Supporting Information

A Chemical Equivalent of Arene Monooxygenases: Dearomative Synthesis of Arene Oxides and Oxepines

Zohaib Siddiqi, William C. Wertjes, and David Sarlah*
Roger Adams Laboratory, Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
*e-mail: sarlah@illinois.edu

TABLE OF CONTENTS

1. General Experimental S2
2. Experimental Set-up S3
2-1. LED light source S3
2-2. Set-up for small scale reactions (up to 2.0 mmol scale) S4
2-3. Set-up for large scale reactions (up to 10 mmol scale) S4
3. Experimental Procedures S5
3-1. Table S1: Optimization of arenophile-mediated epoxidation of benzene S5
3-2. Table S2: Optimization of arenophile-mediated epoxidation of naphthalene S6
3-3. Table S3: Optimization of cycloreversion to arene-oxides S7
3-4. Table S4: Optimization of cycloreversion to benzoxepine S7
3-5. Dearomative epoxidation of monocyclic arenes S8
3-5.1 General procedure for dearomative epoxidation with arenes S8
3-5.2 General procedure for the synthesis of arene-oxides/oxepines S11
3-6. Dearomative epoxidation of polycyclic arenes S14
3-6.1 General procedure for dearomative epoxidation with polycyclic arenes at $-20^{\circ} \mathrm{C}$ S14
3-6.2 General procedure for dearomative epoxidation with polycyclic arenes at $-78^{\circ} \mathrm{C}$ S14
3-6.3 General procedure for the cycloreversion to benzoxepines S25
3-7. Derivatization S34
3-8. Large-scale procedures S40
4. Crystallographic Data S41
5. References S46
6. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$, and ${ }^{19} \mathrm{~F}$ NMR Spectra S47

1. General Experimental

Unless otherwise noted, all reactions were carried out under inert atmosphere. N-Methyl-1,2,4-triazoline-3,5-dione (MTAD) was prepared according to the literature procedure, sublimed, and stored in a $-40^{\circ} \mathrm{C}$ freezer. ${ }^{1} \mathrm{Mn}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ and picolinic acid were purchased from Acros Organics. Peracetic Acid ($32 \mathrm{wt} \%$ in dilute acetic acid) was purchased from Sigma Aldrich. Acetonitrile and propionitrile were stored over 4 Å molecular sieves. Nickel oxide, ${ }^{2}$ peracetic acid ($8-10 \%$ in acetic acid), ${ }^{3}$ hydroxycarbonimidic dibromide, ${ }^{4}$ and 2-methylquinolin-4-yl pivalate, ${ }^{5}$ were synthesized according to literature procedures. All other chemicals were purchased from commercial vendors and used without further purification.

Analytical thin-layer chromatography was performed on Merck silica gel $60 \mathrm{~F}_{254}$ glass plates. Visualization was accomplished with UV light and/or potassium permanganate $\left(\mathrm{KMnO}_{4}\right)$. Retention factor (R_{f}) values reported were measured using a $5 \times 2 \mathrm{~cm}$ TLC plate in a developing chamber containing the solvent system described. Flash column chromatography was performed using Silicycle SiliaFlash ${ }^{\circledR}$ P60 $\left(\mathrm{SiO}_{2}, 40-63 \mu \mathrm{~m}\right.$ particle size, 230-400 mesh).
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on Varian Unity $500\left(500 \mathrm{MHz},{ }^{1} \mathrm{H} ; 126 \mathrm{MHz},{ }^{13} \mathrm{C}\right) \mathrm{MHz}$ or Bruker $500\left(500 \mathrm{MHz},{ }^{1} \mathrm{H} ; 126 \mathrm{MHz},{ }^{13} \mathrm{C}\right)$ spectrometers. Spectra are referenced to residual chloroform ($\delta=7.26$ ppm, $1 \mathrm{H} ; 77.16 \mathrm{ppm},{ }^{13} \mathrm{C}$) or residual methanol ($\delta=3.31 \mathrm{ppm},{ }^{1} \mathrm{H} ; 49.0 \mathrm{ppm},{ }^{13} \mathrm{C}$). Chemical shifts are reported in parts per million (ppm). Multiplicities are indicated by (singlet), d (doublet), t (triplet), q (quartet), and m (multiplet). Coupling constants J are reported in Hertz (Hz).

Mass spectrometry (MS) was performed by the University of Illinois Mass Spectrometry Laboratory. Electron Impact $\left(\mathrm{EI}^{+}\right)$spectra were performed at 70 eV using methane as the carrier gas, with time-of-flight (TOF) mass analyzer. Chemical Ionization $\left(\mathrm{CI}^{+}\right)$spectra were performed with methane reagent gas, with either a double focusing sector field (DFSF) or time-of-flight (TOF) mass analyzer. Electrospray Ionization (ESI ${ }^{+}$) spectra were performed using a time-of-flight (TOF) mass analyzer. Data are reported in the form of m / z (intensity relative to the base peak $=100$).

Infrared spectra were measured neat on a Perkin-Elmer spectrum BX FT-IR spectrometer. Peaks are reported in cm^{-1} with indicated relative intensities: s (strong, $0-33 \% \mathrm{~T}$); m (medium, $34-66 \% \mathrm{~T}$), w (weak, $67-100 \%$ T), and br (broad).

Visible-light spectrum of LED was recorder using Avantes Sensline Avaspec-ULS TEC Spectrometer.
Melting points were measured on a Buchi B-540 meting point apparatus and are uncorrected.

2. Experimental Set-up

2-1. LED light source

Generic cool white light LED corn bulbs were used for the photochemical experiments. These can be obtained from several manufactures over amazon.com and proved to give consistent results as well as identical visible spectra. Detailed info:

Socket: G4
LED Chip: 48 LEDs SMD 2835
Consume wattage: 4W
Input voltage: AC / DC 12 V
Beam degree: 360 degrees
Color temperature: 6500K (Cool White)
Initial Lumens (lm): 290

Spectra S1. Spectrum of a LED bulb used.

2-2. Set-up for small scale reactions (<2.0 mmol scale)

Six 4 W LED corn bulbs (12 V , cool white light 6500 K) were wired to a suitable 12 V power supply, then sealed into test tubes and capped with septa (Picture S1). Lights and reaction tubes were arranged in a merry-go-round fashion for maximal exposure of each reaction vessel to light source and submerged in a $-78{ }^{\circ} \mathrm{C}$ bath. Generally, up to four 1.0 mmol scale reactions can be run in the same bath using five 4 W lamps positioned around them.

Picture S1. Assembly of LED bulbs for small-scale photochemical reactions.

2-3. Set-up for large scale reactions (2-25 mmol scale)

Eight 4 W LED corn bulbs (12 V , cool white light 6500 K) were wired to a suitable 12 V power supply, then sealed into test tubes and capped with septa (see Picture S1). Lights were arranged in a merry-goround fashion around a 250 mL clear borosilicate glass bottle (Picture S2). A normal reagent or media bottle can be used. The whole set-up was kept submerged in a cold bath during the photochemical reaction.

Picture S2. Photochemical set-up for large scale reactions.

3. Experimental Procedures

3-1. Table S1: Optimization of arenophile-mediated epoxidation of benzene.

| |
| :--- | :--- | :--- | :--- |

[^0]3-2. Table S2: Optimization of arenophile-mediated epoxidation of naphthalene.

| |
| :--- | :--- | :--- |

3-3.Table S3: Optimization of cycloreversion to arene oxides.

Entry	Base	Solvent	Oxidant	Temp. (${ }^{\circ} \mathrm{C}$)	Time	Yield
1	KOH	iPrOH	CuCl_{2}	100	16	N.R.
2	NA	$\mathrm{N}_{2} \mathrm{H}_{4}$	CuCl_{2}	100	16	N.R.
3	KOH	iPrOH	$\begin{gathered} \mathrm{CuCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O} \\ (0.05 \text { equiv. }), \\ \mathrm{O}_{2}, 16 \mathrm{~h} \end{gathered}$	40	2	phenol exclusively
4	KOH	iPrOH	$\mathrm{CuCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$	40	2	phenol
5	KOH	iProh	PIDA	40	2	decomp.
6	KOH	iPrOH	$\begin{gathered} \mathrm{Ni}_{2} \mathrm{O}_{3} \text { (3.0 equiv.), } \\ 1 \text { min. } \end{gathered}$	40	2	58\%

3-4.Table S4: Optimization of cycloreversion to benzoxepine.

3-5.Dearomative epoxidation of monocyclic arenes

3-5.1 General procedure for dearomative epoxidation with arenes

$\mathrm{MTAD}(1$ equiv. $)$
$\mathrm{EtCN},-78{ }^{\circ} \mathrm{C}$

$\mathrm{Mn}\left(\mathrm{ClO}_{4}\right)_{2} \bullet 6 \mathrm{H}_{2} \mathrm{O}(25 \mathrm{~mol} \%)$
thenanthroline $(50 \mathrm{~mol} \%)$
$\mathrm{CH}_{3} \mathrm{CO}_{3} \mathrm{H}(3.0$ equiv. $)$
$2 \mathrm{~h},-78{ }^{\circ} \mathrm{C}$

(10 equiv.)

This procedure was modified from the literature protocol. ${ }^{3}$
N-Methyl-1,2,4-triazoline-3,5-dione (7, MTAD, $113.4 \mathrm{mg}, 1.0 \mathrm{mmol}, 1.0$ equiv.) was placed in a test tube and propionitrile ($10 \mathrm{~mL}, 0.1 \mathrm{M}$) was added at room temperature and placed in a $-78{ }^{\circ} \mathrm{C}$ chiller. Arene ($10.0 \mathrm{mmol}, 10$ equiv.) was added slowly and the solution was stirred under irradiation with LED lights at $-78^{\circ} \mathrm{C}$ until the solution had become colorless, which took about 12 hours with the described set up (see Section 2-2.). Upon decolorization, a solution of $\mathrm{Mn}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(90.3 \mathrm{mg}, 0.25 \mathrm{mmol}, 25 \mathrm{~mol} \%$) and 1,10-phenanthroline ($90.1 \mathrm{mg}, 0.5 \mathrm{mmol}, 50 \mathrm{~mol} \%$) in acetonitrile (3 mL , sonicated for 1 minute), was added over the course of 10 seconds, being careful to ensure proper mixing. To this solution, was quickly added freshly-prepared peracetic acid 3 ($8-10 \mathrm{wt} \%$ in acetic acid, 3.0 equiv.) and left to stir for two hours at $-78^{\circ} \mathrm{C}$. Afterwards, a 10% sodium thiosulfate solution (20 mL) was added and the organic phase was separated. The aqueous phase was extracted with ethyl acetate $(3 \times 15 \mathrm{~mL})$. The organic extracts were combined and passed through a silica plug which was washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$. The organic phase was then dried over MgSO_{4} and concentrated under reduced pressure. The compound was isolated by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexanes: ethyl acetate mixtures).

5-methyl-1a,2,8,8a-tetrahydro-4H-2,8-ethenooxireno[2,3-d][1,2,4]triazolo[1,2-a]pyridazine-4,6(5H)-dione (8a):

Following the general procedure (1.0 mmol scale), the title compound was isolated by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexanes:ethyl acetate $=5: 1$ to $\left.1: 1\right)$ as a white solid $(93 \mathrm{mg}$, 3:1 d.r., 45\%).
$\mathbf{R}_{\mathbf{f}}=0.3\left(\mathrm{SiO}_{2}\right.$, hexanes: ethyl acetate $\left.=1: 1, \mathrm{UV}\right)$
${ }^{1} H$ NMR: $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.16-6.00(\mathrm{~m}, 2 \mathrm{H}), 5.20(\mathrm{dd}, J=4.8,3.2,1.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.67(\mathrm{dd}, J=3.2$, $1.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.01(\mathrm{~s}, 3 \mathrm{H})$
${ }^{13}$ C NMR: $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 158.2,125.0,54.6,42.1,25.7$
HRMS: (ESI-TOF, m/z) calcd. For $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{~N}_{3} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$, 208.0717; found: 208.0722
IR: (ATR, neat, cm^{-1}) 2923 (w), 1761 (m), 1708 (s), 1605 (m), 1511 (m), 1456 (m), 1401 (m), 1389 (m), 1373 (w), 1196 (m), 1080 (w), 1029 (w), 1011 (w), 955 (w), 930 (w), 529 (w)
m.p. $=188-191{ }^{\circ} \mathrm{C}$

9-(tert-butyl)-5-methyl-1a,2,8,8a-tetrahydro-4H-2,8-ethenooxireno[2,3-d][1,2,4]triazolo[1,2-a]pyridazine-4,6(5H)dione (8b):

