# **Supporting Information**

# A Simple Protocol for the Stereoselective Construction of Enaminyl Sulfonyl Fluorides

Jing Leng, a, † Wenjian Tang, b, † Wan-Yin Fang, Chuang Zhao, a and Hua-Li Qin \*a

## **Table of content**

| 1. General considerations.                                                            | S2   |
|---------------------------------------------------------------------------------------|------|
| 2. Optimization of the reaction conditions                                            | S2   |
| 3. General procedure for synthesis A, B, 1, 3, 5, I and 8                             | S4   |
| 4. Determination of minimum inhibitory concentrations (MICs)                          | S7   |
| 5. NMR spectra of <b>B</b> , <b>1</b> , <b>3</b> , <b>5-6</b> , <b>I</b> and <b>8</b> | S7   |
| 6. Data of Crystal Structure of <b>3b</b>                                             | S181 |
| 7. References                                                                         | S190 |

<sup>&</sup>lt;sup>a</sup> State Key Laboratory of Silicate Materials for Architectures; and School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan, 430070, China. E-mail: qinhuali@whut.edu.cn

<sup>&</sup>lt;sup>b</sup> School of Pharmacy, Anhui Medical University, Hefei, 230032, China

<sup>†</sup> These authors contributed equally

#### 1. General considerations

All reactions were carried out under an air atmosphere. Unless otherwise specified, NMR spectra were recorded in CDCl<sub>3</sub> or DMSO-d<sub>6</sub> on a 500 MHz (for  $^{1}$ H), 471 MHz (for  $^{19}$ F), or 126 MHz (for  $^{13}$ C) spectrometer. The chemical shifts converted to the TMS scale (CDCl<sub>3</sub>:  $\delta$  H = 7.26 ppm,  $\delta$  C = 77.16 ppm; DMSO-d<sub>6</sub>:  $\delta$  H = 2.50 ppm,  $\delta$  C = 39.52 ppm). Data for  $^{19}$ F NMR was reported in terms of chemical shift (ppm) relative to added internal standard (CFCl<sub>3</sub> at 0 ppm). All coupling constants (*J* values) were reported in Hertz (Hz). The HPLC experiments were carried out on a Waters e2695 instrument (column: J&K, RP-C18, 5  $\mu$ m, 4.6 × 150 mm), and the yields of the products were determined by using the corresponding pure compounds as the external standards. The following abbreviations are used to explain the multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad. Melting points are reported uncorrected. MS experiments were performed on a TOF-Q ESI or CI/EI instrument. Oil bath was used for the heating reaction. Reagents used in the reactions were all purchased from commercial sources and used without further purification.

#### 2. Optimization of the reaction conditions

Table S1 Screening of solvents for the synthesis of BTESF a,b

| $N_3$ $SO_2F$ | Ph—== CuSO <sub>4</sub> • 5H <sub>2</sub> O (5 mol%), sodium ascorbate (10 mol%) Solvent | N=N<br>N=N             |
|---------------|------------------------------------------------------------------------------------------|------------------------|
| В             |                                                                                          | 1 Br SO <sub>2</sub> F |

| Entry | Solvent                | Yield <b>1</b> <sup>b</sup> (%) |
|-------|------------------------|---------------------------------|
| 1     | CH <sub>3</sub> CN     | n.d.                            |
| 2     | Toluene                | 55                              |
| 3     | THF                    | n.d.                            |
| 4     | 1,4-Dioxane            | 21                              |
| 5     | DMSO                   | n.d.                            |
| 6     | DMF                    | n.d.                            |
| 7     | NMP                    | n.d.                            |
| 8     | MeOH                   | 63                              |
| 9     | $H_2O/t$ -BuOH = $2/1$ | 39                              |

<sup>&</sup>lt;sup>a</sup> Reaction condition: CuSO<sub>4</sub>·5H<sub>2</sub>O (5 mol%, 12.5 mg), sodium ascorbate (10 mol% 19.8 mg) were dissolved in corresponding solvent (5 mL), phenylacetylene (1 mmol,

102 mg) and **B** (1 mmol, 232 mg) were added to the solvent and the mixture was stirred at room temperature for 12 hours. <sup>b</sup> Isolated yield.

Table S2 Screening of ratio of B and alkyne for the synthesis of BTESF a,b

$$\begin{array}{c|c} & & & & \\ & & & \\ \text{Br} & & & \\ \text{N}_3 & & \\ & & & \\ \text{SO}_2\text{F} & & \\ & & & \\ \text{B} & & & \\ & & & \\ \text{B} & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & &$$

| Entry | Ratio (B : alkyne) | Yield <b>1</b> <sup>b</sup> (%) |
|-------|--------------------|---------------------------------|
| 1     | 1:1                | 63                              |
| 2     | 1:1.2              | 74                              |
| 3     | 1:1.5              | 85                              |
| 4     | 1:2                | 99                              |
| 5     | 1.2:1              | 83                              |
| 6     | 1.5:1              | 95                              |

<sup>&</sup>lt;sup>a</sup> Reaction condition: CuSO<sub>4</sub>·5H<sub>2</sub>O (5 mol%, 12.5 mg), sodium ascorbate (10 mol% 19.8 mg) were dissolved MeOH (5 mL), **B** and phenylacetylene were added to MeOH and the mixture was stirred at room temperature for 12 hours. <sup>b</sup> Isolated yield.

Table S3. Optimization for the synthesis of N-ESF  $^{a,b}$ 

| Entry | Solvent            | 2b (equiv) | Yield (%) <sup>b</sup> |
|-------|--------------------|------------|------------------------|
| 1     | CH <sub>3</sub> CN | 1.2        | 39                     |
| 2     | Acetone            | 1.2        | 2                      |
| 3     | THF                | 1.2        | 21                     |
| 4     | MeOH               | 1.2        | 6                      |
| 5     | 1,4-Dioxane        | 1.2        | 58                     |
| 6     | DMSO               | 1.2        | 23                     |
| 7     | DMF                | 1.2        | 40                     |
| 8     | DCE                | 1.2        | 46                     |
| 9     | Toluene            | 1.2        | 51                     |
| 10    | NMP                | 1.2        | 37                     |

| 11 | 1,4-Dioxane | 1.0 | 54 |
|----|-------------|-----|----|
| 12 | 1,4-Dioxane | 1.5 | 74 |
| 13 | 1,4-Dioxane | 2.0 | 99 |

<sup>&</sup>lt;sup>a</sup> Reaction conditions: **1** (0.1 mmol, 33.4 mg) and **2b** were dissolved in the corresponding solvent (2 mL) and stirred for 12 h at room temperature. <sup>b</sup> The yield was determined by HPLC using pure **3b** as external standard. [ $t_{3b} = 5.100 \text{ min}$ ,  $\lambda_{max} = 240.5 \text{ nm}$ , CH<sub>3</sub>CN / water = 50 : 50 (v / v)].

#### 3. General procedure for synthesis A, B, 1, 3, 5, I and 8

Br NaN<sub>3</sub> Br Cu<sub>2</sub>SO<sub>4</sub>•5H<sub>2</sub>O SO<sub>2</sub>F 
$$\frac{NaN_3}{MeOH, 3 \text{ h}}$$
 SO<sub>2</sub>F  $\frac{SO_2F}{MeOH, 15 \text{ h}}$  SO<sub>2</sub>F  $\frac{SO_2F}{MeOH, 15 \text{ h}}$  SO<sub>2</sub>F  $\frac{SO_2F}{MeOH, 15 \text{ h}}$   $\frac{SO_2F}{MeOH, 15 \text{ h}}$   $\frac{1}{100 \text{ mmol, 26.9 g}}$  18.5 g, 80% yield Exclusive chemoselectivity

# 3.1 Procedure for synthesis of A

Ethenesulfonyl fluoride (ESF), 33 g (300 mmol) was dissolved in 300 mL CH<sub>2</sub>Cl<sub>2</sub> and placed in a 500 mL round-bottom flask equipped with a stirred bar under the irradiation of 50 W white light. To the flask was added 96 g (600 mmol, 31 mL) bromine in three portions in 30 minutes, the reaction was stirred for about 12-16 hours. When the flask was swirled, the temperature rose rapidly to about 45 °C, the flask was cooled under ice-bath to maintain the temperature at near 25 °C. The reaction was monitored by TLC using KMnO<sub>4</sub> as chromogenic agent. After the ethenesulfonyl fluoride was completely consumed, the mixture turned dark organic, the solution was washed with sodium thiosulfate solution until the color turned light yellow. Then dried over anhydrous Na<sub>2</sub>SO<sub>4</sub> and concentrated to dryness and used directly in the next step without further purification.

#### 3.2 Procedure for synthesis of B

An oven-dried round-bottle flask (250 mL) was charged with 1, 2-dibromoethane-1-sulfonyl fluoride **A** (100 mmol, 26.7 g) and 100 mL MeOH. NaN<sub>3</sub> (100 mmol, 6.5 g) was then added to the solution slowly. The mixture was stirred at room temperature for

3h with monitoring by TLC using stained KMnO<sub>4</sub>. After the reaction, the solution was concentrated to dryness and the residue was purified through silica gel chromatography using ethyl acetate / petroleum ether (EA / PE) = 1:10 (v / v) to afford 2-azido-1-bromoethane-1-sulfonyl fluoride **B** in 80% yield as a colorless liquid (18.5 g).

Caution: During the preparation and handling of organic azide **B**, safety precautions must be taken. And the azide **B** should be stored below 5 °C away from line-of-sight to reduce the risk of explosion.

#### 3.3 Procedure for synthesis of 1

An oven-dried round-bottle flask (250 mL) was charged with CuSO<sub>4</sub>·5H<sub>2</sub>O (5 mol%, 250 mg), sodium ascorbate (10 mol%, 396 mg), alkyne (40 mmol, 4.08 g), 2-azido-1-bromoethane-1-sulfonyl fluoride **B** (20 mmol, 4.64 g) and 100 mL MeOH. The mixture was stirred at room temperature for 12-24 h with monitoring by TLC. After the reaction was completed, the solution was concentrated to dryness and the residue was purified through silica gel chromatography using EA / PE = 1:2 (v / v) to afford desired product **1** in 92% yield as white solid (6.15 g)

#### 3.4 General procedure for synthesis of 3

Procedure A: An oven-dried reaction tube (20 mL) was charged with BTESF 1 (0.5 mmol, 167 mg), amine (1 mmol) and 5 mL 1, 4-dioxane. The mixture was stirred at room temperature for 3-12 h with monitoring by TLC. After the reaction was completed, the solution was concentrated to dryness and the residue was purified through silica gel chromatography using a mixture of DCM and PE to afford the desired 2-amino ethenesulfonyl fluorides 3a-3aj.

When 2·HCl or 2·HBr were used (2k, 2s, 2w, 2ad and 2af), Et<sub>3</sub>N (1 mmol, 101 mg) was added to the reaction mixture; for the substrates of 2k, 2x, 2z, 2ad, 2af, 2ah-2aj, Et<sub>3</sub>N (1 mmol, 101 mg) was added to the reaction to improve the yields.

Procedure B: An oven-dried reaction tube (20 mL) was charged with BTESF 1 (0.6 mmol, 200.4 mg), amine (0.5 mmol), Et<sub>3</sub>N (0.5 mmol, 50.5 mg) and 5 mL DCE. The mixture was stirred at room temperature for 12-18 h with monitoring by TLC. After the

reaction was completed, the solution was concentrated to dryness and the residue was purified through silica gel chromatography using pure EA followed by MeOH / DCM = 1:10 (v/v) as eluent to afford the desired 2-amino ethenesulfonyl fluorides 3ak-3aq. Large scale synthesis of 3b

A round-bottom flask (100 mL) was charged with BTESF 1 (5 mmol, 1.67 g), pyrrolidine **2b** (10 mmol, 711 mg) and 50 mL 1, 4-dioxane. The mixture was stirred at room temperature for 12 h with monitoring by TLC. After the reaction was completed, the solution was concentrated to dryness and the residue was purified through silica gel chromatography using a mixture of DCM and PE from pure PE to DCM / PE = 1:1 (v / v) to afford the desired product **3b** in 92% yield as a white solid (895 mg).

