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[bookmark: _Toc21042096]Section S1. Performance Measures.
From the Table A, some common metrics to assess the performance of models were calculated.
Table A. The Two-by-Two Confusion Matrix for Binary Classification Problem.                                                        
	
	Predicted classa
	Total

	
	Yes
	No
	

	Actual class
	Positive (p)
	TP
	FN
	TP+FN=P

	
	Negative (n)
	FP
	TN
	FP+TN=N


aIf the instance is positive and it is predicted as positive, it is counted as a true positive (TP); if it is predicted as negative, it is counted as a false negative (FN). If the instance is negative and it is predicted as negative, it is counted as a true negative (TN) and finally if it is predicted as positive, it is counted as a false positive (FP). 

The true positive rate (tprate, also called hit rate and recall) and the false positive rate (fprate, also called false alarm rate) of a model were estimated as: 

                                           (1)                                                                                               

                                (2)
The true negative rate (tnrate) and the true negative rate (fnrate) of a classifier were defined as:

                                    (3)                                                                                       

                                  (4)      
The accuracy (Ac) (global good classification) is the rate of total number of predictions that were corrected:

                                              (5)                                                                                                 
The sensitivity (Se) of a model is the capacity of classifier to being “responsive” to positive cases, thus it is the probability that the prediction is positive given that the substance is truly positive: Se = tprate.
The specificity (Sp) is able to give a measurement of the specificity of classifier to mark positive case; it expresses the ability of the model to predict if a truly negative substance is negative. Thus, the specificity of the model is the probability that the prediction is negative given that the substance is truly negative: Sp = tnrate.
Another important parameter that usually provides a much more balanced evaluation of the prediction than the Ac value, which is also derived from the confusion matrix is the Matthews correlation coefficient (MCC).1 This coefficient returns a value between -1 and 1. The higher the value of the MCC, the more reliable is the classification result:

     (6)                                          
Another form to evaluate the performance of a classifier is by the Receiver Operator Curve (ROC).2-4 A ROC graph is a technique for visualizing, organizing and selecting classifiers based on their performance. The ROC graphs are two-dimensional graphs in which tprate is plotted on the Y-axis and fprate is plotted on the X-axis by means of the variation of decision threshold. An ROC graph depicts relative trade-off between benefits (TP) and costs (FP).4 An indicator of the quality of the classifier is the area under the ROC curve, abbreviated AURC.4-7 Since the AURC is a portion of the area of the unit square, its value will always be between 0 and 1. The AURC has an important statistical property: the AURC of a classifier is equivalent to the probability that the classifier will rank a randomly chosen positive instance higher than a randomly chosen negative instance.7 The closer this area to 1, the closer the behaviour of the classifier as a perfect classification model (100% of tprate with 0% of fprate).