Following the general procedure (1.0 mmol scale), the title compound was isolated by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexanes:ethyl acetate $=5: 1$ to $1: 1$) as a yellow oil $(155 \mathrm{mg}, 5: 1$ d.r., $3: 1$ r.r., 59%). where the major diastereomer was inseparable from the constitutional isomer (3:1).
$\mathbf{R}_{\mathbf{f}}=0.4\left(\mathrm{SiO}_{2}\right.$, hexanes:ethyl acetate $\left.=1: 1, \mathrm{UV}\right)$
${ }^{1} \mathbf{H}$ NMR: $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.63$ (ddd, $\left.J=6.2,2.3,1.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.22(\mathrm{dd}, J=4.5,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.12$ (dd, $J=6.2,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.62(\mathrm{t}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.58(\mathrm{td}, J=4.2,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.98(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 3 \mathrm{H})$, 1.03 (s, 9H)
${ }^{13}$ C NMR: $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 158.3,157.8,157.4,156.9,148.6,127.1,123.9,113.3,57.0,55.2,55.1$, 54.2, 46.5, 42.7, 41.9, 33.1, 31.8, 27.9, 25.9, 25.6, 25.6

HRMS: (ESI-TOF, m/z) calcd. For $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$, 264.1343; found: 264.1353
IR: (ATR, neat, cm^{-1}) 2964 (w), 2872 (w), 1773 (m), 1703 (s), 1632 (m), 1453 (m), 1394 (m), 1366 (w), 1201 (m), 1092 (w), 1009 (w), 957 (m), 768 (w)

9-(1-chloro-2-methylpropan-2-yl)-5-methyl-1a,2,8,8a-tetrahydro-4H-2,8ethenooxireno $[2,3-\mathrm{d}][1,2,4]$ triazolo[1,2-a]pyridazine-4,6(5H)-dione (8c):

Following the general procedure (1.0 mmol scale), the title compound was isolated by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexanes:ethyl acetate $=5: 1$ to $\left.1: 1\right)$ as an off-white oil ($123 \mathrm{mg}, 7: 1$ d.r., 41\%)
$\mathbf{R}_{\mathbf{f}}=0.4\left(\mathrm{SiO}_{2}\right.$, hexanes: ethyl acetate $\left.=1: 1, \mathrm{UV}\right)$
${ }^{1}$ H NMR: $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.76(\mathrm{dd}, J=6.2,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.18(\mathrm{~m}, 2 \mathrm{H}), 3.66(\mathrm{t}, J=4.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.62$ $(\mathrm{t}, J=4.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.49(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.36(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.97(\mathrm{~s}, 3 \mathrm{H}), 1.15(\mathrm{~s}, 3 \mathrm{H}), 1.13(\mathrm{~s}$, 3H)
${ }^{13}$ C NMR: $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 158.1,157.5,142.6,118.0,54.8,54.3,52.4,42.5,42.0,38.4,25.7,24.5$, 23.4

HRMS: (ESI-TOF, m/z) calcd. For $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$, 298.0953; found: 298.0959
IR: (ATR, neat, cm ${ }^{-1}$) 2970 (w), 1706 (s), 1455 (m), 1394 (w), 1229 (m), 1205 (m), 954 (w), 769 (w), 527 (w)

5-methyl-9-(trifluoromethyl)-1a,2,8,8a-tetrahydro-4H-2,8-ethenooxireno[2,3d] [1,2,4] triazolo[1,2-a]pyridazine-4,6(5H)-dione (8d):

Following the general procedure (1.0 mmol scale), the title compound was isolated by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexanes:ethyl acetate $=5: 1$ to $\left.1: 1\right)$ as a yellow oil (105 mg , $>20: 1$ d.r., 38%).
$\mathbf{R}_{\mathbf{f}}=0.4\left(\mathrm{SiO}_{2}\right.$, hexanes: ethyl acetate $\left.=1: 1, \mathrm{UV}\right)$
${ }^{1}$ H NMR: $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.60-6.44(\mathrm{~m}, 1 \mathrm{H}), 5.39(\mathrm{dd}, J=4.4,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.34(\mathrm{dd}, J=6.1,4.4$ $\mathrm{Hz}, 1 \mathrm{H}), 3.79(\mathrm{t}, J=4.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{td}, J=4.3,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.02(\mathrm{~s}, 3 \mathrm{H})$
${ }^{13}$ C NMR: $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 157.7,157.1,127.9(\mathrm{q}, J=36.57), 125.9(\mathrm{q}, J=5.78), 120.0(\mathrm{q}, J=$ 120.24), 53.5, 53.3, 42.0, 41.4, 25.9
${ }^{19}$ F NMR: ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-67.37$
HRMS: (ESI-TOF, m/z) calcd. For $\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~F}_{3}[\mathrm{M}+\mathrm{H}]^{+}, 276.0591$; found: 276.0594
IR: (ATR, neat, cm^{-1}) 2970 (w), 1718 (s), 1455 (m), 1375 (m), 1266 (w), 1216 (m), 768 (w), 527 (w)

9-(1,1-dimethoxyethyl)-5-methyl-1a,2,8,8a-tetrahydro-4H-2,8-ethenooxireno[2,3- d][1,2,4]triazolo[1,2-a]pyridazine-4,6(5H)-dione (8e):

The work-up is modified from the general procedure as follows:
The reaction was quenched with a 10% sodium thiosulfate solution (20 mL) and saturated $\mathrm{NaHCO}_{3}(40 \mathrm{~mL})$ and the organic phase was separated. The aqueous phase was extracted with ethyl acetate $(3 \times 15 \mathrm{~mL})$. The organic extracts were combined and passed through a silica plug and flushed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$. The organic phase was then dried over MgSO_{4} and concentrated under reduced pressure. The title compound was isolated by column chromatography (SiO_{2}, hexanes:ethyl acetate ($\mathrm{SiO}_{2}, 5: 1$ to $1: 1$ with $1 \% \mathrm{Et}_{3} \mathrm{~N}$) as a light yellow oil ($77 \mathrm{mg},>20: 1$ d.r., 26%).
$\mathbf{R}_{\mathbf{f}}=0.3\left(\mathrm{SiO}_{2}\right.$, hexanes: ethyl acetate $\left.=1: 1, \mathrm{UV}\right)$
${ }^{1} \mathbf{H}$ NMR: $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.06$ (ddd, $\left.J=6.2,2.2,1.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.30(\mathrm{dd}, J=4.2,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.23$ (dd, $J=6.2,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{~m}, 2 \mathrm{H}), 3.17(\mathrm{~s}, 3 \mathrm{H}), 3.13(\mathrm{~s}, 3 \mathrm{H}), 2.99(\mathrm{~s}, 3 \mathrm{H}), 1.31(\mathrm{~s}, 3 \mathrm{H})$
${ }^{13}$ C NMR: $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 157.6,157.1,140.4,120.0,99.1,54.8,54.2,49.5,49.2,42.9,42.1,25.6$, 22.8

HRMS: (ESI-TOF, m/z) calcd. For $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}, 318.1066$; found:318.1073
IR: (ATR, neat, cm^{-1}) 2956 (w), 1777 (m), 1708 (s), 1455 (m), 1397 (m), 1190 (m), 1144 (m), 1040 (s), 917(w), 732 (w), 732 (m)

5-methyl-9-(trimethoxymethyl)-1a,2,8,8a-tetrahydro-4H-2,8-ethenooxireno[2,3-d][1,2,4]triazolo[1,2-a]pyridazine-4,6(5H)-dione (8f):

The work-up is modified from the general procedure as follows:
The reaction was quenched with a 10% sodium thiosulfate solution $(20 \mathrm{~mL})$ and saturated $\mathrm{NaHCO}_{3}(40 \mathrm{~mL})$ and the organic phase was separated. The aqueous phase was extracted with ethyl acetate ($3 \times 15 \mathrm{~mL}$). The organic extracts were combined and passed through a silica plug and flushed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$. The organic phase was then dried over MgSO_{4} and concentrated under reduced pressure. The title compound was isolated by column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexanes:ethyl acetate $\left(\mathrm{SiO}_{2}, 5: 1\right.$ to $1: 1$ with $\left.1 \% \mathrm{Et}_{3} \mathrm{~N}\right)$ as an off-white solid (141 $\mathrm{mg},>20: 1$ d.r., 45\%).
$\mathbf{R}_{\mathbf{f}}=0.3\left(\mathrm{SiO}_{2}\right.$, hexanes: ethyl acetate $\left.=1: 1, \mathrm{UV}\right)$
${ }^{1}$ H NMR: $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.18(\mathrm{dd}, J=6.1,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.37-5.21(\mathrm{~m}, 2 \mathrm{H}), 3.74-3.62(\mathrm{~m}, 2 \mathrm{H})$, 3.12 (d, $J=0.9 \mathrm{~Hz}, 9 \mathrm{H}$), 2.97 ($\mathrm{s}, 3 \mathrm{H}$)
${ }^{13}$ C NMR: ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.2,156.3,134.3,123.6,112.3,54.4,53.7,49.9,42.7,42.1,25.6$
HRMS: (ESI-TOF, m/z) calcd. For $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$, 334.1001; found:334.1030
IR: (ATR, neat, cm^{-1}) 2949 (w), 1778 (m), 1704 (s), 1451 (m), 1394 (m), 1242 (m), 1181 (m), 1094 (s), 1065 (s), 768 (w), 529 (w)
m.p. $=162-164{ }^{\circ} \mathrm{C}$

3-5.2 General procedure for the synthesis of arene oxides/oxepines

To a vial containing finely ground $\mathrm{KOH}(120 \mathrm{mg}, 10$ equiv., $90 \mathrm{wt} \%)$, and substrate ($0.20 \mathrm{mmol}, 1.0$ equiv.) under nitrogen was added $i \operatorname{PrOH}(2 \mathrm{~mL}, 0.1 \mathrm{M})$ and degassed with sonication and nitrogen for 15 min . The reaction was heated to $40{ }^{\circ} \mathrm{C}$ with vigorous stirring (1000 rpm) for 2 hours or until complete conversion by TLC. Upon completion, the reaction was cooled in an ice bath and $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{~mL})$ was added. AcOH was then carefully added dropwise until pH 5 . The semicarbazide intermediate was then extracted out with ethyl acetate $(3 \times 5 \mathrm{~mL})$. The organic layers were combined, dried with NaHCO_{3} and concentrated under reduced pressure.
This mixture containing the semicarbazide was added to vial, followed by $\mathrm{CDCl}_{3}(2.0 \mathrm{~mL}, 0.1 \mathrm{M})$, and sparged with nitrogen for 15 minutes. Next, nickel oxide ($\mathrm{Ni}_{2} \mathrm{O}_{3}, 30 \%$ active basis, $330 \mathrm{mg}, 3.0$ equiv.) was added as a solid under a stream of nitrogen (note: vigorous gas evolution was observed). The solution was agitated manually for 1 minute, filtered through a celite plug, and the celite was washed thoroughly with CDCl_{3} to yield the resulting arene-oxide as a solution. Due to the pronounced instability and volatility of
these arene-oxides, further purification was impractical and yields were determined by ${ }^{1} \mathrm{H}$-NMR internal standard $\left(\mathrm{MeNO}_{2}\right)$. MeNCO was observed as a byproduct after filtering through celite in all cases. IR spectra were not acquired due to the instability of these compounds upon sample preparation.

Note: Arene oxides are suspected carcinogens. Caution in the handling of these compounds should be used.

Note: In many instances, due to the valence tautomerization of arene-oxide/oxepins, ${ }^{13} \mathrm{C}$ signals corresponding to the carbon next to oxygen can be severely broadened. In these cases, it was necessary to assign these peaks via HSQC/HMBC.

