Supporting Information for "Decelerated Liquid Dynamics Induced by Component-Dependent Supercooling in Hydrogen and Deuterium Quantum Mixtures"

Shutaro Yamaoka and Kim Hyeon-Deuk*

Department of Chemistry, Kyoto University, Kyoto, 606-8502, Japan

E-mail: kim@kuchem.kyoto-u.ac.jp,Phone:+81-75-753-4021

^{*}To whom correspondence should be addressed

Mixing Ratio		Average Temperature	
$0\% D_2$	30.0	25.1	18.1
$25\% D_2$	30.0	25.0	17.9
$50\% D_2$	30.1	25.0	17.9
$75\% D_2$	30.1	24.9	18.0
$100\% D_2$	30.0	24.9	18.1

Table S1: Average temperatures obtained by the the NVE (microcanonical) simulations.

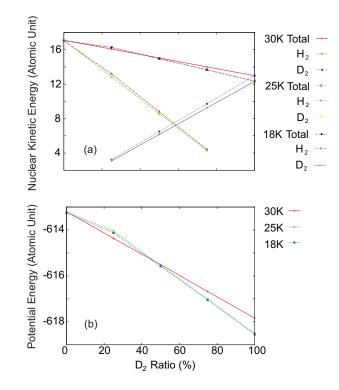


Figure S1: (a) Nuclear kinetic energies and (b) remaining potential energies. The nuclear kinetic energies, which originate from the kinetic energy operator, can be decomposed into the H_2 and D_2 contributions. The total nuclear kinetic energies almost monotonically decrease with increasing the D_2 mixing ratio because of the larger mass of D_2 molecules compared to H_2 molecules. The nuclear kinetic energies decomposed into each isotope essentially reflect the component ratio $H_2:D_2$; the nuclear kinetic energies of H_2 decreases while the nuclear kinetic energies of D_2 increases with increasing the D_2 mixing ratio. The potential energies including the internuclear interaction between H and D exhibit the similar dependence on the D_2 mixing ratio and temperature to the total nuclear kinetic energies. The lower potential energies with the higher D_2 mixing ratio imply that the current liquid states whose molar volume is close to the vapor-pressure molar volume of D_2 are more stable when more D_2 molecules are included especially at the lower temperatures.

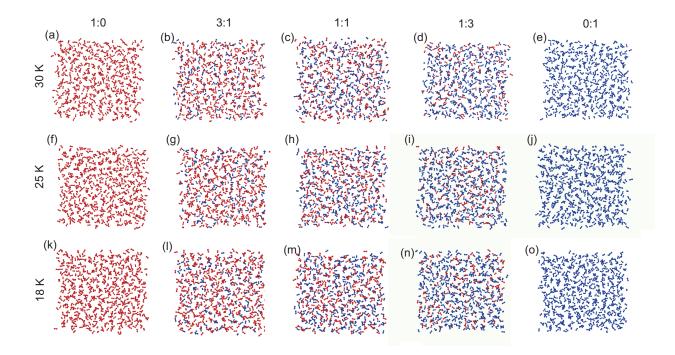


Figure S2: Snapshot views of 640 molecules contained in the three-dimensional cubic simulation cells at (a)-(e) 30 K, (f)-(j) 25 K and (k)-(o) 18 K. H₂ is red-colored while D_2 is blue-colored. The numbers on the top mean a mixing ratio, $H_2:D_2$, in the cells.

