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Figure S1. Schematic representation of different parts of the IMS used in this work and the paths 
of carrier, drift, and dopant gases.  
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Figure S2. IMS spectra of citric acid (100 ppm) at different temperatures of the injection port with 
H3O+ as the main reactant ion RI. The drift tube temperature was 140 oC. 
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Figure S3. IMS spectra of citric acid at different temperatures of the drift tube in the absence of 
NH3 dopant, i.e. the main reactant ion is H3O+. The injection port temperature was 220 oC. 
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Figure S4. IMS spectra of citric acid (100 ppm) at different temperatures of the drift tube in the 
presence of NH3 dopant. In this condition, the reactant ion is NH4

+. The injection port 
temperature was 220 oC. 
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Figure S5. The optimized structures of the fragments of citric acid and their protonated forms. 
The relative energies and bond lengths are in kJ mol-1 and Å, respectively. 
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Figure S6. The optimized structures of NH4
+(H2O)n clusters. The bond lengths are in Å. 

 

 

 

 

Table S1. The calculated values of ∆H, ∆G and equilibrium constant (K) for formation of 
NH4

+(H2O)n clusters in gas phase and at 298 K. 

Hydration ∆H (kJ mol-1) ∆G (kJ mol-1) K (1/atm) 
NH4

+ + H2O → NH4
+(H2O) -89.5 -50.1 5.9 х 108 

NH4
+(H2O) + H2O → NH4

+(H2O)2 -66.9 -43.3 3.8 х 107 
NH4

+(H2O)2 + H2O → NH4
+(H2O)3 -57.6 -23.3 1.2 х 104 
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Figure S7. The optimized structures of mono-, di-, and tri-hydrated form of CA.H+ in gas phase. 
The relative energies and bond lengths are in kJ mol-1 and Å, respectively. 
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Table S2. The calculated values of ∆H, ∆G and equilibrium constant (K) for hydration of CA.H+ in 
gas phase and at 298 K. 

Hydration ∆H (kJ mol-1) ∆G (kJ mol-1) K (1/atm) 
CA.H+ + H2O → CA.H+(H2O) -75.9 -42.9 3.3 х 107 
CA.H+(H2O) + H2O → CA.H+(H2O)2 -64.8 -31.8 3.7 х 105 
CA.H+(H2O)2 + H2O → CA.H+(H2O)3 -61.3 -27.4 6.3 х 104 

 

 

S-1 hydration model 

Relative abundances, Yi, of MH+(H2O)i can be calculated from equilibrium constants for 

following consecutive reactions 

1: MH+  + H2O ⇌ MH+(H2O)1
                  

2: MH+(H2O)1 + H2O ⇌ MH+(H2O)2
                   

.................... 
n: MH+ (H2O)n-1 + H2O ⇌ MH+(H2O)n   

The eqilibrium constant of  each hydration reaction can be written as following 

  
  
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i
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Where w is water concentration. The eqilibrium constant, Ki, can be computed from ∆Go of each 

hydration reaction 

Ki=exp(-∆Gi
o/RT)                                                              (2) 

where R is the gas constant and T is the absolute temperature. 

Concentration of each ion can be obtained using equation (1) 

MH+(H2O)1 = [MH+].w.K1 

MH+(H2O)2 = [MH+].w2.K1K2 




 
j

i
i

j
j KwMHOHMH

1
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The relative abundance for MH+(H2O)j is 
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Where nmax is the maximum number of water molecules in a MH+(H2O)n. nmax was taken equal to 

3 or 4. 

Combination of equations (3) and (4) results in 
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where Ko=1. 

The van’t Hoff equation was used to obtain the equilibrium constant, Ki, at the temperatures other 

than 25 oC (298 K):  

  R
H

Td
Kd ii 


/1

ln
         (6) 

 

   

Figure S8. The calculated relative abundances for (a) NH4
+(H2O)n, (b) CA.H+(H2O)n, and (c) (CA-H)-

(H2O)n in gas phase in the presence of 40 ppm water vapor. 
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Figure S9. The optimized structures for different isomers of deprotonated form (conjugated 
bases) of aconitic acid in gas phase. The relative energies and bond lengths are in kJ mol-1 and Å, 
respectively. 

 

 

 

Table S3. The calculated ∆H and ∆G values for protonation of the negative reactant ions (O2
-, Cl-, 

Br-, I-) and deprotonation of CA and its fragments in gas phase and at 298 K. The fragments with 
smaller deprotonation enthalpies are more acidic and deprotonated easier. 