Benzene-Oxide (7-oxabicyclo[4.1.0]hepta-2,4-diene, 13a):

Following the general procedure (0.20 mmol scale), the title compound was obtained as a yellow solution in CDCl_{3} using MeNO_{2} as internal standard (58% yield). See ${ }^{1} \mathrm{H}$ NMR spectra of 13a for graphical visualization of internal standard.
${ }^{1}$ H NMR: ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.26(\mathrm{dd}, J=5.1,2.9 \mathrm{~Hz}, 2 \mathrm{H}), 5.94(\mathrm{td}, J=4.8,2.9 \mathrm{~Hz}, 2 \mathrm{H}), 5.09(\mathrm{~d}, J=$ $4.8 \mathrm{~Hz}, 2 \mathrm{H}$)
${ }^{13}$ C NMR: $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 129.5,121.5,105.3$
HRMS: (EI, m/z) calcd. For $\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{O}$ [M] ${ }^{+}$, 94.04132; found: 94.04195
The analytical data were in accordance with previously reported values. ${ }^{7}$

3-(tert-butyl)-7-oxabicyclo[4.1.0]hepta-2,4-diene (13b):

Since the undesirable constitutional isomer ($\mathbf{8 b} \mathbf{b}^{\boldsymbol{}}$) was inseperable from $\mathbf{8 b}$, the resultant semicarbazides were separated after KOH hydrolysis utilizing a silica plug (ethyl acetate, 100%). The title compound was obtained as a yellow solution in CDCl_{3} using MeNO_{2} as internal standard (82% yield).
${ }^{1} \mathbf{H}$ NMR: $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.32(\mathrm{dt}, J=8.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.12(\mathrm{dd}, J=8.5,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.01$ (ddd, J $=4.7,1.5,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.71(\mathrm{dd}, J=4.7,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.65(\mathrm{ddd}, J=4.0,2.5,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.13(\mathrm{~s}, 9 \mathrm{H})$
${ }^{13}$ C NMR: ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 150.4,126.6,123.7,118.0,84.6^{*}, 85.6^{*}, 35.0,29.5$ (*detected by HSQC)
HRMS: (ESI-TOF, m/z) calcd. For $\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}, 151.1117$; found: 151.1124

3-(1-chloro-2-methylpropan-2-yl)-7-oxabicyclo[4.1.0]hepta-2,4-diene (13c):
Following the general procedure (0.20 mmol scale), the title compound was obtained as a yellow solution in CDCl_{3} using MeNO_{2} as internal standard (79% yield).
${ }^{1}$ H NMR: $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.28(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.12(\mathrm{dd}, J=8.3,4.4 \mathrm{~Hz}$, $1 \mathrm{H}), 6.01(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.82(\mathrm{dd}, J=4.8,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.79-4.75(\mathrm{~m}, 1 \mathrm{H}), 3.49(\mathrm{~s}, 2 \mathrm{H}), 1.23(\mathrm{~s}$, $6 \mathrm{H})$
${ }^{13}$ C NMR: ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 145.57, 126.7, 123.6, 119.7, 89.8*, 89.3*, 54.3, 40.2, 25.2 (*detected by HMBC)

HRMS: (ESI-TOF, m/z) calcd. For $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{OCl}[\mathrm{M}+\mathrm{H}]^{+}, 185.0728$; found: 185.0740

3-(trifluoromethyl)-7-oxabicyclo[4.1.0]hepta-2,4-diene (13d):

Following the general procedure (0.20 mmol scale), the title compound was obtained as a yellow solution in CDCl_{3} using MeNO_{2} as internal standard (74% yield).
${ }^{1} \mathbf{H}$ NMR: $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.59(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.04(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.94$ (dd, $J=6.9,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.40(\mathrm{~m}, 2 \mathrm{H})$
${ }^{13}$ C NMR: $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 131.5(\mathrm{q}, J=31.3 \mathrm{~Hz}), 128.4(\mathrm{q}, J=4.9 \mathrm{~Hz}), 123.1(\mathrm{q}, J=272.5 \mathrm{~Hz})$, $119.5,118.5,117.2^{*}, 117.1$ ($\mathrm{q}, J=3.6 \mathrm{~Hz}$) (*signal detected by HSQC)
${ }^{19}$ F NMR: $\left(471 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-67.38$
HRMS: (ESI-TOF, m/z) calcd. For $\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{OF}_{3}[\mathrm{M}+\mathrm{H}]^{+}$, 163.0365; found: 163.0373

3-(1,1-dimethoxyethyl)-7-oxabicyclo[4.1.0]hepta-2,4-diene (13e):

Following the general procedure (0.20 mmol scale), the title compound was obtained as a yellow solution in CDCl_{3} using MeNO_{2} as internal standard (74% yield).
${ }^{1}$ H NMR: $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.41(\mathrm{dt}, J=8.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.17-6.12(\mathrm{~m}, 1 \mathrm{H})$, 6.04 (dd, $J=8.0,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.93(\mathrm{dd}, J=4.8,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.90(\mathrm{dt}, J=4.5,1.7$

Hz, 1H), 3.15 (s, 6H), 1.39 (s, 3H)
${ }^{13}$ C NMR: $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 142.5,127.4,122.3,120.4,100.8,96.3,96.2,49.0,23.8$
HRMS: (EI, m/z) calcd. For $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{3}[\mathrm{M}]^{+}, 182.0937$; found:182.0949

3-(trimethoxymethyl)-7-oxabicyclo[4.1.0]hepta-2,4-diene (13f):
Following the general procedure (0.20 mmol scale), the title compound was obtained as a yellow solution in CDCl_{3} using MeNO_{2} as internal standard (73% yield).
${ }^{1}$ H NMR: $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.48(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.11(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H})$, $5.98(\mathrm{dd}, J=7.7,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.09(\mathrm{~m}, 2 \mathrm{H}), 3.15(\mathrm{~s}, 9 \mathrm{H})$
${ }^{13}$ C NMR: $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 136.8,129.1,121.1,120.9,113.9,104.9,104.2,49.7$
HRMS: (ESI-TOF, m/z) calcd. For $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$, 221.0790; found: 221.0799

3-6 Dearomative epoxidation of polycyclic arenes

3-6.1 General procedure for dearomative epoxidation with polycyclic arenes at $\mathbf{- 2 0}{ }^{\circ} \mathbf{C}$ (General Procedure A)

This procedure was modified from the literature protocol. ${ }^{6}$
A solution of N-methyl-1,2,4-triazoline-3,5-dione (7, MTAD, $113.4 \mathrm{mg}, 1.0 \mathrm{mmol}, 1.0$ equiv.) and arene ($1.5 \mathrm{mmol}, 1.5$ equiv.) in propionitrile (10.0 mL) was irradiated with LED lights at $-78^{\circ} \mathrm{C}$ under a nitrogen atmosphere (see Section 2-2.). Upon decolorization, which generally proceeds within 3-12 hours with the described setup, the reaction vessel was transferred to a $-20^{\circ} \mathrm{C}$ bath under high stirring (600 rpm). A suspension of $\mathrm{Mn}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(18.1 \mathrm{mg}, 0.05 \mathrm{mmol}, 0.05$ equiv., $5 \mathrm{~mol} \%$) and picolinic acid ($31 \mathrm{mg}, 0.25$ $\mathrm{mmol}, 0.25$ equiv., $25 \mathrm{~mol} \%$) in acetonitrile (4 mL , sonicated for 1 minute), was added to the reaction mixture over the course of 10 seconds, being careful to ensure proper mixing. To this solution was added peracetic acid ($32 \mathrm{wt} \%$ in dilute acetic acid, $0.84 \mathrm{~mL}, 4.0$ equiv.) over the course of 10 seconds. The reaction was then left to stir for 2 hours at $-20^{\circ} \mathrm{C}$. Afterwards, a 10% sodium thiosulfate solution (20 mL) was added and the aqueous phase was separated. The organic phase was extracted with ethyl acetate (3×15 mL), then the organic extracts were combined, dried over MgSO_{4}, and concentrated under reduced pressure. The product was immediately isolated by flash chromatography (SiO_{2}, hexanes: ethyl acetate mixtures).

3-6.2 General procedure for dearomative epoxidation with polycyclic arenes at $-78{ }^{\circ} \mathrm{C}$ (General Procedure B)

16

This procedure was modified from the literature protocol. ${ }^{6}$
A solution of N-methyl-1,2,4-triazoline-3,5-dione (7, MTAD, $113.4 \mathrm{mg}, 1.0 \mathrm{mmol}, 1.0$ equiv.) and arene ($1.5 \mathrm{mmol}, 1.5$ equiv.) in propionitrile (10.0 mL) was irradiated with LED lights at $-78^{\circ} \mathrm{C}$ under a nitrogen atmosphere (see Section 2-2.). Upon decolorization, which generally proceeds within $8-12$ hours with the described setup, the reaction was then transferred to a bath at $-78^{\circ} \mathrm{C}$ under high stirring (600 rpm). A
suspension of $\mathrm{Mn}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(72.4 \mathrm{mg}, 0.20 \mathrm{mmol}, 0.20$ equiv.) and picolinic acid ($123.1 \mathrm{mg}, 1.0 \mathrm{mmol}$, 1.0 equiv.) in acetonitrile (8 mL , sonicated for 1 minute), was added over the course of 10 seconds, being careful to ensure proper mixing. To this solution was added peracetic acid ($32 \mathrm{wt} \%$ in dilute acetic acid, $1.3 \mathrm{~mL}, 6.0$ equiv.) over the course of 1 hour in 6 evenly spaced portions and left to stir for another hour at $-78{ }^{\circ} \mathrm{C}$. The reaction was warmed to room temperature, upon which a 10% sodium thiosulfate solution (20 mL) was added and the organic phase was separated. The aqueous phase was extracted with ethyl acetate $(3 \times 15 \mathrm{~mL})$. The organic extracts were combined and filtered through a plug of silica gel, which was washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$. The organic phase was then dried over MgSO_{4} and concentrated under reduced pressure. The product was immediately isolated by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexanes: ethyl acetate mixtures).

2-methyl-5,10-dihydro-1H-5,10-[2,3]epoxireno[1,2,4]triazolo[1,2-b]phthalazine-1,3(2H)-dione (16a):

Following General Procedure A (1.0 mmol scale), the title compound was isolated by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexanes:ethyl acetate $=5: 1$ to $\left.1: 1\right)$ as a white solid ($217 \mathrm{mg}, 1.6: 1$ d.r., 84%).
$\mathbf{R}_{\mathbf{f}}=0.3\left(\mathrm{SiO}_{2}\right.$, hexanes:ethyl acetate $\left.=1: 1, \mathrm{UV}\right)$
${ }^{1}$ H NMR: $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.41(\mathrm{dd}, J=5.4,3.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.30-7.23(\mathrm{~m}, 2 \mathrm{H}), 5.66(\mathrm{dd}, J=3.2,1.7$ $\mathrm{Hz}, 2 \mathrm{H}), 3.89(\mathrm{dd}, J=3.2,1.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.82(\mathrm{~s}, 3 \mathrm{H})$
${ }^{13}$ C NMR: $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 157.1,129.87,129.83,124.4,57.8,44.4,25.5$
HRMS: (ESI-TOF, m / z) calcd. for $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{~N}_{3} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}, 258.0873$; found: 258.0887
IR: (ATR, neat, cm^{-1}) $=3014(\mathrm{w}), 1761(\mathrm{~m}), 1701(\mathrm{~s}), 1467(\mathrm{~m}), 1447(\mathrm{~m}), 1395(\mathrm{~m}), 1227(\mathrm{w}), 1214(\mathrm{w})$, 1170 (w), 1037 (w), 964 (m), 923 (w), 864 (m), 755 (m), 701 (w), 662 (w), 552 (m), 502 (w)
m.p. $=244-245^{\circ} \mathrm{C}$

7-bromo-2-methyl-5,10-dihydro-1H-5,10-[2,3]epoxireno[1,2,4]triazolo[1,2-b]phthalazine-1,3(2H)-dione (16b):

Following General Procedure A (1.0 mmol scale), the title compound was isolated by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexanes:ethyl acetate $=5: 1$ to $\left.1: 1\right)$ as a white solid (183 mg , 5:1 d.r., 54\%).
$\mathbf{R}_{\mathbf{f}}=0.3\left(\mathrm{SiO}_{2}\right.$, hexanes:ethyl acetate $\left.=1: 1, \mathrm{UV}\right)$
${ }^{1} \mathbf{H}$ NMR: $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.59-7.52(\mathrm{~m}, 1 \mathrm{H}), 7.44-7.38(\mathrm{~m}, 1 \mathrm{H}), 7.14(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.62$ (dd, $J=9.7,3.4 \mathrm{~Hz}, 2 \mathrm{H}$), 3.89 (d, $J=3.4 \mathrm{~Hz}, 2 \mathrm{H}$), 2.85 ($\mathrm{s}, 3 \mathrm{H}$)
${ }^{13}$ C NMR: ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.0,156.9,132.9,131.6,128.7,127.7,126.1,123.7,57.3,57.2,44.3$, 44.2, 25.7

HRMS: (ESI-TOF, m / z) calculated for $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}, 335.9978$; found: 335.9989

IR: (ATR, neat, cm^{-1}) 1771 (m), 1705 (s), 1453 (m), 1394 (w), 1199 (w), 963 (w), 851 (w), 767 (w), 730 (w), 571 (w), 523 (m)
m.p. $=194-196^{\circ} \mathrm{C}$

2-methyl-1,3-dioxo-2,3,5,10-tetrahydro-1H-5,10-[2,3]epoxireno[1,2,4]triazolo[1,2-b]phthalazine-7-carbonitrile (16c):