[bookmark: _Toc21042097]Section S2. Ensemble Methods.
(a) Voting combiners. In a classification problem, the “most universal” output is at the abstract level where indicates the membership to determined class. In this case, majority voting can be applied. The concept of majority voting is both simple to implement and appealing.8-11 It is in fact the simplest ensemble scheme: given a pattern x, each classifier votes for a target class. The class that gets the highest number of votes is selected. In the case of two class, the final label is chosen as agreed decision of (n/2) +1 (n: total number of classifiers) base classifiers. We can also consider the individual classifier outputs at the measurement level or continuous valued outputs. The non-trainable MCS combines base classifiers using average of probability estimates. In this work we attempt some most popular schemes mentioned in12 such as simple mean (average), minimum/maximum and product probability combiner to label cases to determined class.
(b) Bagging. Bagging is a parallel algorithm in both its training and operational phases. Earlier we discussed the concept of combining classifiers through voting. Although used sparingly, this concept really took hold when Breiman introduced Boostrap AGGregatING (Bagging),10 which combined voting with a method for generating the classifiers that provide the votes. The diversity necessary to make the MCS work is created by using different LS, extracted of the original set by randomly drawing, with replacement which ensures diversity. Each individual classifier in the MCS is generated with a different random sampling of the LS. The datasets generated by resampling are different from one another but are certainly not independent because they are all based on one dataset. However, it turns out that bagging produces a combined model that often performs significantly better than the single model built from the original LS, and is never substantially worse. It uses a single classifier model and the combination of resulting classifiers is done with the majority voting. Breiman13 showed that bagging is effective on “unstable" learning algorithms where small changes in the training set result in large changes in predictions. Otherwise, the resultant ensemble will be a collection of almost identical classifiers, therefore unlikely to improve on a single classifier's performance. Breiman also13 claimed that ANNs and decision trees are examples of unstable learning algorithms.
(c) Boosting. We have explained that bagging exploits the instability inherent in learning algorithms. Intuitively, combining multiple models only helps when these models are significantly different from one another and when each one treats a reasonable percentage of the data correctly. Ideally, the models complement one another, each being a specialist in a part of the domain where the other models don’t perform very well.
The boosting method for combining multiple models exploits this insight by explicitly seeking models that complement one another. First, the similarities: like bagging, boosting uses voting to combine the output of individual models and combines models of the same type.14 Again like bagging, it uses the method of creating random training sets with replacement from the original set. However, this algorithm is carried out sequentially where the classifiers are trained one after another because they use information of previous one. Replacement is performed strategically so that misclassified cases are more probability, that the well-classified, to belong the training set of next classifier of the system. Other difference is that boosting weights a model’s contribution by its performance rather than giving equal weight to all models.14
Boosting was created in 1990 by Schapire.15 Soon after, in 1997, an extension of the same was created, known as AdaBoost, which is the most widely used nowadays.16 It is a most general version that has been divided into AdaBoost.M1 and AdaBoost.R, which are able of handling multiple classes and regression problems respectively. AdaBoost uses weighted majority vote as the method of combining.
(d) Stacking. Stacking17 is different from the previous methods because it looks for the diversity employing different classification models. Although developed some years ago, it is less widely used than bagging and boosting, partly because it is difficult to analyze theoretically and partly because there is no generally accepted best way of doing it-the basic idea can be applied in many different variations.14 To combine the outputs it uses a metalearner that learns the relationship between the outputs of base classifiers and the original class. Stacking tries to learn which classifiers are the reliable ones, using the metalearner to discover how best to combine the output of the learners. This metalearner trained on a new set of instances formed from the initial LS with the base classifiers, each instance of the LS produces a feature vector composed of the classes of output of each base classifier and as a class, the original class of the instance. 
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Here, we use measures of diversity based on classifying a set for each binary output, which represents whether the output of the classifier was correct (1) or no (0). For each classifier values in Table 2 are calculated. The measures used are: the disagreement measure and the double-fault measure, which are known as pairwise measures:18


Table 2. Relationship table between two individual classifiers (C1 and C2).
	
	C2 correct (1)
	C2 wrong(0)

	C1 correct (1)
	a
	b

	C1 wrong(0)
	c
	d



(a) The disagreement measure. This measure was used by Skalak19 to characterize the diversity between a base classifier and a complementary classifier, and then by Ho20 for measuring diversity in decision forests. It is based on the cases which are classified differently by the base classifiers, i.e. the number of observations on which one classifier is correct and the other is incorrect. The larger this measure more diverse classifiers and the smaller, less diversity will be achieved:
	

	      (7)


(b) The double-fault measure. This measure was used by Giacinto and Roli21 to form a pairwise diversity matrix for a classifier pool and subsequently to select classifiers that are least related. The double-fault measure is defined as the number of the observations that have been misclassified by both classifiers, which leads to the larger the less diverse the classifiers and vice versa:

                                                                                                                              (8) 
(c) The difference diversity measure. Since those two measures are inversely proportional, we also use a combination of them (9), whose denominator is given by Eq.(7), which leads to the larger Div1, 2 more diverse the base classifiers. 
                                                                                                      (9)