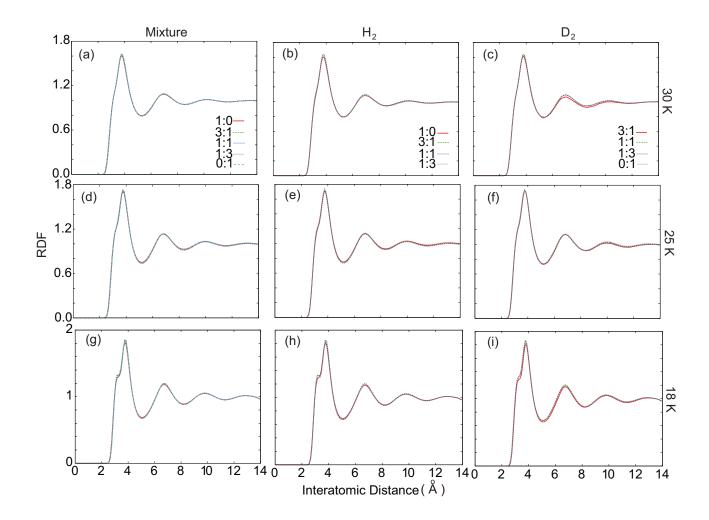


Figure S3: Radial distribution functions(RDFs) at (a)-(c) 30 K, (d)-(f) 25 K and (g)-(i) 18 K. The left panels show the whole shapes of the RDFs for the mixture including both of H_2 and D_2 while the center and right panels display the RDFs of only one component, H_2 and D_2 , respectively. The shoulders in the left part of the first RDF peaks, which become apparent at the low temperature regardless of the D_2 ratio, reflect a diatomic structure of H_2 and D_2 in a first solvation shell. The most stable solvation structure of a pair of H_2 and D_2 is a T-shape configuration, and its nearest atoms appear as the shoulder especially at the low temperature due to smaller thermal modulations of molecules in a first solvation cage.^{1,2}

Figure S4: Average H-H and D-D bond length in the mixtures at 18 K. The H-H bond length becomes larger when D_2 molecules are mixed by 25 % because it is hard for light H_2 molecules to escape from the first solvation shell including heavy D_2 molecules; especially the present H_2 molecules are supercooled at 18 K and their mobility for escaping is suppressed. Further, mixing of D_2 molecules which have the shorter bond length and the smaller nuclear wave packet than H₂ molecules provides freer space for the H-H bond to stretch more compared to the pure H₂ liquid case. The D-D bond length slightly becomes longer with decreasing the D_2 ratio, *i.e.*, with increasing the H_2 ratio. As more light H_2 molecules surround a D_2 molecule in a solvation cage, it becomes easier for a D_2 molecule to push surrounding light H_2 molecules and stretch. The average bond length of isolated H_2 and D_2 molecules, which is purely determined by the intramolecular interaction including the isotope-dependent nuclear quantum effects, was calculated by the nuclear and electron wave packet molecular dynamics (NEWPMD) method as 0.76429 Å and 0.75163 Å, respectively.^{1,2} Since the experimental bond length in a gas phase was measured as 0.7510 Å for H_2 and 0.7482 Å for D_2 , the difference between the computed and experimentally observed bond length is only 1.8% for H₂ and 0.5% for D₂, which is surprising taking into account that the NEWPMD method does not include any empirical parameter or model potential.

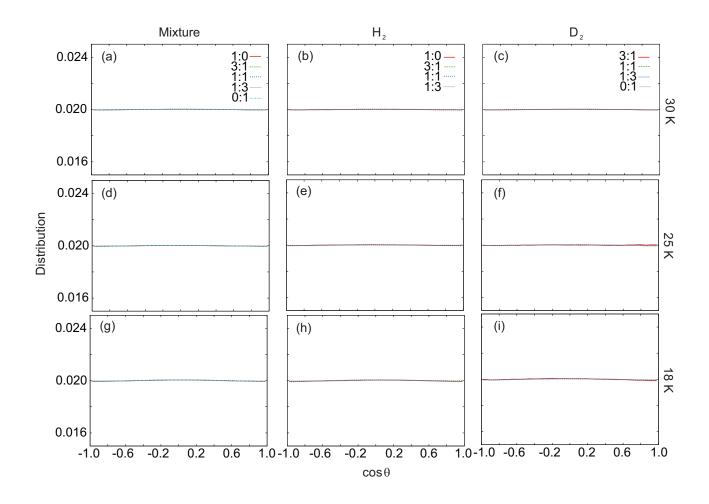


Figure S5: Distributions of the intermolecular angle θ , defined by a relative angle formed by a pair of molar vectors of two molecules, at (a)-(c) 30 K, (d)-(f) 25 K and (g)-(i) 18 K. The left panels show θ of the mixture including both of H₂ and D₂, while the center and right panels correspond to θ -distributions of only one component, H₂ and D₂, respectively.