Following General Procedure A (1.0 mmol scale), the title compound was isolated by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexanes:ethyl acetate $=10: 1$ to $\left.1: 1\right)$ as a colorless oil ($160.2 \mathrm{mg}, 7: 1$ d.r., 57%).
$\mathbf{R}_{\mathbf{f}}=0.3\left(\mathrm{SiO}_{2}\right.$, hexanes: ethyl acetate $\left.=1: 1, \mathrm{UV}\right)$
${ }^{1}$ H NMR: $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.73(\mathrm{dd}, J=7.7,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{~d}, J=7.7 \mathrm{~Hz}$, $1 \mathrm{H}), 5.71(\mathrm{~m}, 2 \mathrm{H}), 4.02-3.89(\mathrm{~m}, 2 \mathrm{H}), 2.84(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13}$ C NMR: ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 156.78^{*}, 134.4,134.0,131.1,127.9,125.4,117.8,113.9,57.2,57.0,44.2$, 44.1, 25.7 ($* 2$ peaks overlapping)

HRMS: (ESI-TOF, m / z) calculated for $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{~N}_{4} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}, 283.0826$; found: 283.0835
IR: (ATR, neat, cm^{-1}) 3055 (w), 2231 (w), 1772 (m), 1701 (s), 1451 (m), 1394 (w), 1197 (w), 1033 (m), 964 (m), 911 (m), 852 (m), 728 (m), 590 (w), 539 (m)
m.p. $=97-100^{\circ} \mathrm{C}$

7-acetyl-2-methyl-5,10-dihydro-1H-5,10-[2,3]epoxireno[1,2,4]triazolo[1,2-b]phthalazine-1,3(2H)-dione (16d):

Following General Procedure $\mathbf{A}(1.0 \mathrm{mmol}$ scale), the title compound was isolated by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexanes:ethyl acetate $=5: 1$ to $\left.1: 1\right)$ as a white solid ($183 \mathrm{mg}, 5: 1$ d.r., 61%).
$\mathbf{R}_{\mathbf{f}}=0.2\left(\mathrm{SiO}_{2}\right.$, hexanes: ethyl acetate $\left.=1: 1, \mathrm{UV}\right)$
${ }^{1}$ H NMR: $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.02(\mathrm{dd}, J=7.8,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.84(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{~d}, J=7.8 \mathrm{~Hz}$, 1 H), $5.76-5.69(\mathrm{~m}, 2 \mathrm{H}), 3.97-3.90(\mathrm{~m}, 2 \mathrm{H}), 2.82(\mathrm{~s}, 3 \mathrm{H}), 2.60(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13}$ C NMR: $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 196.9,156.88^{*}, 138.4,134.4,130.4,130.0,124.8,124.3,57.7,57.3,44.4$, 44.3, 26.8, 25.6 ($* 2$ peaks overlapping)

HRMS: (ESI-TOF, m / z) calculated for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{~N}_{3} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}, 300.0979$; found: 300.0995.
IR: (ATR, neat, cm ${ }^{-1}$) 3006 (w), 2954 (w), 2252 (w), 1771 (m), 1704 (s), 1454 (m), 1394 (m), 1359 (m), 1270 (w), 1194 (w), 1031 (w), 913 (w), 852 (w), 766 (w), 729 (m), 655 (w), 603 (w), 562 (m), 523 (w).
m.p. $=176.5^{\circ} \mathrm{C}$ (decomp.)

2-methyl-7-phenyl-5,10-dihydro-1H-5,10-[2,3]epoxireno[1,2,4]triazolo[1,2-b]phthalazine-1,3(2H)-dione (16e):

Following General Procedure A (1.0 mmol scale), the title compound was isolated by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexanes:ethyl acetate $=10: 1$ to $\left.1: 1\right)$ as a colorless gel ($136 \mathrm{mg}, 3: 1$ d.r., inseperable, 41%).
$\mathbf{R}_{\mathbf{f}}=0.3\left(\mathrm{SiO}_{2}\right.$, hexanes: ethyl acetate $\left.=1: 1, \mathrm{UV}\right)$
Discernable major diastereomer ${ }^{1} \mathbf{H}$ NMR: $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.32(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.74-5.67$ (m, 2H), $3.97-3.87(\mathrm{~m}, 2 \mathrm{H}), 2.85(\mathrm{~s}, 3 \mathrm{H})$

Major diastereomer ${ }^{13} \mathbf{C}$ NMR: $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 157.1,157.0,142.9,140.0,130.4,129.2,129.0$, $128.4,128.0,127.3,124.8,123.2,57.9,57.6,44.6,44.6,25.6 .5$

Discernable minor diastereomer ${ }^{1} \mathbf{H}$ NMR: $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.67(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.56(\mathrm{ddd}, J=$ $9.1,3.1,1.1 \mathrm{~Hz}, 1 \mathrm{H}$), 3.73 (dt, $J=2.9,1.4 \mathrm{~Hz}, 1 \mathrm{H}$), 3.10 ($\mathrm{s}, 1 \mathrm{H}$)

Minor diastereomer ${ }^{13} \mathbf{C}$ NMR: $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 156.98,156.97,142.8,140.0,136.6,134.7,128.7$, $128.2,128.0,127.4,126.2,124.8,57.8,57.7,54.3,53.9,25.7$
${ }^{1} \mathbf{H}$ NMR: $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.67(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 0.4 \mathrm{H}), 7.62(\mathrm{~m}, 1.3 \mathrm{H}), 7.59-7.51(\mathrm{~m}, 3.4 \mathrm{H}), 7.50-$ $7.34(\mathrm{~m}, 5.3 \mathrm{H}), 7.32(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.71(\mathrm{ddt}, J=7.3,5.0,2.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.56(\mathrm{ddd}, J=9.1,3.1,1.1$ $\mathrm{Hz}, 0.8 \mathrm{H}), 3.96-3.88(\mathrm{~m}, 2 \mathrm{H}), 3.73(\mathrm{dt}, J=2.9,1.4 \mathrm{~Hz}, 0.8 \mathrm{H}), 3.10(\mathrm{~s}, 1 \mathrm{H}), 2.85(\mathrm{~s}, 3 \mathrm{H})$

HRMS: (ESI-TOF, m/z) calculated for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{~N}_{3} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$, 334.1186; found: 334.1191.
IR: (ATR, neat, $\left.\mathrm{cm}^{-1}\right) 3497$ (w), 1760 (m), 1682 (s,br), 1451 (m), 1387 (m), 1217 (m), 1026 (w), 917 (w), 837 (w), 758 (m), 711 (m)

6-chloro-2-methyl-5,10-dihydro-1H-5,10-[2,3]epoxireno[1,2,4]triazolo[1,2-b]phthalazine-1,3(2H)-dione (16f):

Following General Procedure B (1.0 mmol scale), the title compound was isolated by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexanes:ethyl acetate $=5: 1$ to $\left.1: 1\right)$ as a white solid ($219 \mathrm{mg},>20: 1$ d.r., 75%).
$\mathbf{R}_{\mathbf{f}}=0.3\left(\mathrm{SiO}_{2}\right.$, hexanes: ethyl acetate $\left.=1: 1, \mathrm{UV}\right)$
${ }^{1} H$ NMR: $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.42(\mathrm{dd}, J=8.3,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.19-7.10(\mathrm{~m}, 1 \mathrm{H})$, $6.14(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.64(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.93(\mathrm{t}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{t}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.84(\mathrm{~s}$, $3 \mathrm{H})$.
${ }^{13}$ C NMR: $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 157.0,156.9,131.7,130.7,130.32,130.30,128.20,122.94,57.5,54.6$, 44.13, 44.11, 25.7

HRMS: (ESI-TOF, m/z) calcd. for $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{Cl}[\mathrm{M}+\mathrm{H}]^{+}, 292.0484$; found: 292.0489
IR: (ATR, neat, $\left.\mathrm{cm}^{-1}\right)=1771$ (m), 1708 (s), 1451 (m), 1394 (w), 1269 (w), 1234 (w), 1200 (w), 1171 (w), 1033 (w), 963 (m), 852 (m), 769 (w), 734 (w), 720 (w), 705 (w), 580 (m), 456 (w)
m.p. $=195-196^{\circ} \mathrm{C}$

2-methyl-1,3-dioxo-2,3,5,10-tetrahydro-1H-5,10-[2,3]epoxireno[1,2,4]triazolo[1,2-b]phthalazine-6-carbonitrile (16g):

Following General Procedure B (1.0 mmol scale), the title compound was isolated by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexanes:ethyl acetate $=5: 1$ to $\left.1: 1\right)$ as a white solid ($212 \mathrm{mg}, 6: 1$ d.r., 75%).
$\mathbf{R}_{\mathrm{f}}=0.3\left(\mathrm{SiO}_{2}\right.$, hexanes: ethyl acetate $\left.=1: 1, \mathrm{UV}\right)$
${ }^{1}$ H NMR: $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.71(\mathrm{dd}, J=7.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.58-7.44(\mathrm{~m}, 2 \mathrm{H}), 6.05(\mathrm{~d}, J=4.5 \mathrm{~Hz}$, $1 \mathrm{H}), 5.72(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.97(\mathrm{dt}, J=23.8,4.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.84(\mathrm{~s}, 3 \mathrm{H})$
${ }^{13}$ C NMR: $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 157.0,156.7,133.2,133.0,131.2,130.3,128.8,115.6,109.2,57.2,55.6$, 44.0, 43.9, 25.7

HRMS: (ESI-TOF, m / z) calculated for $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{~N}_{4} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}, 283.0826$; found: 283.0833
IR: (ATR, neat, cm^{-1}) = 3021 (w), 2231 (w), 1713 (s), 1448 (s), 1392 (s), 1272 (w), 1243 (w), 1196 (m), 1178 (m), 1113 (w), 1032 (w), 965 (m), 849 (m), 764 (s$), 702$ (m), $598(\mathrm{~m}), 533(\mathrm{~m})$
m.p. $=212^{\circ} \mathrm{C}$ (decomp.)

6-acetyl-2-methyl-5,10-dihydro-1H-5,10-[2,3]epoxireno[1,2,4]triazolo[1,2-b]phthalazine-1,3(2H)-dione (16h):

Following General Procedure B (1.0 mmol scale), the title compound was isolated by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexanes:ethyl acetate $=5: 1$ to $1: 1$) as a white solid ($189 \mathrm{mg}, 5.5: 1$ d.r., 63%).
$\mathbf{R}_{\mathbf{f}}=0.2\left(\mathrm{SiO}_{2}\right.$, hexanes: ethyl acetate $\left.=1: 1, \mathrm{UV}\right)$
${ }^{1} \mathbf{H}$ NMR: $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.86(\mathrm{dd}, J=8.0,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{dd}, J=7.6$, $1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.67(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.96(\mathrm{t}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{t}, J=4.4 \mathrm{~Hz}$, $1 \mathrm{H}), 2.82(\mathrm{~d}, J=0.8 \mathrm{~Hz}, 3 \mathrm{H}), 2.63(\mathrm{~d}, J=0.8 \mathrm{~Hz}, 3 \mathrm{H})$
${ }^{13}$ C NMR: $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 199.4,157.1,156.5,133.4,131.5,130.39,130.35,129.3,128.5,57.5,53.6$, 44.0, 43.9, 28.7, 25.6

HRMS: (ESI-TOF, m / z) calculated for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{~N}_{3} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}, 300.0979$; found: 300.0974
IR: (ATR, neat, cm^{-1}) 3051 (w), 2954 (w), 2253 (w), 1771 (m), 1702 (s), 1587 (w), 1447 (m), 1394 (m), 1358 (w), 1261 (m) 1201 (m), 1131 (w), 1034 (w), 1018 (w), 962 (m), 912 (m), 853 (m), 709 (m), 727 (s), 647 (w), 600 (w), 509 (w).
m.p. $=159-161^{\circ} \mathrm{C}$

8-methyl-5,11-dihydro-7H-5,11-[2,3]epoxirenopyrido[2,3-d][1,2,4]triazolo[1,2-a]pyridazine-7,9(8H)-dione (16j):

Following General Procedure A (1.0 mmol scale), the title compound was isolated by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexanes:ethyl acetate $=3: 1$ to $\left.1: 2\right)$ as an off-white solid ($172 \mathrm{mg}, 5: 1$ d.r., 67%).
$\mathbf{R}_{\mathbf{f}}=0.2\left(\mathrm{SiO}_{2}\right.$, hexanes:ethyl acetate $\left.=1: 2, \mathrm{UV}\right)$
${ }^{1}$ H NMR: $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.58(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{dd}, J=7.6,5.1 \mathrm{~Hz}$, $1 \mathrm{H}), 5.84(\mathrm{dd}, J=4.6,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.73(\mathrm{dd}, J=4.6,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.07-3.86(\mathrm{~m}, 2 \mathrm{H}), 2.85(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13}$ C NMR: ($\left.126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 156.9,156.4,150.6,150.2,132.2,125.1,124.8,59.2,56.7,44.4,44.0$, 25.7.