Section S4. Deep Validation of Best QSARs.
Y-scrambling. Permutation analysis is a common approach to determine whether a model’s performance estimates differ from random chance, that is, to assess chance correlation.22-24 In this study, the DILI class labels of molecules in the training set were randomly shuffled in k% (10%, 20, 30, 40 and 50%), whereas the MDs values remained unchanged. We generated 1000 permuted data sets, and for each, a new QSAR model was developed. The performance of these 1000 QSARs was compared with the original model derived from the real training set (real Y-response). The results for each % shuffled studies is given in the Supporting Information SI5.
Cross-Validation Scheme. Splitting data into training and test subsets can be done using various methods, including k-fold and holdout CV.22-24 Hare, a k%-fold cross-validation was applied to assess the model performance. The data set was randomly split into k% equal portions tailored to the ratio between the positive and negative instances. Nine of the k% (k%-1%) portions were used to develop a model, which was then applied to the remaining portions to assess prediction performance. This process was repeated sequentially so that each of the k% portions was left out once. The prediction results of the k% CV models were then averaged to measure the performance. The k%-fold CV was repeated 1000 times to achieve a statistically reliable estimation of the model’s performance. This method avoids the randomness emanating from estimates produced by splitting the data only once. Additionally, holdout CV was also applied, where the portion of data used for the training dataset is randomly selected, and the remaining part of the data, a fraction of % of the data, is assigned to the testing dataset. However, its evaluation can have a high variance, depending on which data points end up in the training set and which end up in the test set. For that reason, the k%- holdout CV was also repeated 1000 times to achieve a statistically reliable estimation of the model’s performance. The results for each k% the k-fold and holdout CV studies are given in the Supporting Information SI6_A and SI6_B, respectively.
External Validations. This is the best way of validation and the one recommended by
some authors.22-24 The predicted compounds in external datasets (1_R_TS_120, 2_B_TS_47, 3_He_ETS_205, 4_DR_ETS_417, 5_ETS_928 and 6_Ai_ETS_280, 7_ETS_554) are different from those included in the training set (mainly 7_ETS_554), but representative of the chemical domain in the toxicity under study. Following this aim, that step was also to carry out to make an examination of the predictive power of our models through an external validation process. The main results for best QSARs are given in the Supporting Information SI4_i and SI4_ii.

Section S5. Multiple Comparison of QSAR Models.
Model comparison was carried out taken into consideration various criteria: ACC, SE, SP and MCC, on the seven external validation test sets by using 1) Sum of Ranking Differences (SRD) method,25 2) Tree-type cluster analysis,26, 27 3) one-way M-ANOVA (M-ANOVA with sigma restricted parameterization), and 4) a post-hoc paired-parametric test. The Tukey’s (HSD, Honest Significant Difference) method was used here to compare all possible group pairings (equal sample sizes per group), using an alpha-value of 0.05. 
Sum of Ranking Differences (SRD). SRD is an innovative and simple general statistical method that ranks (quick and reliable comparison) competing models/methods/techniques based on a reference point. For an input matrix with n columns (in this study QSAR solutions) and m rows (in this report seven datasets, characterized by 4 statistical measures, namely ACC, SE, SP and MCC). SRD is calculated according to the following steps:25 1) add benchmark values to the input matrix, called references column, which form the basis of comparison, due to that this is a ‘golden standard’: here, maximum values for each parameters were used as a consensus of the n models as data fusion rule, 2) rank the m samples in order of magnitude according to each of the n QSARs and the reference; 3) calculate the absolute difference of ranks for each sample between each QSAR and the reference; 4) sum up the ranking differences for each model to calculate the SRD values. To enable the comparison of different SRD calculations, SRD values are normalized: SRDnor = 100SRD/SRDmax, where SRDmax is the maximum attainable SRD value. Here, SRD is validated by using comparison of ranks with random numbers (CRRN) is a randomization test that results in a distribution of SRD values when using randomized ranks for the same SRD calculation. A model is more reliable than random ranking as long as it does not overlap with this Gaussian curve (see below).
Statistical Tests. Hierarchical agglomerative clustering analysis (HCA)28, 29 was applied on the above sets in order to observe the similarity/dissimilarity of QSARs, to analyze quantitatively the relationships among the results of DILI predictions, and to compare these results with the SRD ones. Mean centering and scaled to unit standard deviation were applied as data preprocessing step before the HCA by using STATISTICA Software.30 The k-nearest neighbours CA was performed by using Ward’s Linkage and the Euclidean distance as amalgamation rule and proximity function, respectively.






Table S1. Datasets used for the prospective virtual screening.
	Datasets
	Code
	Description and References

	Natural products
	1_0_ADB
	885 compounds extracted from African drug database, containing structurally diverse molecules tested in many biological activities and evaluate their drug-likeness properties based on the Lipinski’s “rule of five”. Also the pharmacokinetic profile of these compounds have been evaluated 31.