## 3.5 General procedure for synthesis of 5

An oven-dried reaction tube (20 mL) was charged with 2-amino ethenesulfonyl fluoride 3 (0.5 mmol), corresponding phenol 4 (1 mmol), KOH (1 mmol, 56 mg) and 5 mL CH<sub>3</sub>CN. The mixture was stirred at 50 °C under oil bath for 5-15 h with monitoring by TLC. After the reaction was completed, the solution was concentrated to dryness and the residue was purified through silica gel chromatography using a mixture of DCM and PE to afford the desired sulfonate products 5.

#### 3.6 Procedure for synthesis of I

An oven-dried reaction tube (20 mL) was charged with BTESF 1 (0.5 mmol, 167 mg), Et<sub>3</sub>N (2 mmol, 202 mg) and 5 mL 1, 4-dioxane. The mixture was stirred at room temperature for 48 h with monitoring by TLC. After the reaction was completed, the solution was concentrated to dryness and the residue was purified through silica gel chromatography using a mixture of DCM and PE from DCM / PE = 1:5 to DCM / PE = 1:1 to afford the desired product I in 61% yield as a white solid (77 mg).

# 3.7 Procedure for synthesis of 8

An oven-dried reaction tube (10 mL) was charged with  $7^{[1]}$  (0.2 mmol, 51 mg), pyrrolidine **2b** (0.4 mmol, 28.5 mg) and 2 mL 1, 4-dioxane. The mixture was stirred at

room temperature for 12 h with monitoring by TLC. After the reaction was completed, the solution was concentrated to dryness and the residue was purified through silica gel chromatography using a mixture of EA and PE from EA / PE = 1:2 (v / v) to pure EA to afford the desired product 8 in 98% yield as a white solid (60 mg).

## 4. Determination of minimum inhibitory concentrations (MICs)

The antimicrobial potential of seven drugs and their fluorosulfonylvinylated products 3ak-3aq were evaluated against a panel of bacteria and fungi in Mueller-Hinton (MH) broth, including two Gram-positive bacteria: *Staphylococcus aureus* ATCC 25923 and Methicillin Resistant *Staphylococcus aureus* isolated from clinical; two Gram-negative bacteria: *Pseudomonas aeruginosa* ATCC 9027 and *Escherichia coli* ATCC 8739; and one fungi: *Candida albicans* ATCC 10231, respectively. The MICs of title compounds were determined in Mueller-Hinton (MH) broth according to the methodology of the Clinical Laboratory Standards Institute (CLSI),<sup>[2]</sup> using the micro-broth dilution method in 96-well micro-test plates. The bacterial inoculation was prepared by growing colonies from MH agar in MH broth. The final test concentration of compounds ranged from 0.09-200 μM and bacterial inocula of 10<sup>5</sup> CFU/mL. The MICs were recorded as the lowest concentration of the test compound inhibiting visual growth, after incubation at 37°C for 18-20 hours. MICs were performed in at least duplicate and the mean MIC is reported. Each sample was tested in triplicate and each experiment was repeated three times.

## 5. NMR spectra of B, 1, 3, 5-6, I and 8

$$N_3$$
  $SO_2F$ 

2-Azido-1-bromoethane-1-sulfonyl fluoride (**B**). Colorless liquid, 18.5 g, 80 %. EA / PE = 1:10 (v / v) as eluent for column chromatography.  $^{1}$ H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  5.14-5.11 (m, 1H), 4.13 (dd, J = 13.9, 4.8 Hz, 1H), 4.02 (dd, J = 13.8, 6.9 Hz, 1H).  $^{13}$ C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  55.8 (d, J = 20.6 Hz), 52.8 (s).  $^{19}$ F NMR (471 MHz, CDCl<sub>3</sub>)

 $\delta$  47.4 (s, 1F). EI-MS HRMS calculated for  $C_2H_3FO_2SBr$  [M]<sup>+</sup> 230.9108, found 230.9105.

$$N=N$$
  $N=N$ 

1-Bromo-2-(4-phenyl-1H-1,2,3-triazol-1-yl)ethane-1-sulfonyl fluoride (1). White solid, 6.15 g, 92%. M.p. 162-163 °C. EA / PE = 1:2 (v / v) as eluent for column chromatography.  $^{1}$ H NMR (500 MHz, DMSO)  $\delta$  8.66 (s, 1H), 7.85 (d, J = 7.4 Hz, 2H), 7.47 (t, J = 7.7 Hz, 2H), 7.37 (t, J = 7.4 Hz, 1H), 7.00-6.97 (m, 1H), 5.47 (dd, J = 15.1, 5.2 Hz, 1H), 5.30 (dd, J = 15.1, 7.6 Hz, 1H).  $^{13}$ C NMR (126 MHz, DMSO)  $\delta$  146.5 (s), 130.2 (s), 129.1 (s), 128.2 (s), 125.3 (s), 122.6 (s), 55.4 (d, J = 18.9 Hz), 50.3 (s).  $^{19}$ F NMR (471 MHz, DMSO)  $\delta$  47.1 (s, 1F). ESI-MS HRMS calculated for  $C_{10}H_{10}BrFN_3O_2S$  [M+H] $^+$  333.9656, found 333.9655.

$$N$$
 SO<sub>2</sub>F 3a

(*E*)-2-(azetidin-1-yl)ethene-1-sulfonyl fluoride (**3a**). Yellow liquid, 80 mg, 97%. A mixture of DCM and PE from pure PE to DCM / PE = 1:1 (v / v) as eluent for column chromatography.  $^{1}$ H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.29 (d, J = 12.2 Hz, 1H), 4.63 (dd, J = 12.2, 4.3 Hz, 1H), 4.14-4.13 (m, 2H), 4.06-3.87 (m, 2H), 2.49-2.43 (m, 2H).  $^{13}$ C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  151.9 (s), 81.2 (d, J = 25.9 Hz), 53.8 (s), 51.5 (s), 16.6 (s).  $^{19}$ F NMR (471 MHz, CDCl<sub>3</sub>)  $\delta$  70.7 (s, 1F). EI-MS HRMS calculated for C<sub>5</sub>H<sub>8</sub>FNO<sub>2</sub>S [M]<sup>+</sup> 165.0254, found 165.0254.

$$N$$
-SO<sub>2</sub>F

(E)-2-(pyrrolidin-1-yl)ethene-1-sulfonyl fluoride (3b). white solid, 89 mg, 99%. M.p.

105-107 °C. A mixture of DCM and PE from pure PE to DCM / PE = 1:1 (v / v) as eluent for column chromatography.  $^{1}$ H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.61 (d, J = 12.3 Hz, 1H), 4.77 (dd, J = 12.3, 4.5 Hz, 1H), 3.53 (t, J = 6.4 Hz, 2H), 3.14 (t, J = 6.9 Hz, 2H), 2.08-2.03 (m, 2H), 1.99-1.93 (m, 2H).  $^{13}$ C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  150.5 (s), 81.9 (d, J = 25.5 Hz), 52.7 (s), 47.3 (s), 25.4 (s), 25.2 (s).  $^{19}$ F NMR (471 MHz, CDCl<sub>3</sub>)  $\delta$  70.9 (s, 1F). EI-MS HRMS calculated for C<sub>6</sub>H<sub>10</sub>FNO<sub>2</sub>S [M]<sup>+</sup> 179.0411, found 179.0410.

$$N$$
  $SO_2F$   $3c$ 

(*E*)-2-(piperidin-1-yl)ethene-1-sulfonyl fluoride (**3c**). White solid, 96 mg, 99%. M.p. 74-75 °C. A mixture of DCM and PE from pure PE to DCM / PE = 1:1 (v / v) as eluent for column chromatography.  $^{1}$ H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.34 (d, J = 12.5 Hz, 1H), 4.89 (dd, J = 12.5, 4.7 Hz, 1H), 3.39-3.29 (m, 2H), 3.23-3.11 (m, 2H), 1.72-1.62 (m, 6H).  $^{13}$ C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  153.1 (s), 81.1 (d, J = 25.3 Hz), 55.1 (s), 46.5 (s), 26.3 (s), 24.6 (s), 23.6 (s).  $^{19}$ F NMR (471 MHz, CDCl<sub>3</sub>)  $\delta$  71.1 (d, J = 4.1 Hz, 1F). EI-MS HRMS calculated for  $C_7H_{12}FNO_2S$  [M]<sup>+</sup> 193.0567, found 193.0565.

$$N$$
— $SO_2F$ 

(*E*)-2-(azepan-1-yl)ethene-1-sulfonyl fluoride (**3d**). White solid, 99 mg, 96%. M.p. 55-57 °C. A mixture of DCM and PE from pure PE to DCM / PE = 1:1 (v / v) as eluent for column chromatography.  $^{1}$ H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.45 (d, J= 12.5 Hz, 1H), 4.82 (dd, J= 12.5, 4.6 Hz, 1H), 3.45 (t, J= 5.7 Hz, 2H), 3.20 (t, J= 6.0 Hz, 2H), 1.81-1.72 (m, 4H), 1.65-1.57 (m, 4H).  $^{13}$ C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  154.0 (s), 80.9 (d, J= 25.3 Hz), 56.3 (s), 49.3 (s), 30.2 (s), 28.1 (s), 27.0 (s), 25.3 (s).  $^{19}$ F NMR (471 MHz, CDCl<sub>3</sub>)  $\delta$  71.0 (s, 1F). EI-MS HRMS calculated for C<sub>8</sub>H<sub>14</sub>FNO<sub>2</sub>S [M]<sup>+</sup> 207.0724, found 207.0722.

$$HO \longrightarrow N \longrightarrow SO_2F$$

(*E*)-2-(4-hydroxypiperidin-1-yl)ethene-1-sulfonyl fluoride (**3e**). Yellow liquid, 93 mg, 89%. A mixture of DCM and PE from pure PE to DCM / PE = 10:1 (v / v) as eluent for column chromatography. H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.34 (d, J = 12.6 Hz, 1H), 4.92 (dd, J = 12.6, 4.6 Hz, 1H), 4.02-3.99 (m, 1H), 3.67-3.53 (m, 1H), 3.49-3.36 (m, 1H), 3.30-3.20 (m, 1H), 3.13-3.00 (m, 1H), 2.09 (s, 1H), 1.97-1.87 (m, 2H), 1.70-1.60 (m, 2H).  $^{13}$ C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  153.0 (s), 81.8 (d, J = 25.3 Hz), 65.5 (s), 50.9 (s), 42.4 (s), 34.1 (s), 32.4 (s).  $^{19}$ F NMR (471 MHz, CDCl<sub>3</sub>)  $\delta$  71.0 (s, 1F). EI-MS HRMS calculated for  $C_7H_{12}$ FNO<sub>3</sub>S [M]<sup>+</sup> 209.0516, found 209.0514.

$$Br - N - SO_2F$$

(*E*)-2-(4-bromopiperidin-1-yl)ethene-1-sulfonyl fluoride (**3f**). Yellow liquid, 134 mg, 99%. A mixture of DCM and PE from pure PE to DCM / PE = 1:1 (v / v) as eluent for column chromatography.  $^{1}$ H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.35 (d, J = 12.6 Hz, 1H), 4.99 (dd, J = 12.6, 4.5 Hz, 1H), 4.48-4.44 (m, 1H), 3.76-3.61 (m, 1H), 3.50-3.40 (m, 1H), 3.38-3.29 (m, 1H), 3.23-3.12 (m, 1H), 2.19-2.15 (m, 2H), 2.08-2.03 (m, 2H).  $^{13}$ C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  152.0 (s), 82.0 (d, J = 26.0 Hz), 50.3 (s), 46.1 (s), 42.1 (s), 34.3 (s), 32.7 (s).  $^{19}$ F NMR (471 MHz, CDCl<sub>3</sub>)  $\delta$  70.5 (s, 1F). EI-MS HRMS calculated for C<sub>7</sub>H<sub>11</sub>BrFNO<sub>2</sub>S [M]<sup>+</sup> 270.9672, found 270.9671.

$$\mathsf{MeO_2C} \underbrace{\hspace{1cm}}^{\hspace{1cm}} \mathsf{N} \underbrace{\hspace{1cm}}^{\hspace{1cm}} \mathsf{SO_2F}$$

Methyl (*E*)-1-(2-(fluorosulfonyl)vinyl)piperidine-4-carboxylate (**3g**). White solid, 99 mg, 76%. M.p. 68-69 °C. A mixture of DCM and PE from pure PE to DCM / PE = 1:1 (v / v) as eluent for column chromatography. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.34 (d, *J* = 12.6 Hz, 1H), 4.96 (dd, *J* = 12.6, 4.5 Hz, 1H), 3.71 (s, 3H), 3.56-3.41 (m, 2H), 3.36-

3.24 (m, 1H), 3.08-2.94 (m, 1H), 2.61-2.57 (m, 1H), 2.03-2.00 (m, 2H), 1.81-1.79 (m, 2H).  $^{13}$ C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  173.9 (s), 153.0 (s), 82.6 (d, J = 25.8 Hz), 53.0 (s), 52.2 (s), 44.7 (s), 39.8 (s), 28.3 (s), 26.6 (s).  $^{19}$ F NMR (471 MHz, CDCl<sub>3</sub>)  $\delta$  70.6 (s, 1F). EI-MS HRMS calculated for C<sub>9</sub>H<sub>14</sub>FNO<sub>4</sub>S [M]<sup>+</sup> 251.0622, found 251.0620.

