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1. The toriodal coordinate system 

For droplet with low Bond number, the gravitational effect can be ignored, hence 

the droplet have the shape of spherical cap, here the curved substrate is also assumed 

to have the shape of spherical cap, hence their boundaries can be exactly mapped in 

toroidal coordinates(α, β), as shown in Figure S1. CA is the contact angle of droplet 

with substrate surface, Sub   is the tangential angle of curved substrate over the 

horizontal bottom, CA Sub     is the cutting angle of droplet edge over the 

horizontal substrate bottom. The bottom of the substrate is at the temperature WT , heat 

is transferred to the droplet surface for evaporation through substrate and droplet. The 

ambient temperature and vapor concentration are T and C respectively.  
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Figure S1. Schematic diagram of a sessile evaporating droplet on curved substrate in 

toroidal coordinate 

The relationship between the toroidal coordinate ( , )a b and the cylindrical coordinate 

( , )r z is shown below 

1/ sinh / sin (cosh cos )r z Ra b a b                                    (1) 

where R  is base radius of droplet.  

The convective heat transfer inside the droplet and the vapor is ignored, hence both heat 

transfer and vapor transfer are diffusion-controlled, the temperature and vapor 

concentration are governed by the Laplace equation 2 0T  and 2 0C  . 

2. The boundary conditions 

The boundary conditions of vapor concentration and temperature are as follows: 

For vapor region around the droplet ( 0 ,2 3a  b       ) 

(1) In the region far from the droplet, temperature and vapor concentration are  

,T C   respectively 

(2) At the axis of symmetry: 

0( ( , ) / ) 0C aa b a     
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(3) At the gas-solid interface, no penetration for vapor into the solid substrate:

2( ( , ) / ) 0C b a b b     

(4) At the gas-liquid interface, the heat transfer is coupled with the evaporative mass 

transfer, i.e. evaporative cooling effect is considered. 

3( ( )) ( ( ))q L Jb   b  a a     

where ( )q a is heat flux, L is liquid latent heat of vaporization, ( )J a is evaporative 

flux. 

For temperature region within the droplet ( Sub0 ,a   b        ) 

(1) At the axis of symmetry:  

L 0( ( , ) / ) 0T aa b a     

(2) At the solid−liquid interface, the heat transfer inside the substrate and droplet is 

coupled together, hence there is no temperature jump across the interface. 

L Sub S Sub( , ) ( , )T Ta   a      

The heat flux is identical from both sides 

   
Sub Sub

L S, ,(cosh cos ) (cosh cos )
R

T T
k

R R
b   b  

a b a ba b a b

b b
   

  


 
 

where Rk = Sk / Lk is relative thermal conductivity of substrate and droplet. 

For temperature region within the substrate ( Sub0 ,a   b       ) 

(1) At the axis of symmetry: 

S 0( ( , ) / ) 0T aa b a     

(2) On the bottom, the temperature is constant  

S W( , )T Ta    

3. The vapor concentration field and temperature field 

The above boundary conditions are applied to solve the governing equation
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2 0T   and 2 0C   . According to Nguyen et al.[24], the vapor concentration and 

temperature field can be obtained in the toroidal coordinate: 

Vapor concentration outside the droplet: 

C 0.5
0

( , ) cosh cos ( ) (cosh )cosh[(2 ) ]iC C E P da b a b  a  b  




              (2) 

Temperature field inside the droplet: 

L W 0.5
0

( , ) cosh cos (cosh )[ ( )cosh( ) ( )sinh( )]iT T P M N da b a b a  b  b 


      (3) 

Temperature field inside the substrate 

S W S 0.5

0

( , ) cosh cos ( ) (cosh )sinh[( ) ]iT T E P da b a b  a  b  




                (4) 

where , 0.5(cosh )iP a  are the integration dummy, Legendre functions of the first 

kind ,respectively, WT  is the temperature of the substrate bottom, C ( )E 
and S ( )E 

are 

functions of the integration dummy, and independent of the toroidal coordinates α and 

β. 

At the solid-liquid interface, according to L Sub S Sub( , ) ( , )T Ta   a     , the 

following can be obtained as  

Sub Sub S Sub( )cosh[ ( )] ( )sinh[ ( )] ( )sinh( )M N E                    (5) 

The temperature gradient at the liquid side: 

 
Sub

L

Sub
0.5 Sub Sub

0
Sub

Sub 0.5 Sub Sub
0

,

sin
(cosh ){ ( )cosh[ ( )] ( )sinh[ ( )]}

2 cosh cos

cosh cos (cosh ){ ( )sinh[ ( )] ( )cosh[ ( )]}

i

i

T

P M N d

P M N d

b  





a b

b


a         

a 

a   a         

 














   


   





    (6) 
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The temperature gradient at the solid side: 

 
Sub

S Sub
0.5 S Sub

0
Sub

Sub 0.5 S Sub
0

, sin
(cosh ) ( )sinh( )

2 cosh cos

cosh cos ( ) (cosh ) ( )cosh( )

i

i

T
P E d

P E d

b   



a b 
a    

b a 

a   a    




  