	
	1_1_hNPs
	663 compounds extracted from the herbal ingredient’s medicine (HIM) database, which has a well-known information about their in-vivo metabolism and has been used for potential new drug discovery 32.

	Drugs & leads
	2_0_MBox
	396 drugs available in the Malaria Box, containing the biggest dataset of compound tested in Malaria parasites, considering their drug-like properties and their possible application in other parasites is suggested 33. 

	
	2_1_OTA
	14898 bioactive small molecule from OTAVAchemicals (www.otavachemicals.com) and they can be used in as hits for the development of features chemical with possible biological activities.

	Toxic compounds
	3_0_T3DB
	2646 compounds extracted from the Toxin and Toxin-Target Database (T3DB), which constitute in a big number of molecules with detailed information about the metabolism, toxin target prediction and toxicological education 34.

	
	3_1_Withdrawn
	620 molecules extracted from the WITHDRAWN database, containing withdrawn and discontinued drugs. A big percent of this compounds were withdrawal based on their adverse reactions and toxicity 35.

	FDA approved drugs
	4_FDA drugs
	2608 drugs approved for the U.S. Food and Drugs Administration agency https://www.selleckchem.com/screening/fda-approved-drug-library.html






Table S2. Similarity coefficients among QSARs on FDA Approved Drugs Dataset.
	Proximity Matrix
	 This is a similarity matrix
	 Rogers and Tanimoto Measure

	 
	Prediction E13
	Prediction PaDEL-DDPredictor
	Prediction DL-combined
	Prediction DL-Liew
	Prediction Vslead

	Prediction E13
	1.0
	.72
	.47
	.55
	.45

	Prediction PaDEL-DDPredictor
	
	1.0
	.49
	.57
	.44

	Prediction DL-combined
	
	
	1.0
	.45
	.34

	Prediction DL-Liew
	
	
	
	1.0
	.39

	Prediction Vslead
	
	
	
	
	1.0


	Proximity Matrix
	 This is a similarity matrix
	 Dice (Czekanowski or Sorenson) Measure

	 
	Prediction E13
	Prediction PaDEL-DDPredictor
	Prediction DL-combined
	Prediction DL-Liew
	Prediction Vslead

	Prediction E13
	1.000
	.88
	.69
	.77
	.74

	Prediction PaDEL-DDPredictor
	
	1.000
	.69
	.78
	.72

	Prediction DL-combined
	
	
	1.000
	.66
	.61

	Prediction DL-Liew
	
	
	
	1.000
	.69

	Prediction Vslead
	
	
	
	
	1.000


	Proximity Matrix
	 This is a similarity matrix
	 Ochiai Measure

	 
	Prediction E13
	Prediction PaDEL-DDPredictor
	Prediction DL-combined
	Prediction DL-Liew
	Prediction Vslead

	Prediction E13
	1.000
	.88
	.70
	.77
	.74

	Prediction PaDEL-DDPredictor
	
	1.000
	.70
	.78
	.73

	Prediction DL-combined
	
	
	1.000
	.66
	.63

	Prediction DL-Liew
	
	
	
	1.000
	.69

	Prediction Vslead
	
	
	
	
	1.000


	Proximity Matrix
	 This is a similarity matrix
	 Yule's Y Coefficient of Colligation

	 
	Prediction E13
	Prediction PaDEL-DDPredictor
	Prediction DL-combined
	Prediction DL-Liew
	Prediction Vslead

	Prediction E13
	1.000
	.65
	.35
	.39
	.08

	Prediction PaDEL-DDPredictor
	
	1.000
	.36
	.43
	.08

	Prediction DL-combined
	
	
	1.000
	.27
	.06

	Prediction DL-Liew
	
	
	
	1.000
	.03

	Prediction Vslead
	
	
	
	
	1.000
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Figure S1. Graphical representation of the instance distribution in the validation test set 1_R_TS_120, obtained by the application of M2, M9, E12 and E13.
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Figure S2. Graphical representation of the instance distribution in the validation test set 2_B_TS_47, obtained by the application of M2, M9, E12 and E13.
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