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Supplementary Materials and Methods 

BayesENproteomics:  

This method utilises a novel Bayesian linear regression algorithm with elastic net regularisation based on 

the hierarchical model detailed previously1 to fit the model detailed in (2). Bayesian methods employ 

regularisation based on the prior distribution parameters were estimated from, with elastic net regularisation 

being equivalent to sampling from an intermediate Gaussian/Laplacian prior. The full hierarchical model for 

a single protein is detailed in equations (1)-(5). 

 

𝛽|𝜎+, 𝜏+, 𝜆+, 𝑿0, 𝒚2	~	𝑀𝑉𝑁8
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Let 𝑿0	and 𝒚2 represent the weighted design matrix and response variable (detailed further in a later section). 

Let 𝜏>+ represent a vector of latent variables (𝜏@>+ …𝜏=>+) – sampled from the inverse Gaussian (IGauss) 

distribution in (1) – for each 𝛽V such that larger values of 𝜏V>+ (j = 1…, p) result in 𝛽V being shrunk towards 

zero. 𝐷^O
>@		denotes a diagonal matrix with elements 𝜏V>+, j = 1..., p. Residual variance (𝜎+) is sampled from 

an inverse gamma (IG) distribution in (2). To enforce sparsity, we employ two Regularisation 

hyperparameters, 𝜆@ and 𝜆+, with different conditional distributions, specifying LASSO (4) and ridge 

hyperparameters (5), respectively. Notably, while overall covariance is controlled by 𝜆@ through its effect on 

𝜏V>+, each 𝛽V is given its own L2 Regularisation hyperparameter, 𝜆+V , similar to the LASSO-like "horseshoe" 

estimator2. This leads to smaller coefficients (i.e. "noise") being more aggressively shrunk towards zero 

compared to larger coefficients (i.e. "signal"), compared to regression using scalar regularisation 
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hyperparameters that lead to constant shrinkage across all 𝛽s.	𝜆@+ and 𝜆+ are sampled from gamma 

distributions of the form 𝐺𝑎𝑚𝑚𝑎(𝑎, 𝑏), with a posterior mean of `
a
. All 𝛽V are subject to regularisation. 

 

𝜆@+|	𝜏+~	𝐺𝑎𝑚𝑚𝑎9𝑝 + 𝑎@, 𝑏@ +
@
+
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=
Vd@ ? , 𝑏@ = 1;      (4) 

𝜆+V|𝛽V, 𝜎
+	~	𝐺𝑎𝑚𝑚𝑎 D1 + 𝑎+, 𝑏+ +	

L[
O

+ZO
Q , 𝑏+ = 3.          (5) 

 

Estimates of parameters were taken as means of Gibbs-sampled posterior distributions made from post-

burn-in iterations. Constant values, 𝑡 and 𝑏@,+ in (2), (4) and (5) denote priors necessary to prevent variance 

estimates from approaching zero or infinity. 𝑡 was set to 0.01 denoting an uninformative prior so as to allow 

the data to mostly determine variance estimates, whereas 𝑏@,+ were set to 3 and 𝑎@,+ were set to equal the 

number of different types of interactions minus 1 (e.g. specifying a model with both peptide:treatment and 

peptide:donor interactions will mean 𝑎@,+ 	= 	2 − 1	 = 	1), increasing the strength of regularisation for 

particularly complex models and ensuring that even simpler models are still subject to regularisation. These 

values do not need to be set by the user and have been shown to work for a variety of datasets used here 

and elsewhere3,4. The Python3 version of BayesENproteomics allows the user to specify additional main 

and interaction 𝛽 effects as desired. Unless otherwise stated, results are shown using DGD imputation of 

missing values. 
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Linear regression comparison implementation. Peptide-based linear regression modelling has 

previously been shown to possess greater statistical power and accuracy than summarization models when 

detecting differentially abundant proteins5. We compare BayesENproteomics to other peptide-level 

regression models (detailed below) for calculating differentially abundant proteins and PTMs. Furthermore, 

while our main aim was to compare different regression implementations, to provide some external 

reference we also include current “gold-standard” quantification methods, namely protein-level 

summarization using Tukey’s Median Polish as implemented in MSStats6 (version 3.16.0), and peptide-

level quantification using MsqRob7. However, specific implementation details may mean that these methods 

are not completely comparable. For instance, MsqRob does not implement any form of imputation whereas 

MSStats uses its own “MBimpute” option which uses an Accelerated Failure Time. We show results for 

MSStats and MsqRob with these default options and with DGD imputation. 