 

 

 





       (7) 

According to 

   
Sub Sub

L S

R

, ,(cosh cos ) (cosh cos )T T
k

R R
b   b  

a b a ba b a b

b b
   

  


 
 

The following can be obtained 

0.5 Sub sub R S Sub
0

Sub
R 0.5 S Sub

0
Sub

(cosh ){ ( )sinh[ ( )] ( )cosh[ ( )] ( )cosh( )}

sin
( 1) (cosh ) ( )sinh( )

2(cosh cos )

i

i

P M N K E d

K P E d





 a            


a    

a 











   

 






  (8) 

Here the followings are defined as  

0.53/20

sinh
( , ) (cosh ) sin( ) / [sinh( )sin ]

(cosh cos )
iF P d

a
  a a   

a 



 
       (9) 

0.55/20

( , ) 3sin sinh
(cosh )

2 (cosh cos )
i

F
P d

   a
a a

 a 








                        (10) 

Then Eq. (8) becomes 

*

Sub Sub S Sub( )sinh[ ( )] ( )cosh[ ( )] ( ) ( , )M N E H                           (11) 

where 

Sub
R Sub

Sub R Sub

Sub

( , )
( 1)sinh( )

( , ) cosh( )
3 ( , )

dF
k

dH k
F

 
 

   
  


                   (12) 

Together with Eqs. (5) and (11), the followings can be obtained as 

*

S Sub Sub Sub Sub( ) ( ){ ( , )cosh[( ) ] sinh( )sinh[( ) ]}N E H                     (13) 

*

S Sub Sub Sub Sub( ) ( ){ ( , )sinh[( ) ] sinh( )cosh[( ) ]}M E H                     (14) 

Then Eq. (3) becomes 
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L W

*

0.5 S Sub Sub Sub sub
0

( , ) cosh cos

(cosh ) ( ){ ( , )sinh[( ) ] sinh( )cosh[( ) ]}i

T T

P E H d

a b a b

a      b      b  




  

     
  (15) 

At the gas-liquid interface:  

L L

2/3 *L
S 0.5 Sub Sub

0

Sub Sub Sub Sub Sub

( , )
( ( )) (cosh cos )

sin
(cosh cos ) ( ) (cosh ){ { ( , )sinh[( ) ]

2(cosh cos )

sinh( )cosh[( ) ]} { ( , ) cosh[( ) ] sinh( )sinh

i

k T
q

R

k
E P H

R

H

b   b  



a b
a a 

b


a   a     

a 

            

   






 



   


     



Sub[( ) ]}}d   

  (16)   

Defining 

R Sub Sub Sub Sub( , ) ( , )sinh[( ) ] sinh( )cosh[( ) ]f k H                         (17) 

R Sub Sub Sub Sub( , ) ( , )cosh[( ) ] sinh( )sinh[( ) ]g k H                          (18) 

Then heat flux across the gas-liquid interface in Eq. (16)  

2/3L

S 0.5 R R
0

( ( )) (cosh cos )

sin
( ) (cosh ){ ( , ) ( , )}

2(cosh cos )
i

k
q

R

E P f k g k d

b  



a a 


 a    

a 

 






  




             (19) 

The mass flux across the gas-liquid interface 

3 3

( , )
( ( )) (cosh cos )

D C
J

R
b   b  

a b
a a 

b
   


 


 

3/2

*

C 0.5
0

(cosh cos )

/

cosh[( ) ]sin
( ) (cosh ){ sinh[( ) ]}

2(cosh cos )
i

R D

E P d

a 

   
 a     

a 






 


 


     (20) 

According to 3( ( )) ( ( ))q L Jb   b  a a    , the following can be obtained: 

* *

0.5 L S R C

0

* *

0.5 L S R C
0

(cosh ) ( ) ( , ) ( ) cosh[( ) ]
sin

cosh cos 2

(cosh ){ ( ) ( , ) ( ) sinh[( ) ]}

i

i

P k E f k LDE
d

P k E g k LDE d





a      
 

a 

a         








 



  




         (21) 

Together with Eqs. (9), (10), it can be obtained as 
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* L R
S L R

*

C

( , ) ( , )
( ){ ( , ) ( , )}

3

( , ) cosh[( ) ]
( ){ ( , )sinh[( ) ]}

3

k f k F
E F k g k

F LD
E LD F

  
    



    
      








 
  



             (22) 

It is assumed that the saturated vapor concentration varies linearly with temperature 

along the droplet surface,  

L( ,3 ) ( , )C a bTa   a      ,  

Together with Eqs. (2), (15), it can be obtained as 

*

C 0.5
0

*

W 0.5 S R
0

cosh cos ( ) (cosh )cosh[( ) ]

cosh cos (cosh ) ( ) ( , )

i

i

C E P d

a bT b P E f k d





a   a    

a  a   



 





  

   




                 (23) 

Hence  

* * W
0.5 C S R

0
(cosh ){ ( )cosh[( ) ] ( ) ( , )}

cosh cos
i

a bT C
P E bE f k d a       

a 






 
  