HRMS: (ESI-TOF, m / z) calculated for $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{~N}_{4} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}, 259.0826$ found: 259.0826.
IR: (ATR, neat, cm^{-1}): 1764 (m), 1694 (s), 1577 (w), 1448 (m), 1395 (m), 1209 (w), 1118 (w), 1035 (w), 964 (w), 809 (w), 757 (m), 556 (m).
m.p. $=189-191^{\circ} \mathrm{C}$

4,8-dimethyl-5,11-dihydro-7H-5,11-[2,3]epoxirenopyrido[2,3-d][1,2,4]triazolo[1,2-a]pyridazine-7,9(8H)-dione (16k):

Following General Procedure A (1.0 mmol scale), the title compound was isolated by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexanes:ethyl acetate $=3: 1$ to $1: 2$) as an off-white solid ($197 \mathrm{mg},>20: 1$ d.r., 72%).
$\mathbf{R}_{\mathbf{f}}=0.3\left(\mathrm{SiO}_{2}\right.$, hexanes:ethyl acetate $\left.=1: 2, \mathrm{UV}\right)$
${ }^{1}$ H NMR: $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.40(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.94(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 1 \mathrm{H})$, 5.79 (d, J = $4.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.98-3.91$ (m, 2H), 2.85 (s, 3H), 2.43 (s, 3H).
${ }^{13}$ C NMR: $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 157.4,156.6,150.0,149.7,142.6,126.3,124.4,59.6,53.4,44.4,43.9$, 25.7, 17.6.

HRMS: (ESI-TOF, m/z) calculated for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{~N}_{4} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}, 273.0982$ found: 273.0986.
IR: (ATR, neat, cm^{-1}) 1764 (m), 1698 (s), 1593 (m), 1447 (m), 1400 (m), 1204 (w), 1032 (w), 963 (m), 921 (w), 870 (w), 851 (m), 766 m), 754 (m), 710 (w), 634 (w), 591 (w), 517 (w), 490 (w).
m.p. $=220-223{ }^{\circ} \mathrm{C}$

2,8-dimethyl-5,11-dihydro-7H-5,11-[2,3]epoxirenopyrido[2,3-d][1,2,4]triazolo[1,2-a]pyridazine-7,9(8H)-dione (16):

Following General Procedure A (1.0 mmol scale), the title compound was isolated by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexanes:ethyl acetate $=3: 1$ to $\left.1: 2\right)$ as an off-white solid ($171 \mathrm{mg}, 8: 1$ d.r., 63%).
$\mathbf{R}_{\mathbf{f}}=0.4\left(\mathrm{SiO}_{2}\right.$, hexanes: ethyl acetate $\left.=1: 2, \mathrm{UV}\right)$
${ }^{1}$ H NMR: $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.44(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.75(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H})$, $5.68(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{t}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{t}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.83(\mathrm{~s}, 3 \mathrm{H}), 2.53(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13}$ C NMR: ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.9,156.8,156.3,149.5,132.3,124.1,122.0,59.2,56.4,44.4,43.9$, 25.6, 24.5.

HRMS: (ESI-TOF, m/z) calculated for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{~N}_{4} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}, 273.0982$ found: 273.0986.
IR: (ATR, neat, cm^{-1}) 1772 (m), 1702 (s), 1599 (m), 1448 (w), 1394 (w), 1273 (w), 1196 (w), 1032 (w), 986 (w), 960 (m), 911 (m), 870 (w), 766 (w), 725 (m), 546 (m), 526 (w).
m.p. $=214-216^{\circ} \mathrm{C}$

4-chloro-2,8-dimethyl-5,11-dihydro-7H-5,11-[2,3]epoxirenopyrido[2,3-d][1,2,4]triazolo[1,2-a]pyridazine-7,9(8H)-dione (16m):

Following General Procedure A (1.0 mmol scale), the title compound was isolated by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexanes:ethyl acetate $=3: 1$ to $\left.1: 2\right)$ as an off-white solid ($180 \mathrm{mg},>20: 1$ d.r., 59%).
$\mathbf{R}_{\mathbf{f}}=0.5\left(\mathrm{SiO}_{2}\right.$, hexanes:ethyl acetate $\left.=1: 2, \mathrm{UV}\right)$
${ }^{1} \mathbf{H}$ NMR: $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.22(\mathrm{~s}, 1 \mathrm{H}), 6.11-6.07(\mathrm{~m}, 1 \mathrm{H}), 5.78-5.74(\mathrm{~m}, 1 \mathrm{H}), 3.97-3.92(\mathrm{~m}, 2 \mathrm{H})$, $2.89(\mathrm{~s}, 3 \mathrm{H}), 2.54(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13}$ C NMR: $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 161.1,156.6,156.2,150.7,140.2,124.5,120.9,59.0,53.5,44.3,43.8$, 25.8, 24.4.

HRMS: (ESI-TOF, m/z) calculated for $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{Cl}[\mathrm{M}+\mathrm{H}]^{+}, 307.0592$ found: 307.0601.
IR: (ATR, neat, cm^{-1}) 1774 (m), 1710 (s), 1591 (m), 1566 (m), 1452 (m), 1395 (w), 1269 (w), 1231 (w), 1193 (m), 1034 (w), 962 (w), 898 (w), 854 (w), 768 (w), 753 (w), 706 (w), 646 (w), 602 (w).
m.p. $=269-270^{\circ} \mathrm{C}$ (decomp.)

4-chloro-8-methyl-5,11-dihydro-7H-5,11-[2,3]epoxirenopyrido[2,3-d][1,2,4]triazolo[1,2-a]pyridazine-7,9(8H)-dione (16n):

Following General Procedure A (1.0 mmol scale), the title compound was isolated by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexanes:ethyl acetate $=3: 1$ to $\left.1: 2\right)$ as an off-white solid ($246 \mathrm{mg},>20: 1$ d.r., 84%)
$\mathbf{R}_{\mathbf{f}}=0.5\left(\mathrm{SiO}_{2}\right.$, hexanes:ethyl acetate $\left.=1: 2, \mathrm{UV}\right)$
${ }^{1}$ H NMR: $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.46(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.15(\mathrm{dq}, J=3.0,1.1 \mathrm{~Hz}$, $1 \mathrm{H}), 5.93-5.75(\mathrm{~m}, 1 \mathrm{H}), 4.04-3.90(\mathrm{~m}, 2 \mathrm{H}), 2.89(\mathrm{~s}, 3 \mathrm{H})$
${ }^{13}$ C NMR: $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 156.6,156.3,151.5,151.0,140.3,125.4,124.0,59.0,53.6,44.2,43.8$, 25.8.

HRMS: (ESI-TOF, m/z) calculated for $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{Cl}[\mathrm{M}+\mathrm{H}]^{+}, 293.0436$ found: 293.0448.
IR: (ATR, neat, cm^{-1}) 1768 (m), 1705 (s), 1578 (w), 1446 (m), 1403 (m), 1227 (w), 1201 (m), 1039 (w), 978 (w), 964 (m), 921 (w), 852 (m), 766 (m), 722 (m), 591 (w), 591 (m).
m.p. $=218-221^{\circ} \mathrm{C}$ (decomp.)

4-bromo-8-methyl-5,11-dihydro-7H-5,11-[2,3]epoxirenopyrido[2,3-d][1,2,4]triazolo[1,2-a]pyridazine-7,9(8H)-dione (160):

Following General Procedure A (1.0 mmol scale), the title compound was isolated by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexanes:ethyl acetate $=3: 1$ to $\left.1: 2\right)$ as an off-white solid ($285 \mathrm{mg},>20: 1$ d.r., 85%).
$\mathbf{R}_{\mathbf{f}}=0.5\left(\mathrm{SiO}_{2}\right.$, hexanes: ethyl acetate $\left.=1: 2, \mathrm{UV}\right)$
${ }^{1}$ H NMR: $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.36(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.14-6.09(\mathrm{~m}, 1 \mathrm{H}), 5.84$ $-5.79(\mathrm{~m}, 1 \mathrm{H}), 4.01-3.95(\mathrm{~m}, 2 \mathrm{H}), 2.89(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13}$ C NMR: $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 156.6,156.3,151.1,150.9,130.2,128.5,126.3,59.1,55.8,44.2,43.8$, 25.8.

HRMS: (ESI-TOF, m / z) calculated for $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{Br}[\mathrm{M}+\mathrm{H}]^{+}, 336.9931$ found: 336.9948.
IR: (ATR, neat, cm^{-1}) 1771(m), 1711(s), 1556 (m), 1456 (m), 1396 (m), 1229 (m), 1200 (m), 1035 (w), 963(m), 851(w), 765(m), 706 (w), 586 (w), 522(w).
m.p. $=253-254{ }^{\circ} \mathrm{C}$ with decomposition

8-methyl-7,9-dioxo-5,8,9,11-tetrahydro-7H-5,11-[2,3]epoxirenopyrido[2,3-d][1,2,4]triazolo[1,2-a]pyridazine-3-carbonitrile (16p):

Following General Procedure A (1.0 mmol scale), the title compound was isolated by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexanes:ethyl acetate $=3: 1$ to $\left.1: 2\right)$ as an off-white solid ($253 \mathrm{mg}, 12: 1$ d.r., 89%).
$\mathbf{R}_{\mathbf{f}}=0.5\left(\mathrm{SiO}_{2}\right.$, hexanes:ethyl acetate $\left.=1: 2, \mathrm{UV}\right)$
${ }^{1}$ H NMR: $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.86(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.86(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.89(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H})$, $5.79(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.03(\mathrm{~m}, 2 \mathrm{H}), 2.88(\mathrm{~s}, 3 \mathrm{H})$
${ }^{13}$ C NMR: $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 156.5,156.0,153.7,153.6,135.0,125.4,115.8,111.2,58.8,55.9,44.3$, 43.8, 25.9.

HRMS: (ESI-TOF, m / z) calculated for $\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{~N}_{5} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}, 284.0778$ found: 284.0784.

IR: (ATR, neat, cm^{-1}) 2236 (w), 1776(m), 1710 (s), 1456 (m), 1394 (m), 1210(w), 1035 (w), 967 (w), 914 (w), 848 (w), 766 (w), 728 (m), 646 (w), 593 (w), 544 (w), 525 (w).
m.p. $=239-241{ }^{\circ} \mathrm{C}$ (decomp.)

4-chloro-8-methyl-2-(trifluoromethyl)-5,11-dihydro-7H-5,11-[2,3]epoxirenopyrido[2,3-d][1,2,4]triazolo[1,2-a]pyridazine-7,9(8H)-dione (16q):

1.05 equivalents ($243 \mathrm{mg}, 1.05 \mathrm{mmol}$) of arene was used. With a slight modification to General Procedure A (1.0 mmol), the title compound was isolated by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexanes:ethyl acetate $=3: 1$ to 1:2) as an off-white solid ($277 \mathrm{mg},>20: 1$ d.r., 72%).
$\mathbf{R}_{\mathbf{f}}=0.7\left(\mathrm{SiO}_{2}\right.$, hexanes: ethyl acetate $\left.=1: 2, \mathrm{UV}\right)$
${ }^{1}$ H NMR: $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.77(\mathrm{~s}, 1 \mathrm{H}), 6.19(\mathrm{dd}, J=3.4,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.91(\mathrm{dd}, J=3.4,1.7 \mathrm{~Hz}, 1 \mathrm{H})$, 4.03 (m, 2H), 2.91 ($\mathrm{s}, 3 \mathrm{H}$)
${ }^{13}$ C NMR: $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 156.2,155.7,152.0,149.6(\mathrm{q}, J=36.0), 141.7,127.0,122.7(\mathrm{q}, J=2.9$ Hz), 120.6 (q, $J=275.0 \mathrm{~Hz}$), 58.4, 53.1, 44.1, 43.7, 25.9 .
${ }^{19}$ F NMR: $\left(471 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-67.65$.
HRMS: (ESI-TOF, m / z) calculated for $\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{~F}_{3} \mathrm{Cl}[\mathrm{M}+\mathrm{H}]^{+}, 361.0310$ found: 361.0310.
IR: (ATR, neat, cm^{-1}) 1779 (m), 1707 (s), 1578 (w), 1452 (m), 1394 (w), 1347 (m), 1192 (m), 1108 (w), 964 (w), 866 (w), 845 (w), 767 (w), 754 (w), 735 (m), 723 (m).
m.p. $=223-225^{\circ} \mathrm{C}$

2,8-dimethyl-7,9-dioxo-5,8,9,11-tetrahydro-7H-5,11-

[2,3]epoxirenopyrido[2,3-d][1,2,4]triazolo[1,2-a]pyridazin-4-yl pivalate (16r):

Following general procedure $\mathbf{A}(1.0 \mathrm{mmol}$ scale), the title compound was isolated by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexanes:ethyl acetate $=3: 1$ to $\left.1: 2\right)$ as an off-white solid ($185 \mathrm{mg}, 0.568 \mathrm{mmol},>20: 1$ d.r., 50%).
$\mathbf{R}_{\mathrm{f}}=0.5\left(\mathrm{SiO}_{2}\right.$, hexanes:ethyl acetate $\left.=1: 2, \mathrm{UV}\right)$
${ }^{1} \mathbf{H}$ NMR: $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.06(\mathrm{~s}, 1 \mathrm{H}), 5.80-5.73(\mathrm{~m}, 2 \mathrm{H}), 3.97-3.90(\mathrm{~m}, 2 \mathrm{H}), 2.87(\mathrm{~s}, 3 \mathrm{H}), 2.56$ (s, 3H), 1.42 ($\mathrm{s}, 9 \mathrm{H}$).
${ }^{13}$ C NMR: ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 175.6,161.6,156.8,156.4,153.0,151.5,117.4,114.5,59.0,51.9,44.4$, 43.9, 39.8, 27.2, 25.8, 24.7.