Ordinary least squares (OLS):  

Differential protein abundance was calculated using the simple linear model shown in (1), using the fitlm 

Matlab function. For calculating differential PTM abundance, the log2 fold change for each PTM’d peptide 

was normalised to the log2 fold change calculated for parent protein abundance. In cases where a single 

PTM site was shared by 2 or more peptides (i.e. missed cleavages), the most abundant one was used. 

Results are shown following DGD imputation of missing values. 

Linear mixed-effects models with Huber residual weights (MsqRob and LME-H):  

Firstly, we tested the original MsqRob algorithm (on dataframes created by MSStats) as implemented in 

MsqRobSum8 (https://github.com/statOmics/MSqRobSum). This ridge regression/mixed-effects algorithm9, 

modelled peptides as random effects (i.e. they were assumed to be randomly sampled from a larger 

population and that they accurately modelled the variance of that population) using the default model in (1) 

with the addition of sample/run-level 𝛽s. MsqRob7 exploits the link between ridge regression and mixed 

effects models to assign each 𝛽V a specific penalty, 𝜆V (where	𝜆V = 	𝜎h+/𝜎hV+ , 𝜎h+ = residual variance of protein 

i, 𝜎hV+  = variance of coefficient 𝛽V for protein 𝑖, 𝑗	 = 	1, 2… 	𝑝). Secondly, we recapitulated this algorithm using 

the fitglme Matlab function, including Huber weighting of residuals to fit the more complex model shown in 
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equation (2), referred to as LME-H from here on. To calculate changes in PTM abundances, peptide:group 

and peptide:donor interaction effects (𝛽l:n, and 𝛽l:o in (2), respectively) were included as random effects 

with the size of the resulting interaction 𝛽s denoting changes in the abundance of that peptide in response 

to treatment or donor effects, respectively. Results are shown following DGD imputation of missing values. 

 

Weighting of residuals based on confidence of peptide identification 

Identification of PTM'd peptides was performed by the inclusion of variable modifications during peptide 

database searching. Inclusion of multiple variable modifications was found to increase the number of false 

positive peptide identifications. The number of false-positive identifications was reduced by discarding 

peptides with low Mascot scores using a standard FDR cut-off based on identification p-values. We employ 

a Benjamini-Hochberg FDR10 cut-off of < 0.2. 

 

BayesENproteomics also employed a novel heuristic outlier weighting scheme that incorporates peptide 

identification confidence and residual size to identify potentially biologically relevant outliers compared to 

miss-identified peptides. This effectively weighted against outlier peptides (which may possess biologically 

relevant PTMs), particularly if confidence in their identification was low. In this case we used Mascot scores 

as our indicator for peptide identification confidence, similar to the weighting using the Posterior Error 

Probability implemented in Triqler11 or the random digest effect in BayesProt12. Other Bayesian algorithms 

previously developed for labelled experiments13,14 utilise different properties to weight peptides, such as 

isolation specificity and/or summed MS signal/noise ratios. Unfortunately, these methods are difficult to 

generalise to label-free experiments using different pre-processing pipelines that may not output the same 

variables. To increase the generalisability of BayesENproteomics, we constrained our analysis to variables 

output by most common pre-processing pipelines, namely peptide identification confidence (in this case 

Mascot scores). Firstly, Mascot scores, 𝑆@..., 𝑆E were scaled by dividing them by a modified Bonferroni-like 

cut-off (similar to that described on the Mascot website,  
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http://www.matrixscience.com/help/interpretation_help.html, accessed 23/10/17) and adjusted so that all 

the highest scoring peptides were weighted equally, as in (6) with values between 0 and 1. 