3h

(*E*)-2-(1,4-dioxa-8-azaspiro[4.5]decan-8-yl)ethene-1-sulfonyl fluoride (**3h**). White solid, 112 mg, 89%. M.p. 196-199 °C. A mixture of DCM and PE from pure PE to DCM / PE = 1:1 (v / v) as eluent for column chromatography. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.35 (d, J = 12.6 Hz, 1H), 4.95 (dd, J = 12.6, 4.6 Hz, 1H), 3.99-3.96 (m, 4H), 3.54-3.44 (m, 2H), 3.35-3.26 (m, 2H), 1.80-1.74 (m, 4H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  153.0 (s), 105.9 (s), 82.3 (d, J = 25.6 Hz), 64.7 (s), 52.2 (s), 43.6 (s), 35.4 (s), 33.7 (s). <sup>19</sup>F NMR (471 MHz, CDCl<sub>3</sub>)  $\delta$  70.7 (d, J = 4.2 Hz, 1F). EI-MS HRMS calculated for C<sub>9</sub>H<sub>14</sub>FNO<sub>4</sub>S [M]<sup>+</sup> 251.0622, found 251.0622.

$$Bn - N - SO_2F$$

3i

(*E*)-2-(4-benzylpiperidin-1-yl)ethene-1-sulfonyl fluoride (3i). White solid, 109 mg, 77%. M.p. 94-95 °C. A mixture of DCM and PE from pure PE to DCM / PE = 1:1 (v / v) as eluent for column chromatography. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.34 (d, J = 12.6 Hz, 1H), 7.30 (t, J = 7.4 Hz, 2H), 7.22 (t, J = 7.4 Hz, 1H), 7.14 (d, J = 7.1 Hz, 2H), 4.91 (dd, J = 12.5, 4.6 Hz, 1H), 3.47-3.44 (m, 2H), 3.25-3.21 (m, 1H), 2.88-2.84 (m, 1H), 2.58 (d, J = 6.9 Hz, 2H), 1.83-1.78 (m, 1H), 1.77-1.75 (m, 2H), 1.29-1.26 (d, J = 11.2 Hz, 2H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  153.0 (s), 139.4 (s), 129.1 (s), 128.5 (s), 126.4 (s), 81.5 (d, J = 25.4 Hz), 54.4 (s), 45.7 (s), 42.7 (s), 37.4 (s), 32.3 (s), 30.6 (s). <sup>19</sup>F NMR (471 MHz, CDCl<sub>3</sub>)  $\delta$  71.0 (s, 1F). EI-MS HRMS calculated for C<sub>14</sub>H<sub>18</sub>FNO<sub>2</sub>S [M]<sup>+</sup> 283.1037, found 283.1035.

$$N - N - SO_2F$$

3

(*E*)-2-([1,4'-bipiperidin]-1'-yl)ethene-1-sulfonyl fluoride (**3j**). Yellow solid, 115 mg, 83%. M.p. 89-91 °C. A mixture of DCM and PE from pure PE to DCM / PE = 5:1 (v / v) as eluent for column chromatography.  $^{1}$ H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.32 (d, J = 12.6 Hz, 1H), 4.91 (dd, J = 12.5, 4.5 Hz, 1H), 3.58-3.48 (m, 2H), 3.31-3.22 (m, 1H), 2.96-2.84 (m, 1H), 2.55-2.46 (m, 5H), 1.91-1.89 (m, 2H), 1.60-1.56 (m, 6H), 1.47-1.41 (m, 2H).  $^{13}$ C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  152.9 (s), 81.8 (d, J = 25.4 Hz), 61.3 (s), 53.6 (s), 50.2 (s), 45.0 (s), 28.4 (s), 26.7 (s), 26.2 (s), 24.6 (s).  $^{19}$ F NMR (471 MHz, CDCl<sub>3</sub>)  $\delta$  70.9 (s, 1F). EI-MS HRMS calculated for  $C_{12}H_{21}FN_2O_2S$  [M]<sup>+</sup> 276.1302, found 276.1301.

3k

(*E*)-2-(4,4-difluoropiperidin-1-yl)ethene-1-sulfonyl fluoride (**3k**). Yellow solid, 60 mg, 52%. M.p. 75-77 °C. A mixture of DCM and PE from pure PE to DCM / PE = 1:1 (v / v) as eluent for column chromatography. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.37 (d, J = 12.7 Hz, 1H), 5.06 (dd, J = 12.7, 4.4 Hz, 1H), 3.51-3.37 (m, 4H), 2.14-2.06 (m, 4H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  152.9 (s), 120.5 (t, J = 242.8 Hz), 84.6 (d, J = 26.4 Hz), 50.6 (s), 42.3 (s), 32.3 (s), 32.8 (s). <sup>19</sup>F NMR (471 MHz, CDCl<sub>3</sub>)  $\delta$  70.1 (d, J = 4.2 Hz, 1F), -99.1 – -99.2 (m, 2F). EI-MS HRMS calculated for C<sub>7</sub>H<sub>10</sub>F<sub>3</sub>NO<sub>2</sub>S [M]<sup>+</sup> 229.0379, found 229.0378.

$$S$$
 $N$ 
 $SO_2F$ 

31

(*E*)-2-thiomorpholinoethene-1-sulfonyl fluoride (**3I**). White solid, 75 mg, 71%. M.p. 64-66 °C. A mixture of DCM and PE from pure PE to DCM / PE = 1:1 (v / v) as eluent  $_{S12}$ 

for column chromatography.  $^{1}$ H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.35 (d, J = 12.7 Hz, 1H), 4.99 (dd, J = 12.7, 4.5 Hz, 1H), 3.73-3.61 (m, 2H), 3.58-3.47 (m, 2H), 2.74-2.66 (m, 4H).  $^{13}$ C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  152.9 (s), 83.6 (d, J = 26.3 Hz), 56.5 (s), 48.3 (s), 28.2 (s), 26.2 (s).  $^{19}$ F NMR (471 MHz, CDCl<sub>3</sub>)  $\delta$  70.3 (s, 1F). EI-MS HRMS calculated for  $C_6H_{10}FNO_2S_2$  [M] $^+$  211.0131, found 211.0131.

$$O$$
N $-SO_2F$ 

3<sub>m</sub>

(*E*)-2-morpholinoethene-1-sulfonyl fluoride (**3m**). White solid, 84 mg, 86%. M.p. 67-70 °C. A mixture of DCM and PE from pure PE to DCM / PE = 1:1 (v / v) as eluent for column chromatography. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.36 (d, J= 12.6 Hz, 1H), 4.99 (dd, J= 12.6, 4.5 Hz, 1H), 3.74 (t, J= 4.6 Hz, 4H), 3.47-3.31 (m, 2H), 3.29-3.12 (m, 2H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  153.2 (s), 83.2 (d, J= 26.1 Hz), 66.7 (s), 65.4 (s), 52.9 (s), 45.7 (s). <sup>19</sup>F NMR (471 MHz, CDCl<sub>3</sub>)  $\delta$  70.4 (d, J= 3.8 Hz, 1F). EI-MS HRMS calculated for C<sub>6</sub>H<sub>10</sub>FNO<sub>3</sub>S [M]<sup>+</sup> 195.0360, found 195.0357.

3n

(*E*)-2-(piperazin-1-yl)ethene-1-sulfonyl fluoride (**3n**). White solid, 95 mg, 98%. M.p. 79-80 °C. A mixture of EA, MeOH and DCM from pure EA to MeOH / DCM = 1:20 (v / v) as eluent for column chromatography.  $^{1}$ H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.34 (d, *J* = 12.6 Hz, 1H), 4.93 (dd, *J* = 12.6, 4.5 Hz, 1H), 3.46 (s, 1H), 3.42-3.32 (m, 2H), 3.24-3.13 (m, 2H), 2.93-2.91 (m, 4H).  $^{13}$ C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  153.2 (s), 81.9 (d, *J* = 25.6 Hz), 54.5 (s), 46.6 (s), 46.2 (s), 44.7 (s).  $^{19}$ F NMR (471 MHz, CDCl<sub>3</sub>)  $\delta$  70.7 (s, 1F). EI-MS HRMS calculated for C<sub>6</sub>H<sub>11</sub>FN<sub>2</sub>O<sub>2</sub>S [M]<sup>+</sup> 194.0520, found 194.0520.

$$-N$$
 $N$ 
 $-SO_2F$ 

30

(*E*)-2-(4-methylpiperazin-1-yl)ethene-1-sulfonyl fluoride (**30**). White solid, 103 mg, 99%. M.p. 101-102 °C. A mixture of DCM and PE from pure PE to DCM / PE = 5:1 (v / v) as eluent for column chromatography. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.33 (d, J = 12.6 Hz, 1H), 4.93 (dd, J = 12.6, 4.5 Hz, 1H), 3.47-3.32 (m, 2H), 3.30-3.16 (m, 2H), 2.45-2.43 (m, 4H), 2.31 (s, 3H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  153.0 (s), 82.4 (d, J = 25.8 Hz), 54.8 (s), 53.2 (s), 46.03 (s), 46.02 (s), 45.3 (s). <sup>19</sup>F NMR (471 MHz, CDCl<sub>3</sub>)  $\delta$  70.7 (s, 1F). EI-MS HRMS calculated for C<sub>7</sub>H<sub>13</sub>FN<sub>2</sub>O<sub>2</sub>S [M]<sup>+</sup> 208.0676, found 208.0674.

$$N$$
— $SO_2F$ 

(*E*)-2-(3,5-dimethylpiperazin-1-yl)ethene-1-sulfonyl fluoride (**3p**). White solid, 107 mg, 96%. M.p. 86-87 °C. A mixture of EA, MeOH and DCM from pure EA to MeOH / DCM = 1:40 (v / v) as eluent for column chromatography. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.33 (d, J = 12.6 Hz, 1H), 4.92 (dd, J = 12.6, 4.5 Hz, 1H), 3.27-3.25 (m, 2H), 2.94-2.83 (m, 3H), 2.56-2.52 (m, 1H), 2.03 (s, 1H), 1.09-1.03 (m, 6H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  152.8 (s), 82.1 (d, J = 25.7 Hz), 60.0 (s), 52.1 (s), 51.3 (s), 49.9 (s), 19.3 (s), 19.0 (s). <sup>19</sup>F NMR (471 MHz, CDCl<sub>3</sub>)  $\delta$  70.7 (s, 1F). EI-MS HRMS calculated for  $C_8H_{15}FN_2O_2S$  [M]<sup>+</sup> 233.0911, found 233.0910.

$$SO_2F$$

(*E*)-2-(4-(2-chloro-6-fluorobenzyl)piperazin-1-yl)ethene-1-sulfonyl fluoride (**3q**). Yellow solid, 144 mg, 86%. M.p. 97-99 °C. A mixture of DCM and PE from pure PE

to DCM / PE = 5:1 (v / v) as eluent for column chromatography. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.33 (d, J = 12.6 Hz, 1H), 7.25-7.20 (m, 2H), 7.02-6.98 (m, 1H), 4.92 (dd, J = 12.6, 4.5 Hz, 1H), 3.75-3.74 (m, 2H), 3.44-3.30 (m, 2H), 3.27-3.14 (m, 2H), 2.62-2.60 (m, 4H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  162.1 (d, J = 249.4 Hz), 152.9 (s), 136.7 (d, J = 5.6 Hz), 129.8 (d, J = 9.8 Hz), 125.7 (d, J = 3.4 Hz), 123.0 (d, J = 17.9 Hz), 114.2 (d, J = 23.3 Hz), 82.4 (d, J = 25.9 Hz), 53.4 (s), 52.5 (s), 52.2 (s), 51.1 (s), 45.5 (s). <sup>19</sup>F NMR (471 MHz, CDCl<sub>3</sub>)  $\delta$  70.6 (s, 1F), -112.7 (s, 1F). EI-MS HRMS calculated for C<sub>13</sub>H<sub>14</sub>ClF<sub>2</sub>N<sub>2</sub>O<sub>2</sub>S [M]<sup>+</sup> 335.0427, found 335.0425.

$$OMe$$
 $N$ 
 $N$ 
 $SO_2F$ 

(*E*)-2-(4-(2-methoxyphenyl)piperazin-1-yl)ethene-1-sulfonyl fluoride (**3r**). White solid, 131 mg, 87%. M.p. 171-172 °C. A mixture of DCM and PE from pure PE to DCM / PE = 5:1 (v / v) as eluent for column chromatography. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.42 (d, J = 12.5 Hz, 1H), 7.06 (t, J = 6.5 Hz, 1H), 6.95-6.90 (m, 3H), 5.01 (d, J = 12.5 Hz, 1H), 3.88-3.87 (m, 3H), 3.63-3.51 (m, 2H), 3.45-3.30 (m, 2H), 3.17-3.06 (m, 4H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  153.1 (s), 152.4 (s), 140.1 (s), 124.2 (s), 121.2 (s), 118.8 (s), 111.6 (s), 82.6 (d, J = 25.9 Hz), 55.6 (s), 53.6 (s), 50.9 (s), 49.4 (s), 45.8 (s). <sup>19</sup>F NMR (471 MHz, CDCl<sub>3</sub>)  $\delta$  70.7 (d, J = 12.1 Hz, 1F). EI-MS HRMS calculated for  $C_{13}H_{17}FN_2O_3S$  [M]<sup>+</sup> 300.0938, found 300.0936.