IR: (ATR, neat, cm^{-1}) 2977 (w), 1764 (m), 1714 (s), 1587 (m), 1454 (m), 1396 (w), 1344 (w), 1095 (m), 961 (w), 731 (w), 533 (w), 498 (w).

HRMS: (ESI-TOF, m / z) calculated for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{~N}_{4} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+}, 373.1507$ found: 373.1506.
m.p. $=237-238^{\circ} \mathrm{C}$

2-methyl-5,10-dihydro-1H-5,10-[2,3]epoxirenopyrido[3,4-d][1,2,4]triazolo[1,2-
a]pyridazine-1,3(2H)-dione (16s): a]pyridazine-1,3(2H)-dione (16s):

Following General Procedure A (1.0 mmol scale), the title compound was isolated by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexanes:ethyl acetate $=3: 1$ to $\left.1: 2\right)$ as an off-white solid ($187 \mathrm{mg}, 5: 1$ d.r., 72%).
$\mathbf{R}_{\mathbf{f}}=0.2\left(\mathrm{SiO}_{2}\right.$, hexanes:ethyl acetate $\left.=1: 2, \mathrm{UV}\right)$
${ }^{1} \mathbf{H}$ NMR: $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.71(\mathrm{~s}, 1 \mathrm{H}), 8.52(\mathrm{~s}, 1 \mathrm{H}), 7.21(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.74(\mathrm{~d}, J=4.4 \mathrm{~Hz}$, $1 \mathrm{H}), 5.67$ (d, $J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.93(\mathrm{~m}, 2 \mathrm{H}), 2.82(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13}$ C NMR: $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 156.8,156.7,151.8,144.7,137.9,125.4,119.056 .5,55.4,44.3,43.8$, 25.7.

HRMS: (ESI-TOF, m / z) calculated for $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{~N}_{4} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}, 259.0826$ found: 259.0828.
IR: (ATR, neat, cm ${ }^{-1}$): 3059 (w), 1709 (s), 1609 (w), 1456 (m), 1395 (m), 1269 (w), 1207 (w), 1097 (w), 692 (w), 766 (w), 733 (w), 560 (w)
m.p. $=226^{\circ} \mathrm{C}$ (decomp.)

9-bromo-2-methyl-5,10-dihydro-1H-5,10-[2,3]epoxirenopyrido[3,4d][1,2,4] triazolo[1,2-a]pyridazine-1,3(2H)-dione (16t):

Following General Procedure A (1.0 mmol scale), the title compound was isolated by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexanes:ethyl acetate $=3: 1$ to $\left.1: 2\right)$ as an off-white solid (223 mg, >20:1 d.r., 66\%).
$\mathbf{R}_{\mathbf{f}}=0.4\left(\mathrm{SiO}_{2}\right.$, hexanes:ethyl acetate $\left.=1: 2, \mathrm{UV}\right)$
${ }^{1} \mathbf{H}$ NMR: $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.81(\mathrm{~s}, 1 \mathrm{H}), 8.42(\mathrm{~s}, 1 \mathrm{H}), 6.06(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.73(\mathrm{~d}, J=4.5 \mathrm{~Hz}$, $1 \mathrm{H}), 3.97$ (m, 2H), 2.87 ($\mathrm{s}, 3 \mathrm{H}$).
${ }^{13}$ C NMR: ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 156.7, 156.5, 153.2, 143.2, 138.2, 126.8, 117.3, 55.8, 55.2, 44.1, 43.6, 25.8.

HRMS: (ESI-TOF, m / z) calculated for $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{Br}[\mathrm{M}+\mathrm{H}]^{+}, 336.9931$ found: 336.9940.
IR: (ATR, neat, cm^{-1}) 1775 (m), 1706 (s), 1595 (w), 1553 (w), 1449 (m), 1393 (w), 1192 (m), 1159 (w), 1101 (w), 1034 (w), 963 (w), 909 (w), 847 (w), 766 (w), 727 (m), 576 (m), 512(w).
m.p. $=243^{\circ} \mathrm{C}$ (decomp.)

6-chloro-2-methyl-5,10-dihydro-1H-5,10-[2,3]epoxirenopyrido[3,4-d][1,2,4]triazolo[1,2-a]pyridazine-1,3(2H)-dione (16u):

Following General Procedure A (1.0 mmol scale), the title compound was isolated by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexanes:ethyl acetate $=3: 1$ to $\left.1: 2\right)$ as an off-white solid ($166 \mathrm{mg},>20: 1$ d.r., 57%).
$\mathbf{R}_{\mathrm{f}}=0.4\left(\mathrm{SiO}_{2}\right.$, hexanes: ethyl acetate $\left.=1: 2, \mathrm{UV}\right)$
${ }^{1}$ H NMR: $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.45(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.24-5.99(\mathrm{~m}, 1 \mathrm{H}), 5.85$ -5.77 (m, 1H), 4.07-3.89 (m, 2H), 2.89 ($\mathrm{s}, 3 \mathrm{H}$)
${ }^{13}$ C NMR: ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 156.7,156.6,151.3,146.9,140.8,124.5,118.3,56.4,54.7,44.0,43.5$, 25.9.

HRMS: (ESI-TOF, m/z) calculated for $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{Cl}[\mathrm{M}+\mathrm{H}]^{+}, 293.0436$ found: 293.0437.
IR: (ATR, neat, cm ${ }^{-1}$): 1773 (w), 1710 (s) , 1601 (w), 1560 (w), 1452 (m), 1412 (w), 1395 (w), 1189 (w), 964 (w), 855 (w), 767 (w), 733 (w), 585 (w), 519 (w).
m.p. $=238-239^{\circ} \mathrm{C}$

8-methyl-5,11-dihydro-7H-5,11-[2,3]epoxirenopyrimido[4,5-d][1,2,4]triazolo[1,2-a]pyridazine-7,9(8H)-dione (16v):

Following General Procedure A (1.0 mmol scale), the title compound was isolated by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexanes:ethyl acetate $=3: 1$ to $\left.1: 2\right)$ as an off-white solid ($186 \mathrm{mg},>20: 1$ d.r., 72%).
$\mathbf{R}_{\mathbf{f}}=0.3\left(\mathrm{SiO}_{2}\right.$, hexanes:ethyl acetate $\left.=1: 2, \mathrm{UV}\right)$
${ }^{1} \mathbf{H}$ NMR: $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.25(\mathrm{~s}, 1 \mathrm{H}), 8.64(\mathrm{~s}, 1 \mathrm{H}), 5.80(\mathrm{~m}, 2 \mathrm{H}), 4.06-3.97(\mathrm{~m}, 2 \mathrm{H}), 2.88(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13}$ C NMR: $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 160.2,158.1,156.6,156.0,151.5,122.9,58.2,54.4,44.4,43.5,25.9$.
HRMS: (ESI-TOF, m/z) calculated for $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{~N}_{5} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}, 260.0778$ found: 260.0784.
IR: (ATR, neat, cm ${ }^{-1}$) 1774 (m), 1709 (s), 1594 (w), 1568 (m), 1458 (w), 1395 (w), 1218 (w), 965 (w), 848 (w), 766 (w), 677 (w), 565 (w).
m.p. $=217-218{ }^{\circ} \mathrm{C}$

3-6.3 General procedure for the cycloreversion to benzoxepines:

To a vial containing finely ground $\mathrm{KOH}(156 \mathrm{mg}$, 5.0 equiv., $90 \mathrm{wt} \%$), and substrate ($0.500 \mathrm{mmol}, 1.0$ equiv.) under nitrogen was added $i-\operatorname{PrOH}(5.0 \mathrm{~mL}, 0.1 \mathrm{M})$ and degassed with nitrogen/sonication for 15 min . The reaction was heated to $40^{\circ} \mathrm{C}$ with vigorous stirring (700 rpm) and progress was monitored by TLC in 30 min intervals. Upon completion, the reaction was cooled in an ice bath and $\mathrm{H}_{2} \mathrm{O}(5.0 \mathrm{~mL})$ were added. AcOH is then carefully added dropwise until $\mathrm{pH}=5$, upon which gas evolution is observed. CuCl_{2} dihydrate ($4.3 \mathrm{mg}, 25 \mu \mathrm{~mol}, 0.05 \mathrm{~mol} \%$). was then added as a solid, followed by sparging with oxygen, and the reaction was stirred for 10-16 h under an atmosphere of oxygen (balloon).

Work-up for hydrocarbon arene-derived benzoxepines:

Upon completion, the reaction was partitioned between diethyl ether (10 mL) and saturated brine (10 mL) and the organic layer was extracted with ether $(3 \times 10 \mathrm{~mL})$. The combined organics were washed with brine, dried over MgSO_{4}, filtered, and concentrated under vacuum and isolated by flash chromatography (SiO_{2}, hexanes:ethyl acetate mixtures). Compounds are volatile; thus, execute caution when putting the compound under vacuum.

Work-up for heteroarene-derived benzoxepines:

Upon completion, the reaction was poured into saturated aqueous $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$. The aqueous phase was extracted with ethyl acetate $(3 \times 10 \mathrm{~mL})$. The combined organics were then washed with brine, dried over MgSO_{4}, filtered, and concentrated under vacuum and isolated by flash chromatography (SiO_{2}, hexanes:ethyl acetate mixtures). Compounds are volatile; thus, caution is needed upon drying the compound under reduced pressure.

3-Benzoxepin (benzo[d]oxepine, 17a):

Following the general procedure (0.5 mmol scale), the title compound was isolated by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexanes:ethyl acetate $=1$ to $\left.10: 1\right)$ as a bright yellow solid ($59 \mathrm{mg}, 82 \%$).
$\mathbf{R}_{\mathbf{f}}=0.4\left(\mathrm{SiO}_{2}\right.$, hexanes, UV$)$
${ }^{1}$ H NMR: $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.90(\mathrm{dd}, J=5.6,3.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.63(\mathrm{dd}, J=5.5,3.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.67(\mathrm{~d}, J=$ $7.4 \mathrm{~Hz}, 2 \mathrm{H}$), 5.06 (d, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}$).
${ }^{13}$ C NMR: ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 146.1, 136.0, 129.1, 127.8, 113.3.
HRMS: (EI-TOF, m/z) calcd. For $\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{O}[\mathrm{M}]^{+}, 144.05697$; found: 144.05719.