 

𝑆q = 𝑚𝑖𝑛 s1, t
u>@vuwxyKzu@/(+v{)|	|>@}|

~, N = total peptides in dataset.       (6) 

 

During each iteration of the Gibbs sampler, an n-dimensional vector of weights, 𝑤 with elements 𝑤@..., 𝑤E, 

was calculated using a variation of the automatic outlier detection and weighting method by Ting et al.15. 

Initially, there was no a priori reason to exclude - or diminish the influence of - peptides that have passed 

the initial FDR screen. Instead, we opted to weight in favour of those peptides that either have high Mascot 

scores or low residuals (7). Transformed Mascot scores in 𝑆q were used to parameterize a binomial 

distribution giving 𝑆� that would determine if observations from that were favourably weighted each Gibbs 

sampler iteration (8). 

 

𝑤h − 1 − 𝑆��|𝜎+, 𝑆��~	𝐺𝑎𝑚𝑚𝑎 9𝑆�� +
@
+
, @
+
+ @

+ZO
𝑅h+? , 𝑖 = 1…𝑛;      (7) 

𝑆��|𝑆q~𝐵𝑖𝑛𝑜𝑚u1, 𝑆q|.           (8) 

 

Where	𝑹 is a vector of residuals with elements	𝑅@ …𝑅E, 𝑅	 = 	𝒚 − 𝑿𝛽. Observations were then weighted by 

multiplying each row of 𝑿 and each value of 𝒚 by their respective weight calculated in (7), (9) and (10). 

 

𝑿0hV = 𝑿hV𝑤h, 𝑖 = 1…𝑛, 𝑗 = 1…𝑝;        (9) 

𝒚2h = 𝒚h𝑤h, 𝑖 = 1…𝑛.          (10) 

 

Where 𝑿0 and 𝒚2 are the weighted design matrix and response vector, respectively. 
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Adaptive Multiple Imputation (AMI) 

The proportion of MNR to MAR values is strongly dataset- and even protein-dependent16, meaning that the 

optimal choice of distribution to impute from likely differs between datasets and proteins. Many state-of-the-

art imputation methods rely on the user deciding whether they think that all missing values in a dataset are 

MAR or MNR and selecting an imputation method that performs well under these conditions16,17. The nature 

of peptide missingness may vary between proteins, so it is unlikely that one method is suitable for all 

datasets and all proteins within them. To address this, we employed an adaptive multiple imputation (AMI) 

strategy, within the Gibbs sampler described in Figure 2, where a logistic regression determines if specific 

peptides or treatments positively correlate with missingness. Those missing values associated with 

parameters that showed higher than average, positive correlation with missingness were deemed to be 

MNR and imputed from a truncated Gaussian distribution, or MAR and imputed from a Gaussian distribution 

otherwise within the main Gibbs sampler (similar to the model-based imputation previously described18,19). 

AMI uses a logistic regression to determine whether missing values are MAR or MNR and imputes from 

appropriate conditional distributions. Logistic regression, similar to that employed previously19, was used to 

discern whether a given missing value was MAR or MNR as in (11). 

 

Z�h = log D
H��
@>H��

Q = 	𝜃v + 𝑋l𝜃l +	𝑋n𝜃n +	𝜀�ln .      (11)  

 

Where 𝑅� represents a binary vector for protein q with elements 𝑟@, …	𝑟E denoting whether an observation 

was missing (𝑟h 	= 	1) or not (𝑟h 	= 	0) and Z� represents the logit transform of R� to enable estimation of 

regressor coefficients 𝜃 using linear regression. As Z�h ∈ {−∞,+∞}, we set minimum and maximum values 

for Z� to -10 (corresponding to a probability for observation 𝑖 being missing, 𝑟h 	< 	0.00005) and 10 (𝑟h 	>

