
Shock-Tube Laser Absorption Measurements of CO and H₂O during Iso-Octane Combustion

O. Mathieu*, S. P. Cooper, S. A. Turaifi, C. R. Mulvihill, T. M. Atherley, and E. L. Petersen

¹J. Mike Walker '66 Department of Mechanical Engineering, Texas A&M University, College Station, TX, USA ²Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, LA, USA *Corresponding Author Email: olivier.mathieu@tamu.edu

Supplemental Material Section

A/ CO measurements A.1/ CO mole fraction time histories and model comparison A.1.1/ Model comparison at $\phi = 0.5$

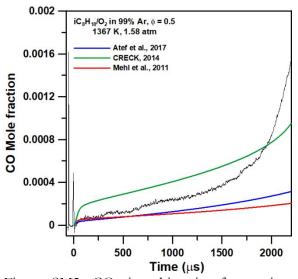
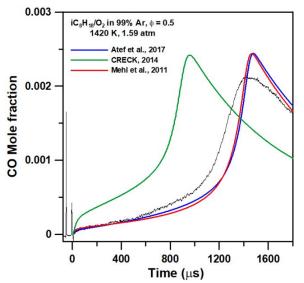
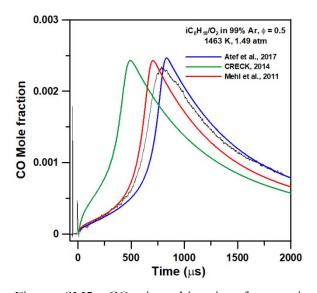



Figure SM1: CO time histories for an isooctane/O₂ mixture in 99% inert gases at $\phi = 0.5$, 1323 K and 1.58 atm.


Figure SM2: CO time histories for an isooctane/O₂ mixture in 99% inert gases at $\phi = 0.5$, 1367 K and 1.58 atm.

0.003 iC_eH₁₈/O₂ in 99% Ar, φ = 0.5 1436 K, 1.54 atm 0.002 0.001 0.0

Figure SM3: CO time histories for an isooctane/O₂ mixture in 99% inert gases at $\phi = 0.5$, 1420 K and 1.59 atm.

Figure SM4: CO time histories for an isooctane/O₂ mixture in 99% inert gases at $\phi =$ 0.5, 1436 K and 1.54 atm.

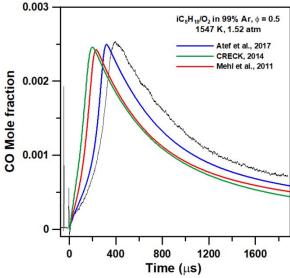
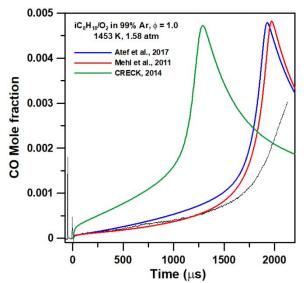
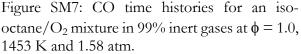




Figure SM5: CO time histories for an isooctane/O₂ mixture in 99% inert gases at $\phi = 0.5$, 1463 K and 1.49 atm.

Figure SM6: CO time histories for an isooctane/O₂ mixture in 99% inert gases at $\phi = 0.5$, 1547 K and 1.52 atm.

A.1.2/ Model comparison at $\phi = 1.0$

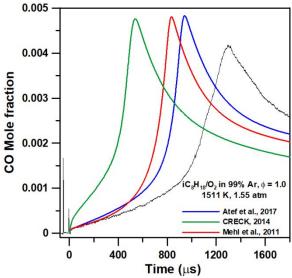


Figure SM8: CO time histories for an isooctane/O₂ mixture in 99% inert gases at $\phi = 1.0$, 1511 K and 1.55 atm.

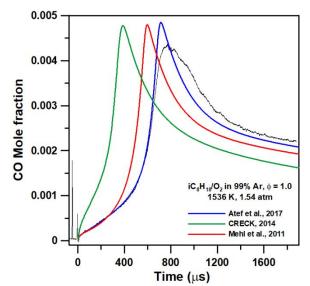


Figure SM9: CO time histories for an isooctane/O₂ mixture in 99% inert gases at $\phi = 1.0$, 1536 K and 1.54 atm.