IR: (ATR, neat, $\left.\mathrm{cm}^{-1}\right)=3050(\mathrm{w}), 2926(\mathrm{w}), 1658(\mathrm{~m}), 1635(\mathrm{~m}), 1496(\mathrm{~m}), 1438(\mathrm{~m}), 1316(\mathrm{~s}), 1254(\mathrm{~m})$, 1211 (m), 1118 (m), 1049 (s$), 921$ (m), 847 (m), 770 (s$)$.
m.p. $=81-82^{\circ} \mathrm{C}$

The analytical data were in accordance with previously reported values. ${ }^{8}$

7-bromobenzo[d]oxepine (17b):

Following the general procedure (0.5 mmol scale), the title compound was isolated by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexanes:ethyl acetate $=1: 0$ to 10:1) as a yellow solid ($86 \mathrm{mg}, 77 \%$).
$\mathbf{R}_{\mathbf{f}}=0.3\left(\mathrm{SiO}_{2}\right.$, hexanes: ethyl acetate $\left.=9: 1, \mathrm{UV}\right)$
${ }^{1}$ H NMR: $\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right) \delta 7.08(\mathrm{dd}, J=8.1,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.59(\mathrm{~d}, J=8.1$ $\mathrm{Hz}, 1 \mathrm{H}), 5.73(\mathrm{~m}, 2 \mathrm{H}), 5.10(\mathrm{~m}, 2 \mathrm{H})$
${ }^{13}$ C NMR: $\left(126 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right) \delta 148.2,147.4,139.0,135.9,132.4,131.7,131.4,121.8,113.0,112.5$
HRMS: (EI, m/z) calcd. For $\mathrm{C}_{10} \mathrm{H}_{7} \mathrm{OBr}[\mathrm{M}]^{+}, 221.9675$; found: 221.9674
IR: (ATR, neat, $\left.\mathrm{cm}^{-1}\right) 1670(\mathrm{~m}), 1634(\mathrm{~m}), 1576(\mathrm{w}), 1491(\mathrm{~m}), 1397(\mathrm{~m}), 1367(\mathrm{~m}), 1318(\mathrm{~m}), 1254(\mathrm{w})$, 1211 (m), 1130 (w), 1089 (w), 1049 (s), 888(w), 872 (w), 873 (m), 828 (m), 762 (m), 733 (w), 583 (w)
m.p. $=69-71^{\circ} \mathrm{C}$

Benzo[d]oxepine-7-carbonitrile (17c):

Following the general procedure (0.5 mmol scale), the title compound was isolated by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexanes:ethyl acetate $=1$ to $\left.10: 1\right)$ as a yellow solid ($69 \mathrm{mg}, 82 \%$).
$\mathbf{R}_{\mathbf{f}}=0.5\left(\mathrm{SiO}_{2}\right.$, hexanes: ethyl acetate $\left.=9: 1, \mathrm{UV}\right)$
${ }^{1}$ H NMR: $\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right) \delta 7.24(\mathrm{dd}, J=7.9,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{~d}, J=7.9$ $\mathrm{Hz}, 1 \mathrm{H}), 5.73(\mathrm{~m}, 2 \mathrm{H}), 5.10(\mathrm{~m}, 2 \mathrm{H})$
${ }^{13}$ C NMR: $\left(126 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right) \delta 149.6,148.5,141.8,138.0,132.8,132.6,130.4,119.2,112.5,112.1,111.8$
HRMS: (ESI-TOF, m/z) calcd. For $\mathrm{C}_{11} \mathrm{H}_{8} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}, 170.600$; found: 170.0606
IR: (ATR, neat, cm^{-1}): 3073 (w), 2227 (m), 1671 (m), 1591 (m), 1498 (w), 1326 (m), 1257 (w), 1205 (w), 1053 (s), 901 (w), 844 (w), 651 (m)
m.p. $=83-84^{\circ} \mathrm{C}$

1-(benzo[d]oxepin-7-yl)ethan-1-one (17d):

Following the general procedure (0.5 mmol scale), the title compound was isolated by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexanes:ethyl acetate $=1$ to $\left.10: 1\right)$ as a yellow solid ($68 \mathrm{mg}, 73 \%$).
$\mathbf{R}_{\mathbf{f}}=0.3\left(\mathrm{SiO}_{2}\right.$, hexanes: ethyl acetate $\left.=9: 1, \mathrm{UV}\right)$
${ }^{1}$ H NMR: $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.48-7.40(\mathrm{~m}, 1 \mathrm{H}), 7.14(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.64(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.66$ (m, 2H), 5.01 (m, 2H), 2.48 (s, 3H)
${ }^{13}$ C NMR: $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 197.0,148.0,146.4,141.1,136.4,136.3,129.1,128.51,128.48,112.4$, 112.0, 25.6

HRMS: (ESI-TOF, m / z) calcd. For $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$, 187.0754 found: 187.0756
IR: (ATR, neat, cm^{-1}) 3346 (w), 1730 (w), 1675 (s), 1593 (m), 1566 (w), 1406 (w), 1356 (m), 1311 (m), 1273 (m), 1192 (w), 1147 (w), 1082 (w), 1049 (m), 972 (w), 933 (w), 838 (m), 763 (m), 636 (w), 570 (m).
m.p. $=71-74^{\circ} \mathrm{C}$ (decomp.)

7-phenylbenzo[d]oxepine (17e):

Following the general procedure (0.5 mmol scale), the title compound was isolated by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexanes:ethyl acetate $=1$ to $\left.10: 1\right)$ as a yellow solid ($90 \mathrm{mg}, 82 \%$).
$\mathbf{R}_{\mathrm{f}}=0.5\left(\mathrm{SiO}_{2}\right.$, hexanes, UV$)$
${ }^{1}$ H NMR: $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.53-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.40(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.30(\mathrm{~m}, 1 \mathrm{H}), 7.13(\mathrm{dd}, J=7.8$, $2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.70(\mathrm{~m}, 2 \mathrm{H}), 5.10(\mathrm{~m}, 2 \mathrm{H})$
${ }^{13}$ C NMR: ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 146.20$, 146.17, 140.6, 140.2, 136.4, 135.0, 129.6, 128.9, 128.0, 127.6, 126.7, 126.3, 113.1, 112.8

HRMS (ESI-TOF, m/z) calcd. For $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}, 221.0961$; found: 221.0956
IR (ATR, neat, cm^{-1}): 3057 (w), 3037 (w), 1667 (m), 1562 (w), 1485(w), 1325 (m), 1264 (w), 1201 (w), 1051 (s), 892 (w), 849 (w), 691 (s)
m.p. $=91-92{ }^{\circ} \mathrm{C}$

6-chlorobenzo[d] oxepine (17f):

Following the general procedure (0.5 mmol scale), the title compound was isolated by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexanes:ethyl acetate $=1$ to $\left.10: 1\right)$ as a yellow oil $(68 \mathrm{mg}$, 76%).
$\mathbf{R}_{\mathbf{f}}=0.3\left(\mathrm{SiO}_{2}\right.$, hexanes: ethyl acetate $\left.=9: 1, \mathrm{UV}\right)$
${ }^{1} \mathbf{H}$ NMR: $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.04(\mathrm{dd}, J=7.8,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.63(\mathrm{dd}, J=7.8$, $1.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.91(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.85(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.74(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.25(\mathrm{~d}, J=7.0$ $\mathrm{Hz}, 1 \mathrm{H})$.
${ }^{13}$ C NMR: $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 148.0,147.9,137.9,133.3,133.0,128.6,128.6,127.8,113.9,110.5$.
HRMS: (EI-TOF, m / z) calcd. For $\mathrm{C}_{10} \mathrm{H}_{7} \mathrm{OCl}[\mathrm{M}]^{+}, 178.01799$; found: 178.01804 .
IR: (ATR, neat, cm^{-1}) $=3060$ (w), 1667 (m), 1636 (m), 1466 (w), 1433 (s), 1299 (w), 1223 (w), 1080 (m), 1053 (s), 938 (m), 893 (w), 851 (w), 826 (w), 803 (w), 762 (s).

Benzo[d]oxepine-6-carbonitrile (17g):

Following the general procedure (0.5 mmol scale), the title compound was isolated by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexanes:ethyl acetate $=1$ to $\left.10: 1\right)$ as a yellow solid (62 $\mathrm{mg}, 73 \%$).
$\mathbf{R}_{\mathbf{f}}=0.5\left(\mathrm{SiO}_{2}\right.$, hexanes: ethyl acetate $\left.=9: 1, \mathrm{UV}\right)$
${ }^{1}$ H NMR: $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.19(\mathrm{dd}, J=7.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{dd}, J=7.7$, $1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.84(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.73(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.53(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.09(\mathrm{~d}, J=7.3$ $\mathrm{Hz}, 1 \mathrm{H})$.
${ }^{13}$ C NMR: $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 149.9,148.0,139.5,137.4,132.8,131.4,128.1,117.5,112.7,111.5,109.8$.
HRMS: (ESI-TOF, m / z) calcd. For $\mathrm{C}_{11} \mathrm{H}_{8} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}, 170.0600$; found: 170.0603.
IR: (ATR, neat, $\left.\mathrm{cm}^{-1}\right)=3077(\mathrm{w}), 3010(\mathrm{w}), 2226(\mathrm{~m}), 1672(\mathrm{~s}), 1634(\mathrm{~m}), 1466(\mathrm{~m}), 1449(\mathrm{~m})$,
1312 (s), 1241 (m), 1093 (m), 1066 (m), 957 (m), 922 (m), 851 (m), 803(m), 767 (m).
m.p. $=81-84^{\circ} \mathrm{C}$

1-(benzo[d]oxepin-6-yl)ethan-1-one (17h):

Following the general procedure (0.5 mmol scale), the title compound was isolated by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexanes:ethyl acetate $=1$ to $\left.10: 1\right)$ as a yellow oil $(65 \mathrm{mg}$, 70%).
$\mathbf{R}_{\mathbf{f}}=0.5$ in $\left(\mathrm{SiO}_{2}\right.$, hexanes:ethyl acetate $\left.=9: 1, \mathrm{UV}\right)$
${ }^{1}$ H NMR: $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.25(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{dd}, J=7.7,1.3 \mathrm{~Hz}$, $1 \mathrm{H}), 5.95(\mathrm{~m}, 2 \mathrm{H}), 5.82(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.40(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.52(\mathrm{~s}, 3 \mathrm{H})$
${ }^{13}$ C NMR: ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 202.9,148.6,147.9,139.0,137.7,133.9,131.9,127.3,127.1,114.5$, 112.3, 30.6

HRMS: (ESI-TOF, m / z) calcd. For $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{O}[\mathrm{M}]^{+}, 186.06753$; found: 186.06801
IR: (ATR, neat, cm^{-1}) 3066 (w), 1678 (s), 1633 (m), 1444 (w), 1352 (m), 1260 (s), 1056(s), 1014 (m), 980 (m), 938 (m), 896 (w), 852 (w), 815 (m), 766 (s), 592 (w)

Benzo[1,2-d:3,4-d']bis(oxepine) (17i):
Epoxidation was telescoped using General Procedure B without purification. After extraction with ethyl acetate ($3 \times 15 \mathrm{~mL}$), the organic extracts were combined and run through a plug of silica gel, and flushed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$. The organic phase was then dried over MgSO_{4} and concentrated under reduced pressure. No flash chromatography was performed, and the crude mixture was immediately subjected to cycloreversion conditions. The title compound was isolated by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexanes:ethyl acetate $=1$ to 10:1) as a yellow solid ($35 \mathrm{mg}, 33 \%$).
$\mathbf{R}_{\mathbf{f}}=0.4\left(\mathrm{SiO}_{2}\right.$, hexanes, UV$)$
${ }^{1}$ H NMR: $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.55(\mathrm{~s}, 2 \mathrm{H}), 6.00(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.95(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.47(\mathrm{~d}, J$ $=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.34(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H})$
${ }^{13}$ C NMR: $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 147.5,147.3,135.2,133.3,128.5,114.7,112.0$
HRMS: (EI, m/z) calculated for $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{O}_{2}[\mathrm{M}]^{+}$calculated: 210.06753 found: 210.06800
IR: (ATR, neat, cm^{-1}) 3052 (w), 1660 (m), 1632 (m), 1480 (w), 1401 (w), 1275 (m), 1121 (s), 978 (w), 950 (w), 854 (w), 759 (s , 738 (w)
m.p. $=83-86^{\circ} \mathrm{C}$

Oxepino[4,5-b]pyridine (17j):

Following the general procedure (0.5 mmol scale), the title compound was isolated by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexanes:ethyl acetate $=10: 1$ to $\left.2: 1\right)$ as a yellow solid (90 $\mathrm{mg}, 82 \%$).
$\mathbf{R}_{\mathbf{f}}=0.5\left(\mathrm{SiO}_{2}\right.$, hexanes: ethyl acetate $\left.=1: 1, \mathrm{UV}\right)$
${ }^{1}$ H NMR: $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.05(\mathrm{~s}, 1 \mathrm{H}), 6.84(\mathrm{dd}, J=7.7,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{dd}, J=7.7,4.8 \mathrm{~Hz}, 1 \mathrm{H})$, $5.81(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.68(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.28(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.93(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13}$ C NMR: $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 155.9,149.0,147.4,147.1,135.2,132.9,122.0,114.9,110.6$.
HRMS: (ESI-TOF, m/z) calcd. For $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}, 146.0600$; found: 146.0600
IR: (ATR, neat, cm^{-1}) 3046 (w), 1671 (m), 1634 (m), 1571 (m), 1451 (s), 1303 (w), 1271 (w), 1228 (w), 1121 (m), 1044 (w), 873 (w), 789 (w), 575 (w).