	0.99995). 𝑋l and 𝑋n represent binary design matrices denoting the peptide (f) and treatment group (g) from 

which a given observation is derived.	𝜃V (𝑗 = 1. . . , (𝑝l + 𝑝n + 1)) represents a 1	 × 	(𝑝l + 𝑝n + 1) vector of 

regressor coefficients; 𝑝l  and 𝑝n represent the number of elements in 𝜃l and 𝜃n, respectively. 𝜃l and 𝜃n 

denote whether observations from a given peptide or treatment correlate with values in 𝑅� (i.e. whether 
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probability of “missingness” increases when looking at intensities from particular peptides or from particular 

experimental treatment groups). The intercept term, 𝜃v denotes the intrinsic probability of missingness for 

that protein. If 𝜃V > 0 we inferred that missing observations associated with 𝜃V were MNR, and MAR 

otherwise. MAR and MNR missing values were imputed as part of each Gibbs sampler iteration as in (12) 

and (13). 

 

𝒚2(���)��
�(���)�PK

	~	𝑀𝑉𝑁9𝑿(� H)𝛽h>@: 	, 𝜎h>@+ u𝑿(� H)𝑿(� H): |>@?;     (12) 

𝒚2(�¡�)��
�(�¡�)�PK

	~	𝑇𝐺𝑎𝑢𝑠𝑠 £
𝑿(�¤H)𝛽h>@: 	, 𝜎h>@+ u𝑿(�¤H)𝑿(�¤H):|

>@
,

	𝑎 = 𝑚𝑖𝑛{𝒚¥a¦§¨©§o} − 2, 𝑏 = 	𝒚ª�¡�« ¬
.    (13) 

 

Where 𝒚2(� H)h� represents a vector of score-weighted (see below) MAR log2(intensity) values for protein q 

at the ith iteration of the Gibbs sampler. 𝛽h>@:  is the vector of parameter estimates and 𝜎h>@+  is the residual 

variance from the i-1th iteration of the Gibbs sampler, respectively. Missing values in 𝒚2h� are sampled 

according to the multivariate normal distribution (MVN) described in (12)17. MNR missing values were 

imputed from a truncated Gaussian (TGauss) with an upper limit determined by the percentile of observed 

log2 intensity values corresponding to the fraction of values that are deemed MNR (𝒚ª�¡�« ¬) from the 

missingness regression model in (13). In (13), 𝑎 and 𝑏 represent the lower and upper limits of the TGauss 

distribution. Thus, if 5% of observations for a given protein are determined to be MNR according to (11), 

then the cut-off for the truncated Gaussian is equal to the 5th percentile of observed log2 intensity values. 

New missing values were imputed for each iteration of the Gibbs sampler. The multiple imputation strategy 

implemented in BayesENproteomics thus accounted for the inherent uncertainty in imputation by basing 

the resulting β estimates (and subsequent hypothesis testing) on distributional estimates of missing 

values20 rather than fixed point estimates as in OLS and LME-H, where single random samples could 

strongly influence individual protein fold change estimates. 
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Supplementary Figure 1 

 

 

Figure S1: Histogram of 𝒎𝒂𝒙(𝑹�) values for all models created with BayesENproteomics 

with AMI. Majority of values were ~1. Maximum value observed among all datasets tested in this 

manuscript was 10.6.   
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Supplementary Figure 2 

 

Figure S2: ROC curves for 10x and 1/10x prior values in BayesENproteomics analysis of 

E. coli:Human benchmark dataset. (A) TPR-FDP curves for the indicated comparison created 

using BayesENproteomics with either 𝑡 = 0.001, 𝑏@,+ = 0.3 and 𝑎@,+ = 0.1 (1/10 x priors) or 𝑡 =

0.1, 𝑏@,+ = 30 and 𝑎@,+ = 10 (10 x priors) with BHFDR-adjusted p-values. Vertical lines indicate 

FDP = 0.01 (dashed) or 0.05 (dotted). Circles and triangles denote empirical false discovery rate 

(FDR) when significance threshold (α) is set to 0.01 or 0.05, respectively. FDR can be said to be 

properly controlled if empirical FDRs are behind the 0.01 or 0.05 FDP verticlal lines. Absent 

symbols indicate an empirical FDR > 0.2 for that method in that comparison. BayesENproteomics 

correctly controlled FDR in all but the E/A comparision but still outperformed other methods. 

