})$	0.9700
$\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~A})$	$1.43(4)$
$\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~B})$	0.9300
$\mathrm{C}\left(1^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)$	0.9300
$\mathrm{C}\left(1^{\prime}\right)-\mathrm{H}\left(1^{\prime}\right)$	0.9700
$\mathrm{C}\left(2^{\prime}\right)-\mathrm{H}\left(2^{\prime}\right)$	0.9700
$\mathrm{C}(2)-\mathrm{N}(1)-\mathrm{C}\left(2^{\prime}\right)$	
$\mathrm{C}(2)-\mathrm{N}(1)-\mathrm{C}(6)$	

$\mathrm{C}\left(2^{\prime}\right)-\mathrm{N}(1)-\mathrm{C}(6)$	102.4(15)
$\mathrm{C}(2)-\mathrm{N}(1)-\mathrm{C}(3)$	106.9(15)
$\mathrm{C}\left(2^{\prime}\right)-\mathrm{N}(1)-\mathrm{C}(3)$	144.8(15)
$\mathrm{C}(6)-\mathrm{N}(1)-\mathrm{C}(3)$	112.7(4)
$\mathrm{O}(2)-\mathrm{S}(1)-\mathrm{O}(1)$	118.2(3)
$\mathrm{O}(2)-\mathrm{S}(1)-\mathrm{F}(1)$	104.7(6)
$\mathrm{O}(1)-\mathrm{S}(1)-\mathrm{F}(1)$	103.1(6)
$\mathrm{O}(2)-\mathrm{S}(1)-\mathrm{C}\left(1^{\prime}\right)$	95.5(8)
$\mathrm{O}(1)-\mathrm{S}(1)-\mathrm{C}\left(1^{\prime}\right)$	127.9(8)
$\mathrm{F}(1)-\mathrm{S}(1)-\mathrm{C}\left(1^{\prime}\right)$	105.1(7)
$\mathrm{O}(2)-\mathrm{S}(1)-\mathrm{C}(1)$	128.2(7)
$\mathrm{O}(1)-\mathrm{S}(1)-\mathrm{C}(1)$	95.2(8)
$\mathrm{F}(1)-\mathrm{S}(1)-\mathrm{C}(1)$	104.5(6)
$\mathrm{C}\left(1^{\prime}\right)-\mathrm{S}(1)-\mathrm{C}(1)$	35.5(4)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{S}(1)$	117.0(18)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{H}(1)$	121.5
$\mathrm{S}(1)-\mathrm{C}(1)-\mathrm{H}(1)$	121.5
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{N}(1)$	117(3)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{H}(2)$	121.5
$\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{H}(2)$	121.5
$\mathrm{N}(1)-\mathrm{C}(3)-\mathrm{C}(4)$	101.8(9)
$\mathrm{N}(1)-\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~A})$	111.4
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~A})$	111.4
$\mathrm{N}(1)-\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~B})$	111.4
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~B})$	111.4
$\mathrm{H}(3 \mathrm{~A})-\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~B})$	109.3
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(3)$	111.4(12)
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~A})$	109.3
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~A})$	109.3
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~B})$	109.3

$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~B})$	109.3
$\mathrm{H}(4 \mathrm{~A})-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~B})$	108.0
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	$102.2(11)$
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~A})$	111.3
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~A})$	111.3
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~B})$	111.3
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~B})$	111.3
$\mathrm{H}(5 \mathrm{~A})-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~B})$	109.2
$\mathrm{~N}(1)-\mathrm{C}(6)-\mathrm{C}(5)$	$108.3(8)$
$\mathrm{N}(1)-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~A})$	110.0
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~A})$	110.0
$\mathrm{~N}(1)-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~B})$	110.0
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~B})$	110.0
$\mathrm{H}(6 \mathrm{~A})-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~B})$	108.4
$\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}\left(1^{\prime}\right)-\mathrm{S}(1)$	$115.4(16)$
$\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}\left(1^{\prime}\right)-\mathrm{H}\left(1^{\prime}\right)$	122.3
$\mathrm{~S}(1)-\mathrm{C}\left(1^{\prime}\right)-\mathrm{H}\left(1^{\prime}\right)$	122.3
$\mathrm{~N}(1)-\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}\left(1^{\prime}\right)$	$113(2)$
$\mathrm{N}(1)-\mathrm{C}\left(2^{\prime}\right)-\mathrm{H}\left(2^{\prime}\right)$	123.6
$\mathrm{C}\left(1^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)-\mathrm{H}\left(2^{\prime}\right)$	123.6

Symmetry transformations used to generate equivalent atoms:

Table S7. Anisotropic displacement parameters ($\mathrm{A}^{\wedge} 2 \times 10^{\wedge} 3$) for 190328 e .
The anisotropic displacement factor exponent takes the form:
-2 pi^2 [h^2 a*^2 U11 + ... $+2 \mathrm{hk} \mathrm{a}^{*} \mathrm{~b}^{*} \mathrm{U} 12$]