   (24) 

According to the Mehler-Fock integral transform 

0.5
0

cosh 1
(cosh )

cosh 2cosh 2cos
iP d


a 

 a 



 


                           (25) 

 Eq.(24) becomes 

* *

C S R W

cosh( )
( )cosh[( ) ] ( ) ( , ) 2( )

cosh( )
E bE f k a bT C


     


              (26) 

Together with Eqs. (22), (26), the following can be obtained 

* W 0
S

R
R 0 R

2( ) cosh( )
( )

cosh( )

( , )
( , ) tanh[( ) ]

3
( , ) ( , ) ( , )

{ ( , ) ( , )} { ( , ) tanh[( ) ]} ( , )
3 3

a bT C E
E

b

F
F

f k F F
F g k E F f k






 
     


    

          
 

 
 


 


 

   
 

  (27) 
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* W
C

R
R

R
R 0 R

2( )cosh( )
( )

cosh( )

( , ) ( , )
sech[( ) ]( ( , ) ( , ))

3
( , ) ( , ) ( , )

{ ( , ) ( , )} { ( , ) tanh[( ) ]} ( , )
3 3

a bT C
E

f k F
F g k

f k F F
F g k E F f k






  
      


    

          
 

 
 


 


 

   
 

(28) 

where 0 L/E bLD k  is evaporative cooling number. 

hence the non-dimension concentration around droplet is 

°
C 0.5

0
e

( , )
( , ) 2cosh 2cos ( ) (cosh )cosh[(2 ) ]i

C C
C E P d

C C


a b
a b a b  a  b  









   

    (29) 

non-dimensional temperature within droplet is 

° L W

W

0.5 S Sub Sub Sub Sub
0

( , )
( , ) 2cosh 2cos

(cosh ) ( ){ ( , )sinh[( ) ] sinh( )cosh[( ) ]}

L

i

T T
T

T T

P E H d

a b
a b a b

a      b      b  








  



       (30) 

Non-dimensional temperature within the substrate is 

° S W
S S 0.5

0
W

( , )
( , ) 2cosh 2cos ( ) (cosh )sinh[( ) ]i

T T
T E P d

T T


a b
a b a b  a  b  








   

   (31) 

Where 

0
S

R
R 0 R

cosh( )
( )

cosh( )

( , )
( , ) tanh[( ) ]

3
( , ) ( , ) ( , )

{ ( , ) ( , )} { ( , ) tanh[( ) ]} ( , )
3 3

E
E

F
F

f k F F
F g k E F f k






 
     


    

          
 

 


 


 

   
 

(32) 

C

R
R

R
R 0 R

cosh( )
( )

cosh( )

( , ) ( , )
sech[( ) ]( ( , ) ( , ))

3
( , ) ( , ) ( , )

{ ( , ) ( , )} { ( , ) tanh[( ) ]} ( , )
3 3

E

f k F
F g k

f k F F
F g k E F f k






  
      


    

          
 

 


 


 

   
 

(33) 

4. The lifetime of droplet 

After integrating the evaporative flux over the gas-liquid interface in toroidal 

coordinates, the evaporation rate can be obtained: 
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2

L 2

0

e

0.5

C 0.5
0 0

( ) ( ) sinh
2 ( , )

(cosh cos )

= ( )2 2

cosh[( ) ]sin
(cosh cos ) sinh { ( ) (cosh )[ sinh[( ) ]]}

2(cosh cos )
i

dm dV
R J d

dt dt

D C C R

d E P d

  a
  a  a

a 



   
 a  a  a     a

a 





 




  


  


  





 

 (34)  

In the above equation, the double integral term is a function of θ, E0 and Rk , it can be 

defined as 

0

0.5

C 0.5
0 0

( , , )

cosh[( ) ]sin
(cosh cos ) sinh { ( ) (cosh )[ sinh[( ) ]]}

2(cosh cos )

R

i

k E

d E P d

 

   
 a  a  a     a

a 

 







  

 
(35) 

Thus 

L e 0

( ) ( )
( )2 2 ( , , )R

dm dV
D C C R k E

dt dt

 
                                (36) 

The volume of droplet can be obtained: 

 
3 3

Sub3 ( ) 3 ( )

R R
V

g g

 

 
                                                      (37) 

where 
3

2

sin
( )

(1 cos ) (2 cos )
g




 


 
,  

During the evaporation the droplet is assumed to be pinned on the substrate, i.e. it is 

in the Constant Contact Radius (CCR) mode, the base radius is kept constant and the 

contact angle of droplet decreases with time, so together with Eqs. (34), (37), it can be 

obtained as 

2e
02

L

( )
2 2 ( , , )(1 cos )R

D C Cd
k E

dt R


  




                              (38) 

The lifetime of evaporation of droplet can be obtained 

0

2

L 0
CCR 2

R 0e

1

( , , )(1 cos )2 2 ( ) sub

R
t d

k ED C C








  





                          (39) 

where the θ0 and R0 are the initial tangential angle of the droplet surface with the plane 

at the edge and initial base radius respectively. 