(*E*)-2-(4-((4-chlorophenyl)(phenyl)methyl)piperazin-1-yl)ethene-1-sulfonyl fluoride (3s). White solid, 150 mg, 80%. M.p. 68-69 °C. A mixture of DCM and PE from pure PE to DCM / PE = 5:1 (v/v) as eluent for column chromatography. <sup>1</sup>H NMR (500 MHz,

CDCl<sub>3</sub>)  $\delta$  7.37-7.34 (m, 5H), 7.31 (d, J = 7.2 Hz, 2H), 7.29-7.26 (m, 2H), 7.23 (t, J = 7.3 Hz, 1H), 4.91 (dd, J = 12.6, 4.4 Hz, 1H), 4.28 (s, 1H), 3.47-3.32 (m, 2H), 3.28-3.11 (m, 2H), 2.46-2.44 (m, 4H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  152.9 (s), 141.1 (s), 140.4 (s), 133.2 (s), 129.1 (s), 129.0 (s), 127.78 (s), 127.75 (s), 82.4 (d, J = 25.6 Hz), 75.0 (s), 53.3 (s), 51.6 (s), 50.2 (s), 45.6 (s). <sup>19</sup>F NMR (471 MHz, CDCl<sub>3</sub>)  $\delta$  70.7 (s, 1F). EI-MS HRMS calculated for C<sub>19</sub>H<sub>20</sub>ClFN<sub>2</sub>O<sub>2</sub>S [M]<sup>+</sup> 394.0913, found 394.0913.

$$\text{SO}_2\mathsf{F}$$

3t

(*E*)-2-(2,5-dihydro-1H-pyrrol-1-yl)ethene-1-sulfonyl fluoride (**3t**). Yellow solid, 75 mg, 85%. M.p. 88-89 °C. A mixture of DCM and PE from pure PE to DCM / PE = 1:1 (v / v) as eluent for column chromatography. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.65 (d, J = 12.3 Hz, 1H), 5.92-5.83 (m, 2H), 4.82 (dd, J = 12.3, 4.4 Hz, 1H), 4.40-4.32 (m, 2H), 4.02-3.93 (m, 2H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  150.5 (s), 125.9 (s), 125.3 (s), 83.2 (d, J = 26.0 Hz), 58.4 (s), 54.5 (s). <sup>19</sup>F NMR (471 MHz, CDCl<sub>3</sub>)  $\delta$  70.5 (s, 1F). EI-MS HRMS calculated for C<sub>6</sub>H<sub>8</sub>FNO<sub>2</sub>S [M]<sup>+</sup> 177.0254, found 177.0253.

$$SO_2F$$

(*E*)-2-(octahydroquinolin-1(2H)-yl)ethene-1-sulfonyl fluoride (**3u**). White solid, 122 mg, 99%. M.p. 95-96 °C. A mixture of DCM and PE from pure PE to DCM / PE = 1:1 (v / v) as eluent for column chromatography. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.48 (d, *J* = 12.4 Hz, 1H), 4.92 (dd, *J* = 12.4, 4.7 Hz, 1H), 3.60-3.57 (m, 1H), 2.92-2.87 (m, 1H), 2.82-2.78 (m, 1H), 2.00-1.95 (m, 2H), 1.82-1.70 (m, 4H), 1.63-1.59 (m, 1H), 1.52-1.44 (m, 1H), 1.33-1.19 (m, 4H), 1.11-1.03 (m, 1H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  147.9 (s), 80.9 (d, *J* = 24.9 Hz), 66.0 (s), 48.5 (s), 43.2 (s), 32.9 (s), 32.1 (s), 29.1 (s), 25.4 (s), 25.3 (s), 24.7 (s). <sup>19</sup>F NMR (471 MHz, CDCl<sub>3</sub>)  $\delta$  71.2 (s, 1F). EI-MS HRMS calculated for C<sub>11</sub>H<sub>18</sub>FNO<sub>2</sub>S [M]<sup>+</sup> 247.1039, found 247.1030.

$$N$$
-SO<sub>2</sub>F

3v

(*E*)-2-(octahydro-2H-isoindol-2-yl)ethene-1-sulfonyl fluoride (**3v**). White solid, 91 mg, 78%. M.p. 64-66 °C. A mixture of DCM and PE from pure PE to DCM / PE = 1:1 (v / v) as eluent for column chromatography.  $^{1}$ H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.58 (d, J = 12.3 Hz, 1H), 4.75 (dd, J = 12.3, 4.6 Hz, 1H), 3.57-3.54 (m, 1H), 3.38-3.35 (m, 1H), 3.18-3.14 (m, 1H), 3.00-2.96 (m, 1H), 2.44-2.37 (m, 1H), 2.28-2.23 (m, 1H), 1.66-1.61 (m, 2H), 1.53-1.45 (m, 4H), 1.38-1.33 (m, 2H).  $^{13}$ C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  151.3 (s), 81.6 (d, J = 25.6 Hz), 56.9 (s), 51.0 (s), 37.2 (s), 37.1 (s), 25.7 (s), 25.6 (s), 22.9 (s), 22.2 (s).  $^{19}$ F NMR (471 MHz, CDCl<sub>3</sub>)  $\delta$  70.9 (s, 1F). EI-MS HRMS calculated for  $C_{10}H_{16}$ FNO<sub>2</sub>S [M]<sup>+</sup> 233.0880, found 233.0876.

$$N$$
-SO<sub>2</sub>F

3w

(*E*)-2-(hexahydrocyclopenta[c]pyrrol-2(1H)-yl)ethene-1-sulfonyl fluoride (**3w**). White solid, 65 mg, 59%. M.p. 80-81 °C. A mixture of DCM and PE from pure PE to DCM / PE = 1:1 (v / v) as eluent for column chromatography. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.51 (d, J = 12.3 Hz, 1H), 4.74 (dd, J = 12.3, 4.6 Hz, 1H), 3.73-3.70 (m, 1H), 3.37-3.33 (m, 1H), 3.30-3.27 (m, 1H), 2.89-2.86 (m, 1H), 2.82-2.77 (m, 1H), 2.74-2.69 (m, 1H), 1.91-1.82 (m, 2H), 1.77-1.69 (m, 1H), 1.68-1.60 (m, 1H), 1.51-1.39 (m, 2H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  150.3 (s), 81.7 (d, J = 25.3 Hz), 58.8 (s), 53.5 (s), 43.1 (s), 42.7 (s), 32.5 (s), 31.5 (s), 25.5 (s). <sup>19</sup>F NMR (471 MHz, CDCl<sub>3</sub>)  $\delta$  70.9 (s, 1F). EI-MS HRMS calculated for C<sub>9</sub>H<sub>14</sub>FNO<sub>2</sub>S [M]<sup>+</sup> 219.0724, found 219.0723.

$$S N - SO_2F$$

3x

(E)-2-(thiazolidin-3-yl)ethene-1-sulfonyl fluoride (3x). White solid, 60 mg, 61%. M.p.

94-96 °C. A mixture of DCM and PE from pure PE to DCM / PE = 1:1 (v / v) as eluent for column chromatography. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.63 (d, J = 12.6 Hz, 1H), 4.95 (dd, J = 12.6, 4.3 Hz, 1H), 4.50-4.01 (m, 2H), 3.90-3.37 (m, 2H), 3.23-3.00 (m, 2H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  149.6 (s), 85.0 (d, J = 26.7 Hz), 55.8(s), 48.9 (s), 30.4 (s). <sup>19</sup>F NMR (471 MHz, CDCl<sub>3</sub>)  $\delta$  69.9 (s, 1F). EI-MS HRMS calculated for C<sub>5</sub>H<sub>8</sub>FNO<sub>2</sub>S<sub>2</sub> [M]<sup>+</sup> 196.9975, found 196.9973.

(*E*)-2-(dibenzylamino)ethene-1-sulfonyl fluoride (**3y**). Yellow solid, 91 mg, 60%. M.p. 86-88 °C. A mixture of DCM and PE from pure PE to DCM / PE = 1:1 (v / v) as eluent for column chromatography. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.75 (d, J = 12.6 Hz, 1H), 7.40-7.34 (m, 6H), 7.19-7.13 (m, 4H), 5.11 (dd, J = 12.6, 4.4 Hz, 1H), 4.44 (s, 2H), 4.24 (s, 2H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  154.2 (s), 134.7 (s), 133.6 (s), 129.3 (s), 128.9 (s), 128.4 (s), 128.0 (s), 127.3 (s), 84.2 (d, J = 26.1 Hz), 59.7 (s), 51.5 (s). <sup>19</sup>F NMR (471 MHz, CDCl<sub>3</sub>)  $\delta$  70.4 (s, 1F). EI-MS HRMS calculated for C<sub>16</sub>H<sub>16</sub>FNO<sub>2</sub>S [M]<sup>+</sup> 305.0880, found 305.0871.

Note: In the <sup>13</sup>C NMR spectrum of **3y**, theoretically, there should be twelve peaks. Due to the compact overlaying, it is difficult to specify the overlaying peaks.

$$\mathsf{Br}$$
  $\mathsf{N}$   $\mathsf{SO}_2\mathsf{F}$ 

3z

(*E*)-2-((4-bromobenzyl)(methyl)amino)ethene-1-sulfonyl fluoride (**3z**). White solid, 151 mg, 99%. M.p. 86-87 °C. A mixture of DCM and PE from pure PE to DCM / PE = 1:1 (v / v) as eluent for column chromatography. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.63-7.51 (m, 3H), 7.07 (d, J = 8.3 Hz, 2H), 4.96 (dd, J = 12.4, 4.3 Hz, 1H), 4.39-4.26 (m, 2H), 3.11-2.73 (m, 3H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  154.2 (s), 133.9 (s), 132.4 (s),

129.3 (s), 122.8 (s), 83.4 (d, J = 26.2 Hz), 61.2 (s), 35.5 (s). <sup>19</sup>F NMR (471 MHz, CDCl<sub>3</sub>)  $\delta$  70.2 (s, 1 F). EI-MS HRMS calculated for C<sub>10</sub>H<sub>11</sub>BrFNO<sub>2</sub>S [M]<sup>+</sup> 306.9672, found 306.9672.

$$N$$
— $SO_2F$ 

#### 3aa

(*E*)-2-(diethylamino)ethene-1-sulfonyl fluoride (**3aa**). Colorless liquid, 80 mg, 89%. A mixture of DCM and PE from pure PE to DCM / PE = 1:1 (v / v) as eluent for column chromatography. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.38 (d, J = 12.6 Hz, 1H), 4.86 (dd, J = 12.6, 4.7 Hz, 1H), 3.31 (q, J = 7.1 Hz, 2H), 3.18 (q, J = 7.2 Hz, 2H), 1.24 (t, J = 7.2 Hz, 3H), 1.18 (t, J = 7.2 Hz, 3H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  152.6 (s), 81.1 (d, J = 25.4 Hz), 50.8 (s), 43.2 (s), 14.6 (s), 11.0 (s). <sup>19</sup>F NMR (471 MHz, CDCl<sub>3</sub>)  $\delta$  71.0 (s, 1H). EI-MS HRMS calculated for C<sub>6</sub>H<sub>12</sub>FNO<sub>2</sub>S [M]<sup>+</sup> 181.0567, found 181.0562.