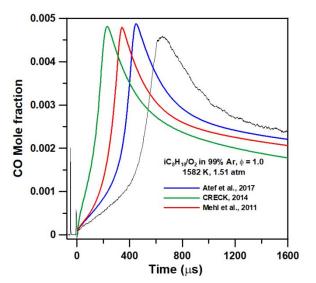


Figure SM10: CO time histories for an isooctane/O₂ mixture in 99% inert gases at $\phi = 1.0$, 1582 K and 1.51 atm.

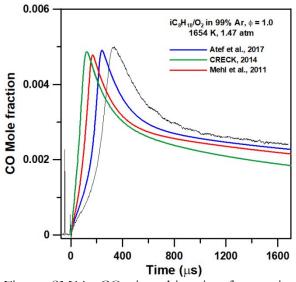


Figure SM11: CO time histories for an isooctane/O₂ mixture in 99% inert gases at $\phi = 1.0$, 1654 K and 1.47 atm.

A.1.3/ Model comparison at $\phi = 2.0$

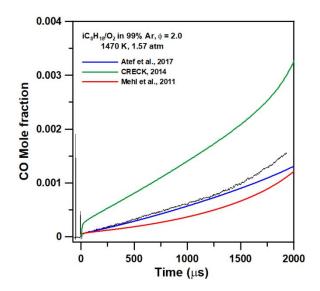


Figure SM12: CO time histories for an isooctane/O₂ mixture in 99% inert gases at $\phi = 2.0$, 1470 K and 1.57 atm.

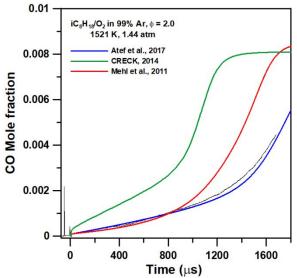
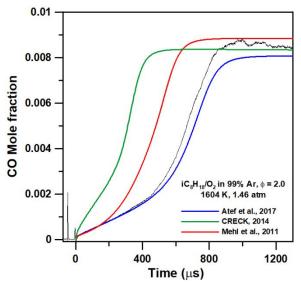



Figure SM13: CO time histories for an isooctane/O₂ mixture in 99% inert gases at $\phi = 2.0$, 1521 K and 1.44 atm.

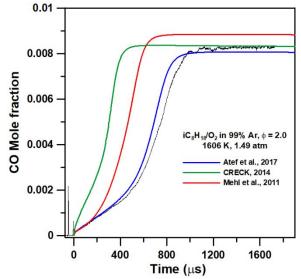


Figure SM14: CO time histories for an isooctane/O₂ mixture in 99% inert gases at $\phi = 2.0$, 1604 K and 1.46 atm.

Figure SM15: CO time histories for an isooctane/O₂ mixture in 99% inert gases at $\phi = 2.0$, 1606 K and 1.49 atm.

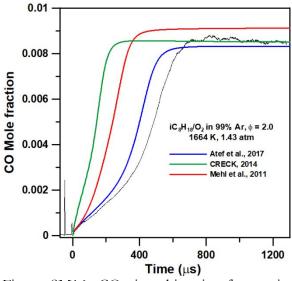


Figure SM16: CO time histories for an isooctane/O₂ mixture in 99% inert gases at $\phi = 2.0$, 1664 K and 1.43 atm.

A.2/ CO induction delay time and time-at-peak CO

T ₅ (K)	P ₅ (atm)	τ_{ind} (µs)	τ _{peak} (μs)
1411	1.62	1237.8	1690
1420	1.59	995	1422
1436	1.54	853.6	1186
1463	1.49	526	788
1504	1.50	325	533
1547	1.52	196	396
1601	1.51	85.3	241

Table S1: CO induction delay time (τ_{ind}), time-at-peak CO (τ_{peak}), and associated conditions behind reflected shock waves for a mixture of iso-octane/O₂ in 99% Ar diluent at $\phi = 0.5$.

Table S2: CO induction delay time (τ_{ind}), time-at-peak CO (τ_{peak}), and associated conditions behind reflected shock waves for a mixture of iso-octane/O₂ in 99% Ar diluent at $\phi = 1.0$.

T ₅ (K)	P ₅ (atm)	τ_{ind} (µs)	τ_{peak} (µs)
1496	1.57	1144	1464
1511	1.55	871	1295
1536	1.54	517	776
1582	1.51	416	656
1625	1.49	194	437
1654	1.47	159	332
1706	1.44	89	222

Table S3: CO induction delay time (τ_{ind}) and associated conditions behind reflected shock waves for a mixture of iso-octane/O₂ in 99% Ar diluent at $\phi = 2.0$.