However, performance decreased when observation weights were removed. (B) Absolute 

numbers of true and false positives for the indicated comparisons for adjusted p-values < 0.05.  
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Supplementary Figure 3 
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Figure S3: Current “gold-standard” methods performance on mouse:human mixed 

species dataset and analysis of single technical replicate negative control dataset. (A, B) 

Volcano plots differentially abundant proteins identified by MSStats (TMP) and MsqRob, 

respectively, using the indicated imputation method. (C) Volcano plots showing differentially 

abundant proteins identified in mouse skin technical replicate negative control dataset. All results 

use DGD imputation unless otherwise stated.  
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Supplementary Figure 4 

 

 

Figure S4: Heatmaps for proteins with incorrect fold change estimates in mixed 

mouse:human dataset. Heatmaps show z-scored squared deviation from ground truth fold 

changes for all proteins that gave fold changes with incorrect direction in the indicated comparison 

when using any of the indicated quantification methods. Columns on the right of each heatmap 

show 𝑚𝑎𝑥u𝑅&| values for each protein. 
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Supplementary Figure 5 

 

 

 

Figure S5: PNGase-F-treated dataset analysed using BayesENproteomics with either DGD 

imputation or without observation weights. (A) Volcano plots showing N-linked (grey) and Q-

linked (green) proteins identified as differentially abundant following PNGase-F treatment with 

BayesENproteomics with DGD imputation (top) or with observation weights removed (bottom). 

(B) Histograms showing (lack of) skewing of N-linked PTMs compared to Q-linked. (C) 

Comparison of N-linked and Q-linked protein versus PTM log2(fold changes). (D) Volcano plots 

N-linked (grey) and Q-linked (green) PTMs identified as differentially abundant. 
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Supplementary Figure 6 

 

  

0 2 4 6 8 10 12
Fold over/under-represented

Post-translational modification: synthesis of GPI-anchored proteins

Interferon Signaling

Antiviral mechanism by IFN-stimulated genes

ISG15 antiviral mechanism

Interleukin-4 and Interleukin-13 signaling

Vesicle-mediated transport

Assembly of collagen fibrils and other multimeric structures

Caspase-mediated cleavage of cytoskeletal proteins

Membrane Trafficking

DNA Damage Bypass

Overrepresentation (Fisher's Exact)

0 2 4 6 8 10 12
Fold over/under-represented

Post-translational modification: synthesis of GPI-anchored proteins

Interferon Signaling

Antiviral mechanism by IFN-stimulated genes

ISG15 antiviral mechanism

Vesicle-mediated transport

Interleukin-4 and Interleukin-13 signaling

Membrane Trafficking

Assembly of collagen fibrils and other multimeric structures

Caspase-mediated cleavage of cytoskeletal proteins

Innate Immune System

Overrepresentation (Binomial)

+ -
Increase or Decrease

Respiratory electron transport, ATP synthesis by chemiosmotic coupling, and heat production by uncoupling proteins

Ion homeostasis

Oxidative Stress Induced Senescence

Formation of a pool of free 40S subunits

Mitochondrial protein import

L13a-mediated translational silencing of Ceruloplasmin expression

Cristae formation

Degradation of beta-catenin by the destruction complex

Major pathway of rRNA processing in the nucleolus and cytosol

Asymmetric localization of PCP proteins

Enrichment

0

0.2

0.4

0.6

0.8

1
BHFDRNumber of proteins

50

15

5

A

B

C



S-20 
 

Figure S6: Conventional pathway analysis of protein fold changes from a comparison of 

MSCs isolated from young vs old donors. Dotplots show top 10 Reactome pathway terms. 

Size of dots denotes number of proteins assigned to a given pathway. Colour intensity denotes 

significance. All analyses performed using PantherDB (www.pantherdb.org) (A) 

Overrepresentation analysis using Fisher’s Exact tests showed no significant terms. Terms sorted 

by unadjusted p-values (as BHFDR values all equal 1). (B) Overrepresentation analysis using 

Binomial tests showed no significant terms. Terms sorted by unadjusted p-values (as BHFDR 

values all equal 1). (C) Enrichment analysis. Terms sorted by BHFDR. 