$$N$$
— $SO_2F$ 

#### 3ab

(*E*)-2-(dimethylamino)ethene-1-sulfonyl fluoride (**3ab**). Yellow liquid, 70 mg, 92%. A mixture of DCM and PE from pure PE to DCM / PE = 1:1 (v / v) as eluent for column chromatography. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.40 (d, J = 12.4 Hz, 1H), 4.82 (dd, J = 12.4, 4.6 Hz, 1H), 3.13 (s, 3H), 2.83 (s, 3H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  154.7 (s), 81.8 (d, J = 25.6 Hz), 45.2 (s), 37.5 (s). <sup>19</sup>F NMR (471 MHz, CDCl<sub>3</sub>)  $\delta$  70.8 (s, 1F). EI-MS HRMS calculated for C<sub>4</sub>H<sub>8</sub>FNO<sub>2</sub>S [M]<sup>+</sup> 153.0254, found 153.0253.

$$N$$
— $SO_2F$ 

3ac

(*E*)-2-(diallylamino)ethene-1-sulfonyl fluoride (**3ac**). Yellow liquid, 69 mg, 67%. A mixture of DCM and PE from pure PE to DCM / PE = 1:1 (v / v) as eluent for column

chromatography. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.46 (d, J = 12.6 Hz, 1H), 5.82-5.65 (m, 2H), 5.33-5.18 (m, 4H), 4.96 (dd, J = 12.6, 4.5 Hz, 1H), 3.86 (d, J = 5.5 Hz, 2H), 3.73 (d, J = 4.5 Hz, 2H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  153.4 (s), 131.9 (s), 129.2 (s), 120.3 (s), 119.1 (s), 83.6 (d, J = 25.9 Hz), 58.6 (s), 51.0 (s). <sup>19</sup>F NMR (471 MHz, CDCl<sub>3</sub>)  $\delta$  70.4 (d, J = 3.4 Hz, 1F). EI-MS HRMS calculated for C<sub>8</sub>H<sub>12</sub>FNO<sub>2</sub>S [M]<sup>+</sup> 205.0567, found 205.0561.

$$N$$
  $SO_2F$ 

3ad

(*E*)-2-(methylamino)ethene-1-sulfonyl fluoride (**3ad**). Colorless liquid, 62 mg, 89%. A mixture of DCM and PE from pure PE to DCM / PE = 5:1 (v / v) as eluent for column chromatography.  $^{1}$ H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.55 (dd, J = 12.6, 7.5 Hz, 1H), 5.39 (brs, 1H), 5.02 (dd, J = 12.6, 4.3 Hz, 1H), 2.82 (d, J = 5.0 Hz, 3H).  $^{13}$ C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  152.4 (d, J = 6.8 Hz), 83.5 (dd, J = 26.3, 16.9 Hz), 30.4 (d, J = 3.4 Hz).  $^{19}$ F NMR (471 MHz, CDCl<sub>3</sub>)  $\delta$  69.7 (s, 1F). EI-MS HRMS calculated for C<sub>3</sub>H<sub>6</sub>FNO<sub>2</sub>S [M]<sup>+</sup> 139.0098, found 139.0097.

Ethyl (*E*)-(2-(fluorosulfonyl)vinyl)-L-phenylalaninate (**3ae**). Yellow liquid, 113 mg, 75%. A mixture of DCM and PE from pure PE to DCM / PE = 5:1 (v / v) as eluent for column chromatography. [α]<sub>D</sub><sup>25</sup> = +35.2 (c = 1.0, MeOH). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.53-7.38 (m, 1H), 7.33-7.28 (m, 3H), 7.10 (d, J = 6.9 Hz, 2H), 5.64 (s, 1H), 5.21-4.96 (m, 1H), 4.26-4.20 (m, 2H), 4.18-4.14 (m, 1H), 3.21-3.17 (m, 1H), 3.09-3.06 (m, 1H), 1.28 (t, J = 7.1 Hz, 3H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  170.1 (s), 149.5 (s), 134.6 (s), 129.4 (s), 129.0 (s), 127.9 (s), 81.2 (d, J = 23.9 Hz), 63.0 (s), 62.5 (s), 40.2 (s), 14.2 (s). <sup>19</sup>F NMR (471 MHz, CDCl<sub>3</sub>)  $\delta$  69.1 (s, 1F). EI-MS HRMS calculated for C<sub>13</sub>H<sub>16</sub>FNO<sub>4</sub>S [M]<sup>+</sup> 301.0779, found 301.0771.

3af

Methyl (*E*)-(2-(fluorosulfonyl)vinyl)-*L*-prolinate (**3af**). Yellow liquid, 107 mg, 90%. A mixture of DCM and PE from pure PE to DCM / PE = 1:1 (v / v) as eluent for column chromatography. [ $\alpha$ ]<sub>D</sub><sup>25</sup> = -50.3 (c = 1.23, MeOH). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.59-7.56 (m, 1H), 4.96-4.76 (m, 1H), 4.32-4.01 (m, 1H), 3.76 (s, 3H), 3.61-3.31 (m, 1H), 3.23-2.32 (m, 1H), 2.24-1.96 (m, 4H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  171.5 (s), 150.7 (s), 84.9 (d, *J* = 26.3 Hz), 64.2 (s), 53.0 (s), 47.9 (s), 29.9 (s), 23.6 (s). <sup>19</sup>F NMR (471 MHz, CDCl<sub>3</sub>)  $\delta$  69.9 (s, 1F). EI-MS HRMS calculated for C<sub>8</sub>H<sub>12</sub>FNO<sub>4</sub>S [M]<sup>+</sup> 237.0466, found 237.0463.

(*E*)-2-(4-(8-chloro-5,6-dihydro-11H-benzo[5,6]cyclohepta[1,2-b]pyridin-11-ylidene)piperidin-1-yl)ethene-1-sulfonyl fluoride (**3ag**). White solid, 196 mg, 94%. M.p. 110-113 °C. A mixture of DCM and PE from pure PE to DCM / PE = 1:1 (v / v) as eluent for column chromatography. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.38 (d, J = 4.2 Hz, 1H), 7.44 (d, J = 7.4 Hz, 1H), 7.39 (d, J = 12.5 Hz, 1H), 7.18-7.17 (m, 1H), 7.15-7.08 (m, 3H), 4.91 (dd, J = 12.5, 3.5 Hz, 1H), 3.57-5.50 (m, 1H), 3.38-3.28 (m, 4H), 3.15-3.01 (m, 1H), 2.89-2.76 (m, 2H), 2.69-2.64 (m, 1H), 2.55-2.45 (m, 1H), 2.45-2.35 (m, 2H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  156.2 (s), 152.9 (s), 146.9 (s), 139.7 (s), 138.0 (s), 137.4 (s), 136.2 (s), 134.5 (s), 133.5 (s), 130.2 (s), 129.2 (s), 126.5 (s), 122.7 (s), 82.3 (d, J = 23.9 Hz), 54.2 (d, J = 12.2 Hz), 46.4 (s), 31.6 (s), 31.1 (d, J = 44.1 Hz), 28.9 (d, J = 24.6 Hz). <sup>19</sup>F NMR (471 MHz, CDCl<sub>3</sub>)  $\delta$  70.7 (s, 1F). EI-MS HRMS

calculated for C<sub>21</sub>H<sub>20</sub>ClFN<sub>2</sub>O<sub>2</sub>S [M]<sup>+</sup> 418.0913, found 418.0913.

(*E*)-2-(3-(3,4,5-trimethoxybenzamido)piperidin-1-yl)ethene-1-sulfonyl fluoride (**3ah**). White solid, 195 mg, 97%. M.p. 126-127 °C. A mixture of DCM and PE from pure PE to DCM / PE = 5:1 (v / v) as eluent for column chromatography. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.34 (d, J = 12.5 Hz, 1H), 6.94 (s, 2H), 6.26 (s, 1H), 5.03-4.96 (m, 1H), 4.11 (s, 1H), 3.87 (s, 6H), 3.85 (s, 3H), 3.68-3.62 (m 1H), 3.39-3.09 (m, 3H), 2.09-2.05 (m, 1H), 1.91-1.83 (m, 1H), 1.75-1.66 (m, 2H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  167.3 (s), 153.4 (s), 153.3 (s), 141.3 (s), 129.5 (s), 104.6 (s), 82.7 (d, J = 25.3 Hz), 61.0 (s), 58.0 (s), 56.4 (s), 49.8 (s), 45.7 (s), 29.2 (s), 23.8 (s). <sup>19</sup>F NMR (471 MHz, CDCl<sub>3</sub>)  $\delta$  70.9 (d, J = 46.3 Hz, 1F). EI-MS HRMS calculated for C<sub>17</sub>H<sub>23</sub>FN<sub>2</sub>O<sub>6</sub>S [M]<sup>+</sup> 402.1255, found 402.1251.

(*E*)-2-(methyl(2-(pyridin-2-yl)ethyl)amino)ethene-1-sulfonyl fluoride (**3ai**). White solid, 92 mg, 75%. M.p. 99-100 °C. A mixture of DCM and PE from pure PE to DCM / PE = 5:1 (v / v) as eluent for column chromatography. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.55 (d, J = 4.4 Hz, 1H), 7.63 (t, J = 7.5 Hz, 1H), 7.32-7.26 (m, 1H), 7.19-7.11 (m, 2H), 4.93-4.70 (m, 1H), 3.74-3.55 (t, J = 6.8 Hz, 2H), 3.06-2.79 (m, 5H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  157.1 (s), 154.2 (s), 149.9 (s), 137.0 (s), 123.7 (s), 122.3 (s), 82.2 (d, J = 25.9 Hz), 57.7 (s), 50.3 (s), 37.2 (s). <sup>19</sup>F NMR (471 MHz, CDCl<sub>3</sub>)  $\delta$  70.6 (s, 1F). EI-MS HRMS calculated for C<sub>10</sub>H<sub>13</sub>FN<sub>2</sub>O<sub>2</sub>S [M]<sup>+</sup> 244.0676, found 244.0674.

(*E*)-2-(((1S,4S)-4-(3,4-dichlorophenyl)-1,2,3,4-tetrahydronaphthalen-1-

yl)(methyl)amino)ethene-1-sulfonyl fluoride (**3aj**). White solid, 112 mg, 54%. M.p. 77-79 °C. A mixture of DCM and PE from pure PE to DCM / PE = 1:1 (v / v) as eluent for column chromatography. [ $\alpha$ ] $_{D}^{25}$  = +39.4 (c = 0.97, MeOH). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.60 (d, J = 12.4 Hz, 1H), 7.37 (d, J = 8.3 Hz, 1H), 7.32 (t, J = 7.3 Hz, 1H), 7.27 (t, J = 7.5 Hz, 1H), 7.17-7.13 (m, 2H), 6.99 (d, J = 7.6 Hz, 1H), 6.84 (dd, J = 8.3, 1.7 Hz, 1H), 4.99 (dd, J = 12.4, 4.3 Hz, 1H), 4.65 (t, J = 7.1 Hz, 1H), 4.17 (t, J = 5.1 Hz, 1H), 2.73 (s, 3H), 2.26-2.19 (m, 1H), 2.00-1.94 (m, 1H), 1.92-1.89 (m, 2H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  153.9 (s), 146.2 (s), 138.8 (s), 133.5 (s), 132.7 (s), 131.2 (s), 130.70 (s), 130.67 (s), 130.6 (s), 129.1 (s), 128.1 (s), 128.01 (s), 127.96 (s), 82.9 (d, J = 26.0 Hz), 65.9 (s), 43.4 (s), 33.6 (s), 29.2 (s), 24.5 (s). <sup>19</sup>F NMR (471 MHz, CDCl<sub>3</sub>)  $\delta$  70.3 (s, 1F). EI-MS HRMS calculated for C<sub>19</sub>H<sub>18</sub>Cl<sub>2</sub>FNO<sub>2</sub>S [M]<sup>+</sup> 413.0414, found 413.0411.