	U11	U22	U33	U23	U13	U12
$\mathrm{F}(1)$	$107(2)$	$243(4)$	$62(1)$	$-6(6)$	$-2(1)$	$-2(9)$
$\mathrm{N}(1)$	$75(2)$	$142(4)$	$63(2)$	$-12(7)$	$19(2)$	$-3(8)$
$\mathrm{O}(1)$	$217(9)$	$51(4)$	$139(7)$	$-13(3)$	$23(7)$	$12(5)$
$\mathrm{O}(2)$	$167(7)$	$76(5)$	$137(7)$	$-20(4)$	$2(6)$	$-40(5)$
$\mathrm{S}(1)$	$70(1)$	$77(1)$	$59(1)$	$0(1)$	$16(1)$	$3(1)$
$\mathrm{C}(1)$	$72(11)$	$42(12)$	$60(11)$	$6(7)$	$10(9)$	$-12(7)$
$\mathrm{C}(2)$	$69(12)$	$43(12)$	$59(12)$	$1(7)$	$12(10)$	$-6(7)$
$\mathrm{C}(3)$	$107(7)$	$105(9)$	$175(11)$	$26(8)$	$61(7)$	$10(6)$
$\mathrm{C}(4)$	$118(9)$	$101(7)$	$92(6)$	$-21(5)$	$42(5)$	$17(5)$
$\mathrm{C}(5)$	$140(10)$	$95(8)$	$84(6)$	$0(5)$	$40(5)$	$-8(6)$
$\mathrm{C}(6)$	$131(8)$	$85(7)$	$90(6)$	$-16(5)$	$13(5)$	$39(6)$
$\mathrm{C}\left(1^{\prime}\right)$	$72(12)$	$42(13)$	$60(12)$	$6(7)$	$9(9)$	$-12(6)$
$\mathrm{C}\left(2^{\prime}\right)$	$69(13)$	$43(13)$	$59(13)$	$1(8)$	$12(10)$	$-6(8)$

Table S8. Hydrogen coordinates (x 10^4) and isotropic
displacement parameters $\left(\mathrm{A}^{\wedge} 2 \times 10^{\wedge} 3\right)$ for 190328 e .

	x	y	z	U(eq)
$H(1)$	7599	4606	5279	70
$H(2)$	7029	7439	5605	68
$H(3 A)$	3673	8008	7132	154
$H(3 B)$	5893	7799	8432	154
$H(4 A)$	2733	7253	9989	124
$H(4 B)$	768	7014	8573	124
$H(5 A)$	1080	4825	9191	127
$H(5 B)$	3738	5049	10133	127
$H(6 A)$	5630	4231	8038	122
$H(6 B)$	3086	4416	6993	122
$H\left(1^{\prime}\right)$	7772	7567	5183	70
$H\left(2^{\prime}\right)$	7175	4614	5764	68

Table S9. Torsion angles [deg] for 190328 e .

$\mathrm{O}(2)-\mathrm{S}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	$29.2(18)$
$\mathrm{O}(1)-\mathrm{S}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	$161.6(14)$
$\mathrm{F}(1)-\mathrm{S}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	$-93.4(15)$
$\mathrm{C}\left(1^{\prime}\right)-\mathrm{S}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	$2.4(14)$
$\mathrm{S}(1)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{N}(1)$	$-178.0(12)$
$\mathrm{C}\left(2^{\prime}\right)-\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{C}(1)$	$2.6(13)$
$\mathrm{C}(6)-\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{C}(1)$	$-8(3)$
$\mathrm{C}(3)-\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{C}(1)$	$175.9(15)$
$\mathrm{C}(2)-\mathrm{N}(1)-\mathrm{C}(3)-\mathrm{C}(4)$	$170.4(12)$
$\mathrm{C}\left(2^{\prime}\right)-\mathrm{N}(1)-\mathrm{C}(3)-\mathrm{C}(4)$	$177.7(16)$
$\mathrm{C}(6)-\mathrm{N}(1)-\mathrm{C}(3)-\mathrm{C}(4)$	$-6.8(9)$
$\mathrm{N}(1)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$16.8(15)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	$-19.8(17)$
$\mathrm{C}(2)-\mathrm{N}(1)-\mathrm{C}(6)-\mathrm{C}(5)$	$179.0(15)$
$\mathrm{C}\left(2^{\prime}\right)-\mathrm{N}(1)-\mathrm{C}(6)-\mathrm{C}(5)$	$172.1(11)$
$\mathrm{C}(3)-\mathrm{N}(1)-\mathrm{C}(6)-\mathrm{C}(5)$	$-5.3(9)$
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{N}(1)$	$14.8(14)$
$\mathrm{O}(2)-\mathrm{S}(1)-\mathrm{C}\left(1^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)$	$-156.9(15)$
$\mathrm{O}(1)-\mathrm{S}(1)-\mathrm{C}\left(1^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)$	$-24(2)$
$\mathrm{F}(1)-\mathrm{S}(1)-\mathrm{C}\left(1^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)$	$96.2(16)$
$\mathrm{C}(1)-\mathrm{S}(1)-\mathrm{C}\left(1^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)$	$2.2(12)$
$\mathrm{C}(2)-\mathrm{N}(1)-\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}\left(1^{\prime}\right)$	$2.6(15)$
$\mathrm{C}(6)-\mathrm{N}(1)-\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}\left(1^{\prime}\right)$	$-9(3)$
$\mathrm{C}(3)-\mathrm{N}(1)-\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}\left(1^{\prime}\right)$	$-177.6(12)$
$\mathrm{S}(1)-\mathrm{C}\left(1^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)-\mathrm{N}(1)$	
	$174)$

Symmetry transformations used to generate equivalent atoms:

Table S10. Hydrogen bonds for 190328e [A and deg.].

D-H...A	$d(D-H)$	$d(H \ldots . A)$	$d(D \ldots A)$	$<$ (DHA)

7. References

[1] Zhang, X.; Moku, B.; Leng, J.; Rakesh, K. P.; Qin, H.-L. Eur. J. Org. Chem. 2019, 1763.
[2] Fothergill, A. W. Antifungal susceptibility testing: clinical laboratory and standards institute (CLSI) methods[M]. Interactions of Yeasts, Moulds, and Antifungal Agents. Humana Press, 2012, 65-74.
[3] Shu, W.-M.; Zhang, X.-F.; Zhang, X.-X.; Li, M.; Wang, A.-J.; Wu, A.-X. J. Org. Chem. 2019, 84, 14919.