T ₅ (K)	P ₅ (atm)	τ_{ind} (µs)
1557	1.44	700
1604	1.46	446
1606	1.49	501
1664	1.43	301
1718	1.37	118
1815	1.37	29

B/ H₂O measurements B.1/ H₂O mole fraction time histories and model comparison B.1.1/ Model comparison at $\phi = 0.5$

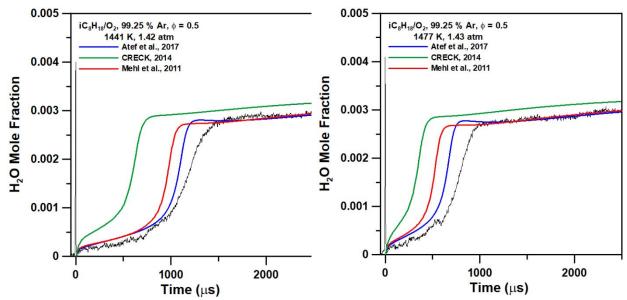


Figure SM17: H₂O time histories for an isooctane/O₂ mixture in 99% Ar at $\phi = 0.5$, 1441 K and 1.42 atm.

Figure SM18: H₂O time histories for an isooctane/O₂ mixture in 99% Ar at $\phi = 0.5$, 1477 K and 1.43 atm.

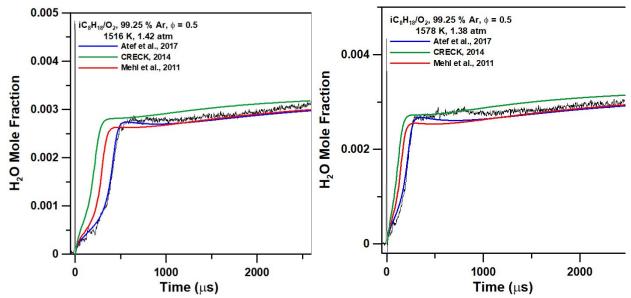
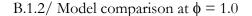
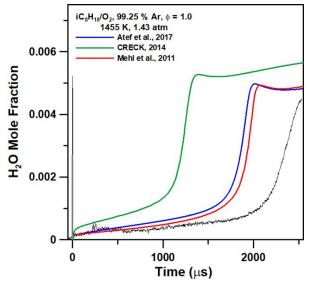




Figure SM19: H₂O time histories for an isooctane/O₂ mixture in 99% Ar at $\phi = 0.5$, 1516 K and 1.42 atm.

Figure SM20: H₂O time histories for an isooctane/O₂ mixture in 99% Ar at $\phi = 0.5$, 1578 K and 1.38 atm.

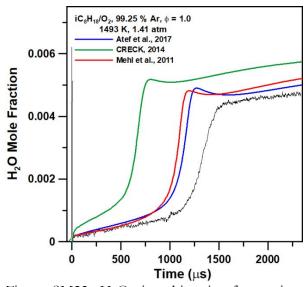


Figure SM21: H₂O time histories for an isooctane/O₂ mixture in 99% Ar at $\phi = 1.0$, 1455 K and 1.43 atm.

Figure SM22: H₂O time histories for an isooctane/O₂ mixture in 99% Ar at $\phi = 1.0$, 1493 K and 1.41 atm.

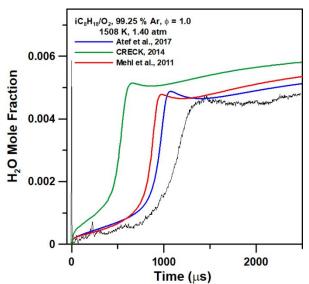


Figure SM23: H₂O time histories for an isooctane/O₂ mixture in 99% Ar at $\phi = 1.0$, 1508 K and 1.40 atm.

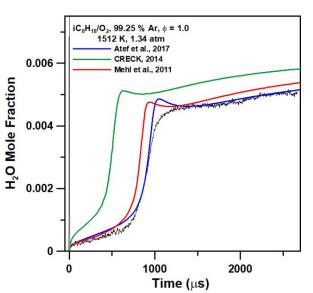
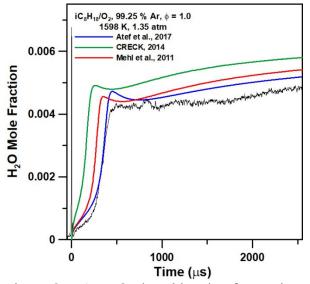



Figure SM24: H₂O time histories for an isooctane/O₂ mixture in 99% Ar at $\phi = 1.0$, 1512 K and 1.34 atm.