(*E*)-1-ethyl-6-fluoro-7-(4-(2-(fluorosulfonyl)vinyl)piperazin-1-yl)-4-oxo-1,4-dihydroquinoline-3-carboxylic acid (**3ak**). White solid, 176 mg, 82%. Decomposed at 190.1 °C. A mixture of EA, MeOH and DCM from pure EA to MeOH / DCM = 1:10 (v / v) as eluent for column chromatography. <sup>1</sup>H NMR (500 MHz, DMSO)  $\delta$  15.28 (s, 1H),

8.96 (s, 1H), 7.95 (d, J = 13.1 Hz, 1H), 7.72 (d, J = 12.5 Hz, 1H), 7.23 (d, J = 7.1 Hz, 1H), 5.61 (dd, J = 12.5, 3.8 Hz, 1H), 4.60 (q, J = 6.8 Hz, 2H), 3.78-3.71 (m, 2H), 3.59-3.53 (m, 2H), 3.45-3.39 (m, 4H), 1.42 (t, J = 7.0 Hz, 3H). <sup>13</sup>C NMR (126 MHz, DMSO)  $\delta$  176.2 (s), 166.1 (s), 153.8 (s), 152.8 (d, J = 249.2 Hz), 148.6 (s), 144.8 (d, J = 10.4 Hz), 137.1 (s), 119.7 (d, J = 7.6 Hz), 111.3 (d, J = 22.7 Hz), 107.1 (s), 106.5 (d, J = 3.0 Hz), 80.9 (d, J = 23.1 Hz), 51.6 (s), 49.7 (s), 49.09 (s), 48.1 (s), 45.0 (s), 14.4 (s). <sup>19</sup>F NMR (471 MHz, DMSO)  $\delta$  74.0 (s, 1F), -121.8 (dd, J = 13.0, 7.2 Hz, 1F). EI-MS HRMS calculated for  $C_{18}H_{19}F_{2}N_{3}O_{5}S$  [M]<sup>+</sup> 427.1008, found 427.1005.

(*E*)-1-ethyl-6-fluoro-7-(4-(2-(fluorosulfonyl)vinyl)piperazin-1-yl)-4-oxo-1,4-dihydro-1,8-naphthyridine-3-carboxylic acid (**3al**). White solid, 160 mg, 75%. Decomposed at 220.1 °C. A mixture of EA, MeOH and DCM from pure EA to MeOH / DCM = 1:10 (v / v) as eluent for column chromatography. <sup>1</sup>H NMR (500 MHz, DMSO)  $\delta$  15.23 (s, 1H), 8.96 (s, 1H), 8.09 (d, J = 13.3 Hz, 1H), 7.71 (d, J = 12.5 Hz, 1H), 5.53 (dd, J = 12.4, 3.9 Hz, 1H), 4.49 (q, 7.0 Hz, 2H), 3.96-3.90 (m, 4H), 3.79-3.73 (m, 2H), 3.57-3.51 (m, 2H), 1.39 (t, J = 7.0 Hz, 3H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  176.4 (s), 165.8 (s), 154.0 (s), 153.9 (s), 149.9 (s), 140.0 (d, J = 248.9 Hz), 145.9 (s), 144.8 (s), 113.0 (d, J = 3.6 Hz), 108.2 (s), 80.9 (d, J = 23.1 Hz), 51.1 (s), 47.2 (s), 46.9 (d, J = 7.8 Hz), 45.0 (s), 44.8 (d, J = 7.8 Hz), 14.7 (s). <sup>19</sup>F NMR (471 MHz, DMSO)  $\delta$  73.9 (s, 1F), -127.9 (d, J = 13.3 Hz, 1F). EI-MS HRMS calculated for C<sub>17</sub>H<sub>18</sub>F<sub>2</sub>N<sub>4</sub>O<sub>5</sub>S [M]<sup>+</sup> 428.0960, found 428.0959.

(*E*)-1-cyclopropyl-6-fluoro-7-(4-(2-(fluorosulfonyl)vinyl)piperazin-1-yl)-4-oxo-1,4-dihydroquinoline-3-carboxylic acid (**3am**). White solid, 251 mg, 95%. Decomposed at 199.0 °C. A mixture of EA, MeOH and DCM from pure EA to MeOH / DCM = 1:10 (v / v) as eluent for column chromatography. <sup>1</sup>H NMR (500 MHz, DMSO)  $\delta$  14.80 (s, 1H), 8.71 (s, 1H), 7.77 (d, J = 12.0 Hz, 1H), 7.67-7.61 (m, 1H), 5.63-5.54 (m, 1H), 4.19-4.15 (m, 1H), 4.05-3.99 (d, J = 6.4 Hz, 1H), 3.93-3.86 (m, 1H), 3.77-3.71 (m, 4H), 3.59-3.41 (m, 4H), 1.40-1.30 (m, 3H), 1.15-1.10 (m, 2H), 1.06-1.02 (m, 2H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  176.3 (s), 165.7 (s), 153.9 (s), 152.8 (d, J = 238.7 Hz), 148.0 (d, J = 42.5 Hz), 144.5 (d, J = 10.2 Hz), 139.0 (s), 119.0 (d, J = 7.7 Hz), 111.0 (dd, J = 23.0, 14.1 Hz), 106.9 (s), 106.8 (s), 81.0 (d, J = 23.8 Hz), 51.5 (s), 49.5 (s), 48.0 (s), 44.9 (s), 35.9 (s), 7.6 (s). <sup>19</sup>F NMR (471 MHz, DMSO)  $\delta$  74.0 (s, 1F), -121.9 (dd, J = 12.9, 7.4 Hz, 1F). EI-MS HRMS calculated for C<sub>19</sub>H<sub>19</sub>F<sub>2</sub>N<sub>3</sub>O<sub>5</sub>S [M]<sup>+</sup> 439.1008, found 439.1008.

(*E*)-1-ethyl-6,8-difluoro-7-(4-(2-(fluorosulfonyl)vinyl)-3-methylpiperazin-1-yl)-4-oxo-1,4-dihydroquinoline-3-carboxylic acid (**3an**). White solid, 190 mg, 69%. Decomposed at 190.2 °C. A mixture of EA, MeOH and DCM from pure EA to MeOH / DCM = 1:10 (v / v) as eluent for column chromatography.  $^{1}$ H NMR (500 MHz, DMSO)  $\delta$  14.78 (s, 1H), 8.92 (s, 1H), 7.87 (d, J = 11.5 Hz, 1H), 7.66-7.59 (m, 1H), 5.58 (d, J = 11.9 Hz, 1H), 4.62-4.56 (m, 2H), 4.05-4.97 (m, 1H), 3.75-3.65 (m, 1H), 3.58-3.37 (m, 4H), 1.45 (t, J = 6.7 Hz, 3H), 1.38-1.30 (m, 3H), 1.24-1.21 (m, 1H).  $^{13}$ C NMR (126 MHz, DMSO)  $\delta$  175.50 (s), 165.45 (s), 159.7 (d, J = 249.5 Hz), 153.2 (d, J = 127.8 Hz), 151.2 (s), 146.5 (d, J = 248.9 Hz), 133.5 (s), 127.2(d, J = 6.6 Hz), 121.1 (d, J = 8.2 Hz),

107.1 (s), 106.9 (s), 81.0 (dd, J = 76.4, 23.0 Hz), 56.7 (s), 53.7 (d, J = 15.8 Hz), 50.4 (s), 49.3 (d, J = 36.9 Hz), 48.2 (s), 16.1 (s), 15.9 (d, J = 5.3 Hz). <sup>19</sup>F NMR (471 MHz, DMSO)  $\delta$  74.0 (s), 73.8 (s), -119.4 (s), -128.8 (s). EI-MS HRMS calculated for  $C_{19}H_{20}F_3N_3O_5S$  [M]<sup>+</sup> 459.1070, found 459.1069.

(*E*)-1-cyclopropyl-6-fluoro-7-(4-(2-(fluorosulfonyl)vinyl)-3-methylpiperazin-1-yl)-8-methoxy-4-oxo-1,4-dihydroquinoline-3-carboxylic acid (**3ao**). White solid, 226 mg, 78%. Decomposed at 181.6 °C. A mixture of EA, MeOH and DCM from pure EA to MeOH / DCM = 1:10 (v / v) as eluent for column chromatography. <sup>1</sup>H NMR (500 MHz, DMSO)  $\delta$  14.78 (s, 1H), 8.71 (s, 1H), 7.77 (d, J = 12.0 Hz, 1H), 7.67-7.61 (m, 1H), 5.60-5.53 (m, 1H), 4.17 (hept, J = 3.5 Hz, 1H), 4.02-4.01 (m, 1H), 3.79-3.69 (m, 4H), 3.57-3.46 (m, 4H), 1.37-1.32 (m, 3H), 1.26-1.19 (m, 1H), 1.15-1.10 (m, 2H), 1.06-1.01 (m, 2H). <sup>13</sup>C NMR (126 MHz, DMSO)  $\delta$  176.4 (s), 165.6 (s), 155.5 (d, J = 249.6 Hz), 153.7 (s), 152.5 (d, J = 2.2 Hz), 150.8 (s), 146.3 (s), 134.2 (s), 121.5 (d, J = 8.4 Hz), 106.7 (d, J = 2.3 Hz), 106.6 (s), 81.1 (d, J = 24.7 Hz), 63.7 (d, J = 27.3 Hz), 56.7 (s), 55.3 (s), 49.3 (s), 45.1 (s), 40.7 (s), 16.3 (s), 9.0 (s). <sup>19</sup>F NMR (471 MHz, DMSO)  $\delta$  73.9 (s, 1F), -119.9 (d, J = 11.5 Hz, 1F). EI-MS HRMS calculated for C<sub>21</sub>H<sub>23</sub>F<sub>2</sub>N<sub>3</sub>O<sub>6</sub>S [M]<sup>+</sup> 483.1270, found 483.1270.

$$\begin{array}{c|c} & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & &$$

(E)-1-cyclopropyl-6-fluoro-7-(3-((2-(fluorosulfonyl)vinyl)(methyl)amino)piperidin-1-

yl)-8-methoxy-4-oxo-1,4-dihydroquinoline-3-carboxylic acid (**3ap**). White solid, 265 mg, 89%. Decomposed at 170.8 °C. A mixture of EA, MeOH and DCM from pure EA to MeOH / DCM = 1:10 (v / v) as eluent for column chromatography. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  14.64 (s, 1H), 8.81 (s, 1H), 7.87 (d, J = 11.9 Hz, 1H), 7.58 (d, J = 12.3 Hz, 1H), 4.94 (dd, J = 12.2, 3.3 Hz, 1H), 4.03 (hept, J = 3.5 Hz, 1H), 3.79 (s, 3H), 3.61-3.58 (m, 1H), 3.50-3.48 (m, 2H), 3.19-3.10 (m, 2H), 2.91 (s, 3H), 2.15-2.13 (m, 1H), 1.99-1.96 (m, 1H), 1.86-1.75 (m, 2H), 1.25-1.24 (m, 4H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  177.1 (s), 166.7 (s), 156.3 (d, J = 251.2 Hz), 151.8 (s), 150.2 (s), 145.9 (d, J = 5.4 Hz), 139.1 (d, J = 12.2 Hz), 134.0 (s), 122.7 (d, J = 9.1 Hz), 108.5 (d, J = 23.0 Hz), 108.1 (s), 83.7 (d, J = 26.7 Hz), 63.3 (s), 62.92 (s), 55.3 (s), 51.0 (s), 40.7 (s), 34.9 (s), 29.1 (s), 25.5 (s). 9.74 (s), 9.65 (s). <sup>19</sup>F NMR (471 MHz, CDCl<sub>3</sub>)  $\delta$  70.0 (s, 1F), -120.36 (d, J = 11.5 Hz, 1F). EI-MS HRMS calculated for C<sub>22</sub>H<sub>25</sub>F<sub>2</sub>N<sub>3</sub>O<sub>6</sub>S [M]<sup>+</sup> 497.1427, found 497.1426.