Protonation/deprotonation ∆H (kJ mol-1) ∆G (kJ mol-1) 
O2

- + + H+ → HO2 -1461.9 -1437.0 
Cl- + H+ → HCl -1378.4 -1356.0 
Br- + H+ → HBr -1341.2 -1319.2 
I- + H+ → HI -1315.2 -1294.0 
CA → (CA-H)- + H+ 1278.8 1256.4 
AcAn → (AcAn-H)- + H+ 1355.3 1320.1 
AcAc → (AcAc-H)- + H+ 1303.8 1275.2 
CH3COOH →  CH3COO- + H+ 1446.1 1413.1 
HCOOH →  HCOO- + H+ 1426.4 1395.2 

CA: Citric acid; AcAn: Aconitic anhydride; AcAc: Aconitic acid 
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Figure S10. The optimized structures of mono-, di-, and tri-hydrated forms of (CA-H)- in gas phase. 
The relative energies and bond lengths are in kJ mol-1 and Å, respectively. 
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Table S4. The calculated values of ∆H, ∆G and equilibrium constant (K) for hydration of (CA-H)- in 
gas phase and at 298 K. 

Hydration ∆H (kJ mol-1) ∆G (kJ mol-1) K (1/atm) 
(CA-H)- + H2O → (CA-H)-(H2O) -40.4 -6.6 1.4 х 101 
(CA-H)-H2O) + H2O → (CA-H)-(H2O)2 -36.7 1.2 6.1 х 10-1 
(CA-H)-(H2O)2 + H2O → (CA-H)-(H2O)3 -32.3 -0.4 1.2 х 100 
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Figure S11. The optimized structures of hydrated forms of Cl-, Br-, and I- with up to 4 water 
molecules in gas phase. The relative energies and hydrogen bond lengths are in kJ mol-1 and Å, 
respectively.   
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Table S5. The calculated values of ∆H, ∆G and equilibrium constant (K) for hydration of Cl-, Br-, 
and I- in gas phase and at 298 K. 

Hydration ∆H (kJ mol-1) ∆G (kJ mol-1) K (1/atm) 
Cl- + H2O → (H2O)Cl- -60.6 (61.5)a -36.7 (-36.9)a 2.7 х 106 
(H2O)Cl- + H2O → (H2O)2Cl- -53.1 -17.4 1.1 х 103 
(H2O)2Cl- + H2O → (H2O)3Cl- -52.4 -9.6 4.8 х 101 
(H2O)3Cl- + H2O → (H2O)4Cl- -49.2 -9.2 4.1 х 101 
Br- + H2O → (H2O)Br- -51.8 (49.0)a -28.7 (-30.6) 1.1 х 105 
(H2O)Br- + H2O → (H2O)2Br- -48.1 -12.5 1.6 х 102 
(H2O)2Br- + H2O → (H2O)3Br- -50.1 -7.2 1.8 х 101 
(H2O)3Br- + H2O → (H2O)4Br- -47.2 -4.5 6.2 х 100 
I- + H2O → (H2O)I- -43.1a -23.8a 1.5 х 104  
(H2O)I- + H2O → (H2O)2I- -39.7a -17.8a 1.3 х 103 
(H2O)2I- + H2O → (H2O)3I- -38.5a -3.1a 3.5 х 100  
(H2O)3I- + H2O → (H2O)4I- -38.5a -2.2a 2.4 х 100  

a From: Hiraoka, K.; Mizuse, S.; Yamabe, S., Solvation of Halide Ions with H2O and CH3CN in the Gas Phase, J. Phys. 
Chem., 1988, 92, 13, 3943.  

 

 

 

   

Figure S12. The calculated relative abundances for (a) (H2O)nCl-, (b) (H2O)nBr-, and (c) (H2O)nI- in 
gas phase in the presence of 40 ppm water vapor. 

 

 

 

 

 

 



S15 
 

 
CA.Cl--a 

0.0 

 
CA.Cl--b 

22.4 

 
CA.Cl--c 

45.6 

 
CA.Cl--d 

35.0 

 
CA.Br--a 

0.0 

 
CA.Br--b 

22.1 

 
CA.Br--c 

50.4 

 
CA.Br--d 

34.1 

 
CA.I--a 

0.0 

 
CA.I--b 
21.8 

 
CA.I--c 
53.1 

 
CA.I--d 
35.3 

Figure S13. The optimized structures for different isomers of CA.Cl-, CA.Br-, and CA.I- in gas phase. 
The relative energies and bond lengths are in kJ mol-1 and Å, respectively. 

 

Table S6. The calculated values of ∆H and ∆G for formation of the most stable isomers of CA.Cl-, 
CA.Br-, and CA.I- in gas phase at 298 K. 

Halide attachment ∆H (kJ mol-1) ∆G (kJ mol-1) 
CA + Cl- → CA.Cl- -150.4 -110.7 
CA + Br- → CA.Br- -143.6 -104.0 
CA + I- → CA.I- -148.6 -111.4 
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Figure S14. Comparison of IMS spectra of citric acid in negative mode with and without 
halomethane dopants (CHCl3, CHBr3, CHI3) at drift tube temperature of 200 oC. 
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Figure S15. Calibration curves for citric acid obtained (a) in positive mode of IMS with NH3 dopant 
and (b) in negative mode of IMS with CHCl3 dopant. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



S18 
 

 

Figure S16. Manual preparation of fresh lemon juice for direct injection into IMS. 