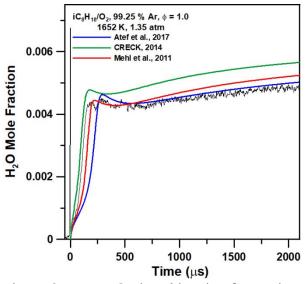


Figure SM25: H₂O time histories for an isooctane/O₂ mixture in 99% Ar at $\phi = 1.0$, 1598 K and 1.35 atm.

Figure SM26: H₂O time histories for an isooctane/O₂ mixture in 99% Ar at $\phi = 1.0$, 1652 K and 1.35 atm.

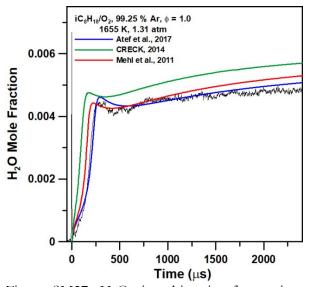
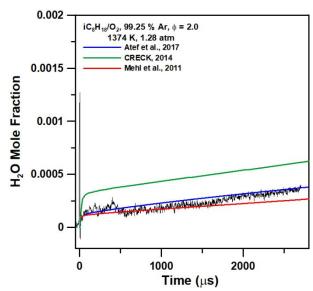



Figure SM27: H₂O time histories for an isooctane/O₂ mixture in 99% Ar at $\phi = 1.0$, 1655 K and 1.31 atm.

B.1.3/ Model comparison at $\phi = 2.0$

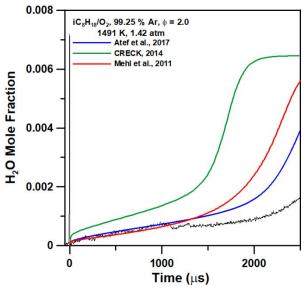


Figure SM28: H₂O time histories for an isooctane/O₂ mixture in 99% Ar at $\phi = 2.0, 1374$ K and 1.28 atm.

Figure SM29: H₂O time histories for an isooctane/O₂ mixture in 99% Ar at $\phi = 2.0, 1491$ K and 1.42 atm.

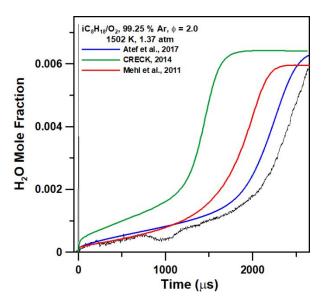
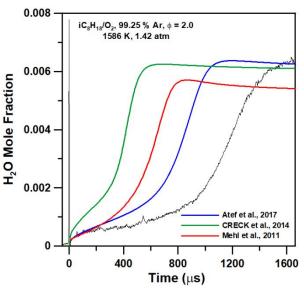
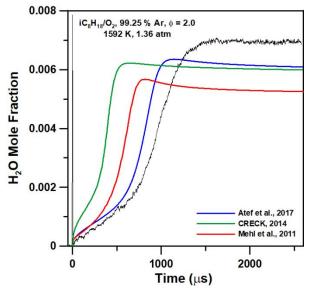




Figure SM29: H₂O time histories for an iso- Figure SM30: H₂O time histories for an isooctane/O₂ mixture in 99% Ar at $\phi = 2.0, 1502$ K and 1.37 atm.

octane/O₂ mixture in 99% Ar at $\phi = 2.0$, 1586 K and 1.42 atm.

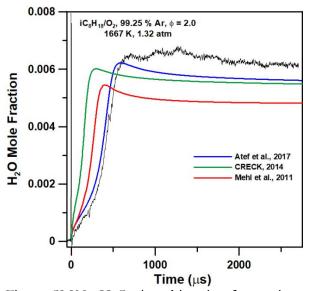


Figure SM31: H₂O time histories for an isooctane/O₂ mixture in 99% Ar at ϕ = 2.0, 1592 K and 1.36 atm.

Figure SM32: H₂O time histories for an isooctane/O₂ mixture in 99% Ar at ϕ = 2.0, 1667 K and 1.32 atm.