(*E*)-1-cyclopropyl-6-fluoro-7-(1-(2-(fluorosulfonyl)vinyl)octahydro-6H-pyrrolo[3,4-b]pyridin-6-yl)-8-methoxy-4-oxo-1,4-dihydroquinoline-3-carboxylic acid (**3aq**). White solid, 213 mg, 70%. Decomposed at 185.9 °C. A mixture of EA, MeOH and DCM from pure EA to MeOH / DCM = 1:10 (v / v) as eluent for column chromatography. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  14.82 (s, 1H), 8.78 (s, 1H), 7.79 (d, *J* = 13.7 Hz, 1H), 7.46 (d, *J* = 12.6 Hz, 1H), 5.12-5.10 (m, 1H), 4.20-4.15 (m, 1H), 4.12-4.06 (m, 1H), 4.02-3.97 (m, 2H), 3.61 (s, 3H), 3.36-3.34 (m, 1H), 2.51-2.43 (m, 1H), 1.97-1.91 (m, 2H), 1.71-1.61 (m, 3H), 1.31-1.25 (m, 4H), 1.14-1.11 (m, 2H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  176.9 (s), 166.9 (s), 153.9 (d, *J* = 251.0 Hz), 152.1 (s), 150.0 (s), 141.9 (d, *J* = 6.7 Hz), 136.6 (d, *J* = 10.7 Hz), 134.4 (s), 119.8 (d, *J* = 8.8 Hz), 108.3 (d,

J = 23.9 Hz), 107.9 (s), 84.4 (d, J = 22.6 Hz), 62.7 (s), 61.5 (s), 56.1 (s), 56.0 (s), 50.3 (s), 40.6 (s), 36.2 (s), 31.8 (s), 24.8 (s), 10.5 (s), 8.8 (s). <sup>19</sup>F NMR (471 MHz, CDCl<sub>3</sub>)  $\delta$  69.9 (s, 1F), -121.5 (s, 1F). EI-MS HRMS calculated for C<sub>23</sub>H<sub>25</sub>F<sub>2</sub>N<sub>3</sub>O<sub>6</sub>S [M]<sup>+</sup> 509.1427, found 509.1425.

3,4-dimethylphenyl (*E*)-2-(pyrrolidin-1-yl)ethene-1-sulfonate (**5a**). White solid, 139 mg, 99%. M.p. 81-82 °C. DCM / PE = 1:1 (v / v) as eluent for column chromatography.  $^{1}$ H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.32 (d, J = 12.4 Hz, 1H), 7.07 (d, J = 8.2 Hz, 1H), 7.03 (d, J = 1.8 Hz, 1H), 6.96 (dd, J = 8.1, 2.2 Hz, 1H), 4.72 (d, J = 12.4 Hz, 1H), 3.45-3.35 (m, 2H), 3.10-3.02 (m, 2H), 2.23 (s, 3H), 2.22 (s, 3H), 2.04-1.96 (m, 2H), 1.92-1.84 (m, 2H).  $^{13}$ C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  148.9 (s), 148.4 (s), 137.9 (s), 134.7 (s), 130.3 (s), 123.8 (s), 119.8 (s), 84.9 (s), 52.2 (s), 47.0 (s), 25.3 (s), 25.2 (s), 19.9 (s), 19.3 (s). EI-MS HRMS calculated for  $C_{14}H_{19}NO_{3}S$  [M] $^{+}$  281.1080, found 281.1077.

Benzo[d][1,3]dioxol-5-yl (E)-2-(4-(2-methoxyphenyl)piperazin-1-yl)ethene-1-sulfonate (**5b**). Yellow liquid, 145 mg, 69%. DCM / PE = 1:1 (v / v) as eluent for column chromatography.  $^{1}$ H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.11 (d, J = 12.7 Hz, 1H), 7.06 (td, J = 7.7, 1.6 Hz, 1H), 6.94 (td, J = 7.6, 1.2 Hz, 1H), 6.89 (dd, J = 7.9, 1.3 Hz, 2H), 6.79 (d, J = 2.2 Hz, 1H), 6.75-6.70 (m, 2H), 5.97 (s, 2H), 4.95 (d, J = 12.7 Hz, 1H), 3.87 (s, 3H), 3.45-3.32 (m, 4H), 3.06 (t, J = 5.1 Hz, 4H).  $^{13}$ C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  152.4 (s), 152.0 (s), 148.0 (s), 146.1 (s), 144.6 (s), 140.3 (s), 124.1 (s), 121.2 (s), 118.7 (s), 115.8 (s), 111.6 (s), 107.9 (s), 105.1 (s), 101.9 (s), 85.6 (s), 55.6 (s), 52.7 (s), 50.5 (s). EI-MS HRMS calculated for C<sub>20</sub>H<sub>22</sub>N<sub>2</sub>O<sub>6</sub>S [M]<sup>+</sup> 418.1193, found 418.1193.

4-(*Tert*-butyl)phenyl (*E*)-2-morpholinoethene-1-sulfonate (**5c**). White solid, 143 mg, 88%. M.p. 116-118 °C. DCM / PE = 1:1 (v / v) as eluent for column chromatography. 
<sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.35 (d, J = 8.8 Hz, 2H), 7.15 (d, J = 8.7 Hz, 2H), 7.05 (d, J = 12.8 Hz, 1H), 4.98 (d, J = 12.8 Hz, 1H), 3.66 (t, J = 4.8 Hz, 4H), 3.21-3.15 (m, 4H), 1.30 (s, 9H). 
<sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  151.8 (s), 149.6 (s), 147.9 (s), 126.5 (s), 122.2 (s), 86.9 (s), 66.1 (s), 34.6 (s), 31.5 (s). EI-MS HRMS calculated for C<sub>16</sub>H<sub>23</sub>NO<sub>4</sub>S [M]<sup>+</sup> 325.1342, found 325.1333.

Note: In the <sup>13</sup>C NMR spectrum of **5c**, theoretically, there should be ten peaks. Due to the compact overlaying, it is difficult to specify the overlaying peaks.

$$N$$
 $SO_2$ 
OBn
 $SO_2$ 

4-(Benzyloxy)phenyl (E)-2-(4-(8-chloro-5,6-dihydro-11H-benzo[5,6]cyclohepta[1,2-b]pyridin-11-ylidene)piperidin-1-yl)ethene-1-sulfonate (**5d**). Yellow liquid, 296 mg, 99%. DCM/PE = 1:1 (v/v) as eluent for column chromatography. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.40 (d, J = 3.7 Hz, 1H), 7.45-7.36 (m, 5H), 7.32 (t, J = 7.1 Hz, 1H), 7.19-7.09 (m, 6H), 7.05 (d, J = 12.7 Hz, 1H), 6.94-6.91 (m, 2H), 5.04 (s, 2H), 4.88 (d, J = 12.7 Hz, 1H), 3.39-3.29 (m, 4H), 3.20-2.95 (m, 2H), 2.90-2.77 (m, 2H), 2.62-2.57 (m, 1H), 2.45-2.36 (m, 3H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  157.2 (s), 156.4 (s), 151.6 (s), 146.9 (s), 144.0 (s), 139.7 (s), 138.0 (s), 137.5 (s), 136.8 (s), 135.8 (s), 135.1 (s), 133.5 (s), 133.4 (s), 130.3 (s), 129.2 (s), 128.7 (s), 128.2(s), 127.6 (s), 126.5 (s), 124.0 (s), 122.7 (s), 115.5 (s), 85.3 (s), 70.5 (s), 31.7 (s), 31.6 (s). EI-MS HRMS calculated for C<sub>34</sub>H<sub>31</sub>ClN<sub>2</sub>O<sub>4</sub>S [M]<sup>+</sup> 598.1688, found 598.1687.

Note: In the <sup>13</sup>C NMR spectrum of **5d**, theoretically, there should be twenty-eight peaks.

Due to the compact overlaying, it is difficult to specify the overlaying peaks.

4-Phenyl-1H-1,2,3-triazole (**6**).<sup>[3]</sup> White solid, 72 mg, 99%. A mixture of DCM, PE and EA from pure DCM to PE / EA = 1:2 (v / v) as eluent for column chromatography. <sup>1</sup>H NMR (500 MHz, DMSO)  $\delta$  14.98 (s, 1H), 8.24 (s, 1H), 7.86 (d, J = 7.3 Hz, 2H), 7.45 (t, J = 7.6 Hz, 2H), 7.35 (t, J = 7.0 Hz, 1H).

$$\begin{array}{c|c}
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\$$

4-Phenyl-1-(2-(pyrrolidin-1-ylsulfonyl)ethyl)-1H-1,2,3-triazole (**8**). White solid, 60 mg, 98%. M.p. 196-197 °C. A mixture of EA and PE from EA / PE = 1:2 (v / v) to pure EA as eluent for column chromatography. <sup>1</sup>H NMR (500 MHz, DMSO)  $\delta$  8.65 (s, 1H), 7.82 (d, J = 7.8 Hz, 2H), 7.46 (t, J = 7.7 Hz, 2H), 7.34 (t, J = 7.4 Hz, 1H), 4.79 (t, J = 6.9 Hz, 2H), 3.79 (t, J = 6.9 Hz, 2H), 3.22 (t, J = 6.7 Hz, 4H), 1.79-1.76 (m, 4H). <sup>13</sup>C NMR (126 MHz, DMSO)  $\delta$  146.4 (s), 130.7 (s), 129.0 (s), 128.0 (s), 125.1 (s), 121.9 (s), 47.3 (s), 47.0 (s), 44.3 (s), 25.2 (s). ESI-MS HRMS calculated for C<sub>14</sub>H<sub>19</sub>N<sub>4</sub>O<sub>2</sub>S [M+H]<sup>+</sup> 307.1223, found 307.1222.

$$N = N$$

(*E*)-2-(4-phenyl-1H-1,2,3-triazol-1-yl)ethene-1-sulfonyl fluoride (**I**). White solid, 77 mg, 61%. M.p. 119-120 °C. A mixture of DCM and PE from DCM / PE= 1:5 to DCM / PE = 1:1 (v / v) as eluent for column chromatography. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.33 (d, J = 13.5 Hz, 1H), 8.20 (s, 1H), 7.86 (d, J = 7.5 Hz, 2H), 7.53-7.47 (m, 3H),

7.15 (dd, J = 13.5, 2.8 Hz, 1H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  152.9 (s), 142.0 (d, J = 3.0 Hz), 137.3 (s), 130.7 (s), 129.4 (s), 128.0 (s), 126.8 (s), 108.8 (d, J = 31.9 Hz). <sup>19</sup>F NMR (471 MHz, CDCl<sub>3</sub>)  $\delta$  65.2 (s, 1F). EI-MS HRMS calculated for C<sub>10</sub>H<sub>8</sub>FN<sub>3</sub>O<sub>2</sub>S [M]<sup>+</sup> 253.0316, found 253.0314.













































































































































































































































































































## 6. Data of Crystal Structure of 3b



The purified compound **3b** about 100 mg is dissolved in diethyl ether and placed in a dark cabinet to slowly evaporate. After several days, a colorless bulk crystal is obtained. The X-ray crystal-structure determinations were obtained on a Bruker Smart-1000 CDCC diffractometer (graphite-monochromated Mo K $\alpha$  radiation,  $\lambda$ =0.71073 nm) at 298(2) K. The crystal structure has been deposited at the Cambridge Crystallographic Data Centre (CCDC 1941924).

The ellipsoid contour probability level in the caption is 50 %.

Table S4. Crystal data and structure refinement for 190328e.

Identification code 190328e

Empirical formula C6 H10 F N O2 S

Formula weight 179.21

Temperature 298(2) K

Wavelength 0.71073 A

Crystal system, space group Monoclinic, P2(1)

Unit cell dimensions a = 5.1313(4) A alpha = 90 deg.

b = 9.5990(8) A beta = 91.1720(10) deg.

c = 8.4892(7) A gamma = 90 deg.

Volume 418.05(6) A^3

Z, Calculated density 2, 1.424 Mg/m<sup>3</sup>

Absorption coefficient 0.356 mm^-1

F(000) 188

Crystal size  $0.45 \times 0.40 \times 0.30 \text{ mm}$ 

Theta range for data collection 2.40 to 25.02 deg.

Limiting indices -6 <= h <= 6, -9 <= k <= 11, -7 <= l <= 10

Reflections collected / unique 2085 / 1338 [R(int) = 0.0202]

Completeness to theta = 25.02 100.0 %

Absorption correction Semi-empirical from equivalents

Max. and min. transmission 0.9008 and 0.8564

Refinement method Full-matrix least-squares on F<sup>2</sup>

Data / restraints / parameters 1338 / 1 / 120

Goodness-of-fit on F<sup>2</sup> 1.081

Final R indices [I>2sigma(I)] R1 = 0.0515, wR2 = 0.1424

R indices (all data) R1 = 0.0656, wR2 = 0.1608

Absolute structure parameter 0.4(3)

Extinction coefficient 0.25(3)

Largest diff. peak and hole 0.210 and -0.249 e.A^-3

Table S5. Atomic coordinates (x 10<sup>4</sup>) and equivalent isotropic displacement parameters (A<sup>2</sup> x 10<sup>3</sup>) for 190328e.