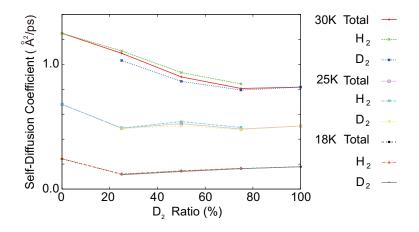


Figure S6: Self-diffusion coefficients of each isotope at the different temperatures as a function of the D_2 ratio.

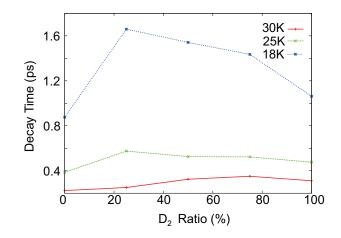


Figure S7: Decay timescales estimated by fitting the long-time time correlation functions(TCFs) of $\theta(t)$ shown in Fig.3(a)-3(c) with an exponential function.

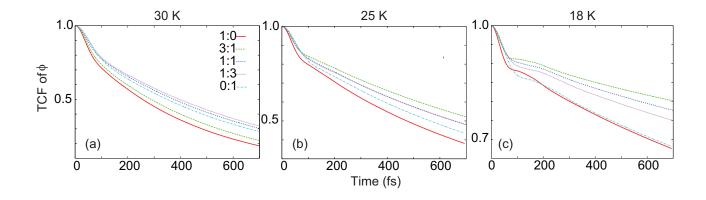


Figure S8: TCFs of the self-orientation of a molecule $\phi(t)$, which is defined as a molecular angle projected on the *xy*-plane, at (a) 30 K, (b) 25 K and (c) 18 K.

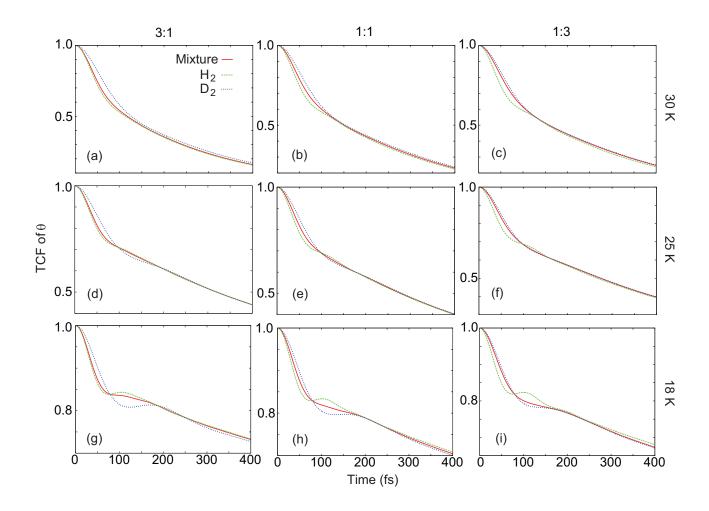


Figure S9: θ -TCFs for the 3:1, 1:1 and 1:3 mixtures at (a)-(c) 30 K, (d)-(f) 25 K and (g)-(i) 18 K. Contributions from the total mixture, H₂ and D₂ are plotted by the red, green and blue lines, respectively.

References

- Hyeon-Deuk, K.; Ando, K. Correlations of Intra- and Intermolecular Dynamics and Structure in Liquid Para-Hydrogen. *Phys. Rev. B* 2014, *90*, 165132.
- (2) Abe, K.; Yamaoka, S.; Hyeon-Deuk, K. Isotopic Effects on Intermolecular and Intramolecular Structure and Dynamics in Hydrogen, Deuterium and Tritium Liquids: Normal Liquid and Weakly and Strongly Cooled Liquids. J. Phys. Chem. B 2018, 122, 8233–8242.