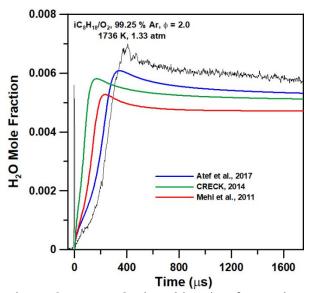


Figure SM33: H₂O time histories for an isooctane/O₂ mixture in 99% Ar at $\phi = 2.0$, 1736 K and 1.33 atm.

$B.2/H_2O$ induction delay time

Table S4: H₂O induction delay time (τ_{ind}) and associated conditions behind reflected shock waves for a mixture of iso-octane/O₂ in 99% Ar at $\phi = 0.5$.

T ₅ (K)	P ₅ (atm)	τ_{ind} (µs)
1403	1.41	1612.0
1405	1.43	1486.5
1408	1.48	1895.7
1441	1.42	883.5
1477	1.43	547.8
1516	1.42	278.0
1532	1.39	167.5
1578	1.38	123.6
1600	1.35	77.4
1687	1.37	40.8

Table S5: H₂O induction delay time (τ_{ind}) and associated conditions behind reflected shock waves for a mixture of iso-octane/O₂ in 99% Ar at $\phi = 1.0$.

T ₅ (K)	P ₅ (atm)	τ_{ind} (µs)
1455	1.43	2073.6
1460	1.40	1612
1493	1.41	1126.6
1508	1.4	805
1512	1.34	725.1
1543	1.33	400
1598	1.35	229.6
1652	1.35	107.9
1655	1.31	109.8
1728	1.36	53.4

Table S6: H₂O induction delay time (τ_{ind}) and associated conditions behind reflected shock waves for a mixture of iso-octane/O₂ in 99% Ar at $\phi = 2.0$.

T ₅ (K)	P ₅ (atm)	τ_{ind} (µs)
1502	1.37	1921
1548	1.41	1217
1586	1.42	863
1592	1.36	598
1634	1.35	425
1667	1.32	230
1736	1.33	141
1793	1.32	59

C. Chemical Analysis

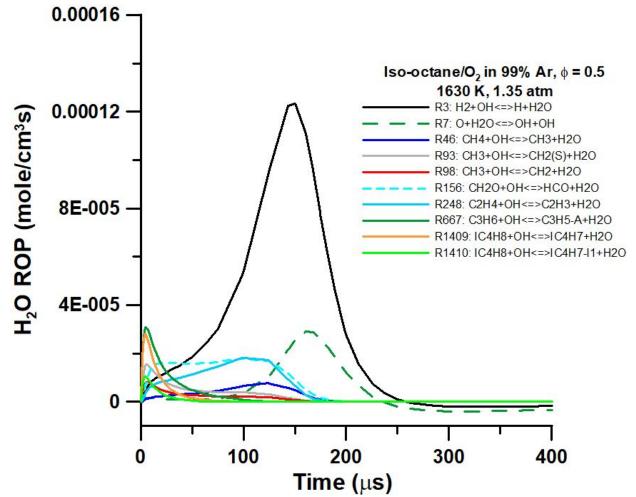


Figure SM 34: Rate of production analysis for water using the Atef et al. model from a mixture of isooctane/O₂, $\phi = 0.5$, in 99% Ar at 1630 K and 1.35 atm.

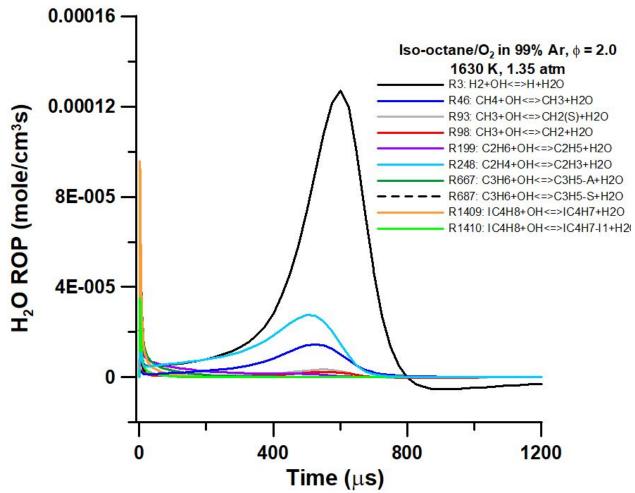


Figure SM 35: Rate of production analysis for water using the Atef et al. model from a mixture of isooctane/O₂, $\phi = 2.0$, in 99% Ar at 1630 K and 1.35 atm.