U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

|       | X         | у        | Z        | U(eq)  |
|-------|-----------|----------|----------|--------|
| F(1)  | 8054(6)   | 6076(14) | 2046(3)  | 137(1) |
| N(1)  | 5294(7)   | 6093(17) | 7083(4)  | 93(1   |
| O(1)  | 11160(20) | 4795(6)  | 3401(12) | 136(3  |
| O(2)  | 11295(19) | 7249(7)  | 3409(11) | 127(3  |
| S(1)  | 9873(2)   | 6065(5)  | 3521(1)  | 69(1)  |
| C(1)  | 7870(40)  | 5543(16) | 5050(30) | 58(6   |
| C(2)  | 6800(40)  | 6500(30) | 5850(20) | 57(7   |
| C(3)  | 4460(20)  | 7352(13) | 7871(19) | 128(5  |
| C(4)  | 2510(30)  | 6800(12) | 8973(15) | 103(4  |
| C(5)  | 2770(30)  | 5277(13) | 9174(13) | 106(4  |
| C(6)  | 4240(20)  | 4873(10) | 7750(13) | 102(4  |
| C(1') | 8030(50)  | 6624(17) | 4990(30) | 58(8)  |
| C(2') | 6890(40)  | 5560(30) | 5920(30) | 57(7)  |

Table S6. Bond lengths [A] and angles [deg] for 190328e.

| F(1)-S(1)       | 1.547(3)  |
|-----------------|-----------|
| N(1)-C(2)       | 1.37(2)   |
| N(1)-C(2')      | 1.39(3)   |
| N(1)-C(6)       | 1.414(15) |
| N(1)-C(3)       | 1.451(16) |
| O(1)-S(1)       | 1.391(8)  |
| O(2)-S(1)       | 1.355(8)  |
| S(1)-C(1')      | 1.67(2)   |
| S(1)-C(1)       | 1.75(2)   |
| C(1)-C(2)       | 1.27(4)   |
| C(1)-H(1)       | 0.9300    |
| C(2)-H(2)       | 0.9300    |
| C(3)-C(4)       | 1.481(16) |
| C(3)-H(3A)      | 0.9700    |
| C(3)-H(3B)      | 0.9700    |
| C(4)-C(5)       | 1.478(8)  |
| C(4)-H(4A)      | 0.9700    |
| C(4)-H(4B)      | 0.9700    |
| C(5)-C(6)       | 1.489(15) |
| C(5)-H(5A)      | 0.9700    |
| C(5)-H(5B)      | 0.9700    |
| C(6)-H(6A)      | 0.9700    |
| C(6)-H(6B)      | 0.9700    |
| C(1')-C(2')     | 1.43(4)   |
| C(1')-H(1')     | 0.9300    |
| C(2')-H(2')     | 0.9300    |
| C(2)-N(1)-C(2') | 38.3(5)   |
| C(2)-N(1)-C(6)  | 140.3(15) |
|                 | S184      |

| C(2')-N(1)-C(6)       | 102.4(15)      |
|-----------------------|----------------|
| C(2)-N(1)-C(3)        | 106.9(15)      |
| C(2')-N(1)-C(3)       | 144.8(15)      |
| C(6)-N(1)-C(3)        | 112.7(4)       |
| O(2)-S(1)-O(1)        | 118.2(3)       |
| O(2)-S(1)-F(1)        | 104.7(6)       |
| O(1)-S(1)-F(1)        | 103.1(6)       |
| O(2)-S(1)-C(1')       | 95.5(8)        |
| O(1)-S(1)-C(1')       | 127.9(8)       |
| F(1)-S(1)-C(1')       | 105.1(7)       |
| O(2)-S(1)-C(1)        | 128.2(7)       |
| O(1)- $S(1)$ - $C(1)$ | 95.2(8)        |
| F(1)-S(1)-C(1)        | 104.5(6)       |
| C(1')-S(1)-C(1)       | 35.5(4)        |
| C(2)- $C(1)$ - $S(1)$ | 117.0(18)      |
| C(2)-C(1)-H(1)        | 121.5          |
| S(1)-C(1)-H(1)        | 121.5          |
| C(1)-C(2)-N(1)        | 117(3)         |
| C(1)- $C(2)$ - $H(2)$ | 121.5          |
| N(1)-C(2)-H(2)        | 121.5          |
| N(1)-C(3)-C(4)        | 101.8(9)       |
| N(1)-C(3)-H(3A)       | 111.4          |
| C(4)-C(3)-H(3A)       | 111.4          |
| N(1)-C(3)-H(3B)       | 111.4          |
| C(4)-C(3)-H(3B)       | 111.4          |
| H(3A)-C(3)-H(3B)      | 109.3          |
| C(5)-C(4)-C(3)        | 111.4(12)      |
| C(5)-C(4)-H(4A)       | 109.3          |
| C(3)-C(4)-H(4A)       | 109.3          |
| C(5)-C(4)-H(4B)       | 109.3<br>\$185 |
|                       | 3103           |

| C(3)-C(4)-H(4B)   | 109.3     |
|-------------------|-----------|
| H(4A)-C(4)-H(4B)  | 108.0     |
| C(4)-C(5)-C(6)    | 102.2(11) |
| C(4)-C(5)-H(5A)   | 111.3     |
| C(6)-C(5)-H(5A)   | 111.3     |
| C(4)-C(5)-H(5B)   | 111.3     |
| C(6)-C(5)-H(5B)   | 111.3     |
| H(5A)-C(5)-H(5B)  | 109.2     |
| N(1)-C(6)-C(5)    | 108.3(8)  |
| N(1)-C(6)-H(6A)   | 110.0     |
| C(5)-C(6)-H(6A)   | 110.0     |
| N(1)-C(6)-H(6B)   | 110.0     |
| C(5)-C(6)-H(6B)   | 110.0     |
| H(6A)-C(6)-H(6B)  | 108.4     |
| C(2')-C(1')-S(1)  | 115.4(16) |
| C(2')-C(1')-H(1') | 122.3     |
| S(1)-C(1')-H(1')  | 122.3     |
| N(1)-C(2')-C(1')  | 113(2)    |
| N(1)-C(2')-H(2')  | 123.6     |
| C(1')-C(2')-H(2') | 123.6     |
|                   |           |

Symmetry transformations used to generate equivalent atoms:

Table S7. Anisotropic displacement parameters (A^2 x 10^3) for 190328e.

The anisotropic displacement factor exponent takes the form:

-2 pi^2 [ h^2 a\*^2 U11 + ... + 2 h k a\* b\* U12 ]

|       | U11     | U22    | U33     | U23    | U13    | U12    |
|-------|---------|--------|---------|--------|--------|--------|
| F(1)  | 107(2)  | 243(4) | 62(1)   | -6(6)  | -2(1)  | -2(9)  |
| N(1)  | 75(2)   | 142(4) | 63(2)   | -12(7) | 19(2)  | -3(8)  |
| O(1)  | 217(9)  | 51(4)  | 139(7)  | -13(3) | 23(7)  | 12(5)  |
| O(2)  | 167(7)  | 76(5)  | 137(7)  | -20(4) | 2(6)   | -40(5) |
| S(1)  | 70(1)   | 77(1)  | 59(1)   | 0(1)   | 16(1)  | 3(1)   |
| C(1)  | 72(11)  | 42(12) | 60(11)  | 6(7)   | 10(9)  | -12(7) |
| C(2)  | 69(12)  | 43(12) | 59(12)  | 1(7)   | 12(10) | -6(7)  |
| C(3)  | 107(7)  | 105(9) | 175(11) | 26(8)  | 61(7)  | 10(6)  |
| C(4)  | 118(9)  | 101(7) | 92(6)   | -21(5) | 42(5)  | 17(5)  |
| C(5)  | 140(10) | 95(8)  | 84(6)   | 0(5)   | 40(5)  | -8(6)  |
| C(6)  | 131(8)  | 85(7)  | 90(6)   | -16(5) | 13(5)  | 39(6)  |
| C(1') | 72(12)  | 42(13) | 60(12)  | 6(7)   | 9(9)   | -12(6) |
| C(2') | 69(13)  | 43(13) | 59(13)  | 1(8)   | 12(10) | -6(8)  |
|       |         |        |         |        |        |        |

Table S8. Hydrogen coordinates (  $\times$  10<sup>4</sup>) and isotropic displacement parameters (A<sup>2</sup> x 10<sup>3</sup>) for 190328e.

|       | X    | У    | Z     | U(eq) |
|-------|------|------|-------|-------|
| H(1)  | 7599 | 4606 | 5279  | 70    |
| H(2)  | 7029 | 7439 | 5605  | 68    |
| H(3A) | 3673 | 8008 | 7132  | 154   |
| H(3B) | 5893 | 7799 | 8432  | 154   |
| H(4A) | 2733 | 7253 | 9989  | 124   |
| H(4B) | 768  | 7014 | 8573  | 124   |
| H(5A) | 1080 | 4825 | 9191  | 127   |
| H(5B) | 3738 | 5049 | 10133 | 127   |
| H(6A) | 5630 | 4231 | 8038  | 122   |
| H(6B) | 3086 | 4416 | 6993  | 122   |
| H(1') | 7772 | 7567 | 5183  | 70    |
| H(2') | 7175 | 4614 | 5764  | 68    |

Table S9. Torsion angles [deg] for 190328e.

| O(2)-S(1)-C(1)-C(2)   | 29.2(18)   |
|-----------------------|------------|
| O(1)-S(1)-C(1)-C(2)   | 161.6(14)  |
| F(1)-S(1)-C(1)-C(2)   | -93.4(15)  |
| C(1')-S(1)-C(1)-C(2)  | 2.4(14)    |
| S(1)-C(1)-C(2)-N(1)   | -178.0(12) |
| C(2')-N(1)-C(2)-C(1)  | 2.6(13)    |
| C(6)-N(1)-C(2)-C(1)   | -8(3)      |
| C(3)-N(1)-C(2)-C(1)   | 175.9(15)  |
| C(2)-N(1)-C(3)-C(4)   | 170.4(12)  |
| C(2')-N(1)-C(3)-C(4)  | 177.7(16)  |
| C(6)-N(1)-C(3)-C(4)   | -6.8(9)    |
| N(1)-C(3)-C(4)-C(5)   | 16.8(15)   |
| C(3)-C(4)-C(5)-C(6)   | -19.8(17)  |
| C(2)-N(1)-C(6)-C(5)   | 179.0(15)  |
| C(2')-N(1)-C(6)-C(5)  | 172.1(11)  |
| C(3)-N(1)-C(6)-C(5)   | -5.3(9)    |
| C(4)-C(5)-C(6)-N(1)   | 14.8(14)   |
| O(2)-S(1)-C(1')-C(2') | -156.9(15) |
| O(1)-S(1)-C(1')-C(2') | -24(2)     |
| F(1)-S(1)-C(1')-C(2') | 96.2(16)   |
| C(1)-S(1)-C(1')-C(2') | 2.2(12)    |
| C(2)-N(1)-C(2')-C(1') | 2.6(15)    |
| C(6)-N(1)-C(2')-C(1') | 175.5(14)  |
| C(3)-N(1)-C(2')-C(1') | -9(3)      |
| S(1)-C(1')-C(2')-N(1) | -177.6(12) |
|                       |            |

Symmetry transformations used to generate equivalent atoms:

Table S10. Hydrogen bonds for 190328e [A and deg.].

D-H...A d(D-H) d(H...A) d(D...A) <(DHA)

## 7. References

- [1] Zhang, X.; Moku, B.; Leng, J.; Rakesh, K. P.; Qin, H.-L. Eur. J. Org. Chem. 2019, 1763.
- [2] Fothergill, A. W. Antifungal susceptibility testing: clinical laboratory and standards institute (CLSI) methods[M]. Interactions of Yeasts, Moulds, and Antifungal Agents. Humana Press, 2012, 65-74.
- [3] Shu, W.-M.; Zhang, X.-F.; Zhang, X.-X.; Li, M.; Wang, A.-J.; Wu, A.-X. *J. Org. Chem.* **2019**, *84*, 14919.