4-methyloxepino[4,5-b]pyridine (17k):

Following the general procedure (0.5 mmol scale), the title compound was isolated by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexanes:ethyl acetate $=10: 1$ to 2:1) as a yellow oil $(59 \mathrm{mg}$, 74\%).
$\mathbf{R}_{\mathbf{f}}=0.3\left(\mathrm{SiO}_{2}\right.$, hexanes: ethyl acetate $\left.=1: 1, \mathrm{UV}\right)$
${ }^{1}$ H NMR: $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.04(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.72(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.02(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, 5.95 (d, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.55(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.36(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.14(\mathrm{~s}, 3 \mathrm{H})$
${ }^{13}$ C NMR: $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 155.4,150.1,147.9,147.5,144.0,131.3,123.8,116.5,109.0,19.3$
HRMS: (ESI-TOF, m/z) calcd. For $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}, 160.0757$; found: 160.0776
IR: (ATR, neat, cm^{-1}) 3052 (w), 2979 (w), 1668 (m), 1633 (m), 1581 (m), 1496 (s), 1264 (w), 1218 (w), 1109 (m), 1019 (w), 833 (w), 765 (w), 681 (w)

2-methyloxepino[4,5-b]pyridine (171):

Following the general procedure (0.5 mmol scale), the title compound was isolated by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexanes:ethyl acetate $=10: 1$ to $\left.2: 1\right)$ as a yellow oil ($62 \mathrm{mg}, 78 \%$).
$\mathbf{R}_{\mathbf{f}}=0.3\left(\mathrm{SiO}_{2}\right.$, hexanes: ethyl acetate $\left.=1: 1, \mathrm{UV}\right)$
${ }^{1} \mathbf{H}$ NMR: $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.78(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.65(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.84(\mathrm{dd}, J=7.6,1.8 \mathrm{~Hz}$, $1 \mathrm{H}), 5.69(\mathrm{dd}, J=7.4,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.31(\mathrm{dd}, J=7.6,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.98(\mathrm{dd}, J=7.4,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.35(\mathrm{~d}, J$ $=1.8 \mathrm{~Hz}, 3 \mathrm{H})$
${ }^{13}$ C NMR: $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 156.3,155.1,148.9,146.4,135.8,129.8,121.3,115.4,110.9,24.0$
HRMS: (ESI-TOF, m / z) calcd. For $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}, 160.0757$; found: 160.0763
IR: (ATR, neat, cm^{-1}) 3052 (w), 1670 (m), 1634 (m), 1587 (m), 1469 (s), 1284 (w), 1213 (w), 1129 (m), 1044 (w), 835 (w), 759 (w), 614(w), 557 (w)

4-chloro-2-methyloxepino[4,5-b]pyridine (17m):

Following the general procedure (0.5 mmol scale), the title compound was isolated by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexanes:ethyl acetate $=10: 1$ to $\left.2: 1\right)$ as a yellow oil ($70.2 \mathrm{mg}, 0.36 \mathrm{mmol}, 73 \%$).
$\mathbf{R}_{\mathbf{f}}=0.5\left(\mathrm{SiO}_{2}\right.$, hexanes: ethyl acetate $\left.=1: 1, \mathrm{UV}\right)$
${ }^{1} H$ NMR: $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.79(\mathrm{~s}, 1 \mathrm{H}), 5.98(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.89(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.57(\mathrm{~d}, J$ $=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.44(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H})$
${ }^{13}$ C NMR: $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 157.2,156.4,150.6,148.1,141.4,127.6,122.0,115.6,107.6,23.9$
HRMS: (ESI-TOF, m/z) calculated for $\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{NOCl}[\mathrm{M}+\mathrm{H}]^{+}, 194.0367$ found: 194.0373
IR: (ATR, neat, cm^{-1}): 3006 (w), 2921 (w), 1669(m), 1634 (m), 1572 (m), 1538 (m), 1443 (w), 1262 (w), 1048 (s), 955 (w), 808 (w)

4-chlorooxepino[4,5-b]pyridine (17n):

Following the general procedure (0.5 mmol scale), the title compound was isolated by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexanes:ethyl acetate $=10: 1$ to 2:1) as a yellow solid (65 $\mathrm{mg}, 72 \%$).
$\mathbf{R}_{\mathrm{f}}=0.7\left(\mathrm{SiO}_{2}\right.$, hexanes: ethyl acetate $\left.=1: 1, \mathrm{UV}\right)$
${ }^{1}$ H NMR: $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.98(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.96(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$, $5.89(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.56(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.43(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$
${ }^{13}$ C NMR: $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 157.3,150.7,148.9,147.9,141.1,130.8,122.9,115.4,107.2$
HRMS: (ESI-TOF, m/z) calcd. For $\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{ClO}[\mathrm{M}+\mathrm{H}]^{+}, 180.0211$; found: 180.0198
IR: (ATR, neat, cm^{-1}) 3083 (w), 1670 (m), 1634 (m), 1552 (w), 1438 (s), 1389 (w), 1302 (m), 1262 (w), 1199 (w), 1098 (m), 900 (w), 853 (w), 786 (w), 760 (w), 567 (w)
m.p. $=67-71^{\circ} \mathrm{C}$ (decomp.)

4-bromooxepino[4,5-b]pyridine (17o):

Following the general procedure (0.5 mmol scale), the title compound was isolated by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexanes:ethyl acetate $=10: 1$ to 2:1) as a yellow solid (81 $\mathrm{mg}, 72 \%$).
$\mathbf{R}_{\mathbf{f}}=0.7\left(\mathrm{SiO}_{2}\right.$, hexanes: ethyl acetate $\left.=1: 1, \mathrm{UV}\right)$
${ }^{1} \mathrm{H}$ NMR: $\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right) \delta 7.90(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.07(\mathrm{~d}, J=7.4 \mathrm{~Hz}$, $1 \mathrm{H}), 6.01(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.63(\mathrm{dd}, J=7.3,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.48(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H})$
${ }^{13}$ C NMR: $\left(126 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right) \delta 157.5,152.0,150.2,149.0,132.92,132.88,127.1,116.3,111.0$
HRMS: (ESI-TOF, m/z) calculated for $\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{NOBr}[\mathrm{M}+\mathrm{H}]^{+}, 223.9706$ found: 223.9711
IR: (ATR, neat, cm^{-1}) 3057 (w), 1751 (m), 1668 (m), 1633 (m), 1545 (w), 1494 (s), 1387 (w), 1259 (w), 1223 (w), 1197 (m), 1095 (w), 888 (w), 765 (w), 651 (w)
m.p. $=61-64^{\circ} \mathrm{C}$ (decomp.)

Oxepino[4,5-b]pyridine-3-carboxamide (17p):

Following the general procedure (0.5 mmol scale), the title compound was isolated by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexanes:ethyl acetate $=10: 1$ to $\left.2: 1\right)$ as a yellow solid ($60 \mathrm{mg}, 63 \%$).
$\mathbf{R}_{\mathbf{f}}=0.2\left(\mathrm{SiO}_{2}\right.$, hexanes: ethyl acetate $\left.=1: 3, \mathrm{UV}\right)$
${ }^{1}$ H NMR: ($\left.500 \mathrm{MHz}, \mathrm{MeOD}\right) \delta 8.40(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.94(\mathrm{~d}, J=7.9 \mathrm{~Hz}$, $1 \mathrm{H}), 5.76$ (d, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.23$ (d, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.09$ (d, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H})$
${ }^{13}$ C NMR: (126 MHz, MeOD) δ 169.2, 159.8, 152.2, 148.8, 147.2, 135.8, 134.4, 129.3, 113.9, 110.6

HRMS: (ESI-TOF, m/z) calculated for $\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}, 189.0659$ found: 189.0657
IR: (ATR, neat, cm ${ }^{-1}$) 3288 (m, br), 2980 (w), 1673 (m), 1629 (s), 1630 (s), 1458 (m), 1399 (w), 1234 (s), 927 (w).
m.p. $=122^{\circ} \mathrm{C}$ (decomp.)

4-ethoxy-2-(trifluoromethyl)oxepino[4,5-b]pyridine (17q):
Ethanol was used instead of i-PrOH. Following the general procedure $(0.5 \mathrm{mmol}$ scale), the title compound was isolated by flash chromatography (SiO_{2}, hexanes:ethyl acetate $=10: 1$ to $2: 1$) as a yellow solid ($99 \mathrm{mg}, 77 \%$).
$\mathbf{R}_{\mathbf{f}}=0.6\left(\mathrm{SiO}_{2}\right.$, hexanes: ethyl acetate $\left.=1: 1, \mathrm{UV}\right)$
${ }^{1} \mathbf{H}$ NMR: $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.76(\mathrm{~s}, 1 \mathrm{H}), 5.95(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.86(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.55(\mathrm{~d}, J$ $=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.46(\mathrm{dd}, J=7.4,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.07(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.43(\mathrm{td}, J=7.0,0.9 \mathrm{~Hz}, 3 \mathrm{H})$
${ }^{13}$ C NMR: $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 161.1,157.1,150.9,148.4,147.6(\mathrm{q}, J=34.3 \mathrm{~Hz}), 123.7,121.3(\mathrm{q}, J=$ 274.1 Hz), 115.3, 104.7, 102.7 (q, $J=3.0 \mathrm{~Hz}$), $64.8,14.5$

HRMS: (ESI-TOF, m/z) calcd. For $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{NO}_{2} \mathrm{~F}_{3}[\mathrm{M}+\mathrm{H}]^{+}, 258.0736$; found: 258.0746
IR: (ATR, neat, cm^{-1}): 2988 (w), 2944 (w), 1740 (m), 1591 (m), 1419 (s), 1386 (w), 1244 (w), 1181 (w), 1093 (s), 911 (w), 768 (w)
m.p. $=128-131{ }^{\circ} \mathrm{C}$ (decomp.)

2-methyl-4a,9a-dihydrooxepino[4,5-b]pyridin-4(1H)-one (17r):

Following the general procedure (0.5 mmol scale), the title compound was isolated by flash chromatography $\left(\mathrm{SiO}_{2}, \mathrm{MeOH}\right.$ in ethyl acetate, 0 to $\left.30 \%\right)$ as a yellow oil (63 $\mathrm{mg}, 72 \%$).
$\mathbf{R}_{\mathrm{f}}=0.8\left(\mathrm{SiO}_{2}\right.$, methanol, UV$)$
${ }^{1}$ H NMR: $(500 \mathrm{MHz}, \mathrm{MeOD}) \delta 6.23(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.12(\mathrm{~s}, 1 \mathrm{H}), 5.89(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.83(\mathrm{~d}, J$ $=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.46(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H})$
${ }^{13}$ C NMR: (126 MHz , MeOD) $\delta 178.2,154.3,149.3,147.1,145.8,122.7,115.1,110.5,109.5,18.8$
HRMS: (ESI-TOF, m/z) calculated for $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}, 176.0706$ found: 176.0713
IR: (ATR, neat, cm^{-1}) 3281 (m, b), 1642 (m), 1602 (m), 1494 (s), 1250 (w), 1214 (w), 1167 (w), 968 (w), 760 (w)
m.p. $=$ color change from yellow to grey (onset at $131^{\circ} \mathrm{C}$, assumed decomposition) took place slowly and no melting was observed up to $250^{\circ} \mathrm{C}$

Oxepino[4,5-c]pyridine (17s):

Following the general procedure (0.5 mmol scale), the title compound was isolated by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexanes:ethyl acetate $=10: 1$ to $\left.2: 1\right)$ as a yellow oil $(58 \mathrm{mg}$, 79%).
$\mathbf{R}_{\mathbf{f}}=0.4\left(\mathrm{SiO}_{2}\right.$, hexanes:ethyl acetate $\left.=2: 1, \mathrm{UV}\right)$
${ }^{1}$ H NMR: $\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right) \delta 8.07(\mathrm{~s}, 1 \mathrm{H}), 7.76(\mathrm{~s}, 1 \mathrm{H}), 6.54(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.78(\mathrm{~d}, J=7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 5.72(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.10(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.03(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$
${ }^{13}$ C NMR: $\left(126 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right) \delta 151.2,151.1,149.6,148.6,144.3,131.8,123.4,111.5,110.6$
HRMS: (ESI-TOF, m/z) calculated for $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}, 146.0600$ found: 146.0601
IR: (ATR, neat, cm ${ }^{-1}$) 3028 (w), 1667 (m), 1634 (w), 1582 (m), 1495 (w), 1404 (s), 1327 (w), 1220 (w), 1045 (s), 842 (m), 760 (m)

4-bromooxepino[4,5-c]pyridine (17t):
Following the general procedure (0.5 mmol scale), the title compound was isolated by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexanes:ethyl acetate $=10: 1$ to $\left.2: 1\right)$ as a yellow oil $(72 \mathrm{mg}$, 64\%).
$\mathbf{R}_{\mathbf{f}}=0.2\left(\mathrm{SiO}_{2}\right.$, hexanes: ethyl acetate $\left.=1: 1, \mathrm{UV}\right)$
${ }^{1} \mathbf{H}$ NMR: $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.27(\mathrm{~s}, 1 \mathrm{H}), 7.69(\mathrm{~s}, 1 \mathrm{H}), 5.89(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.78(\mathrm{~d}, J=7.3 \mathrm{~Hz}$, $1 \mathrm{H}), 5.49(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.11(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H})$
${ }^{13}$ C NMR: $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 151.9,151.8,149.4,147.5,142.5,132.7,120.6,110.5,110.1$
HRMS: (ESI-TOF, m/z) calculated for $\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{BrNO}[\mathrm{M}+\mathrm{H}]^{+}, 223.9706$ found: 223.9696
IR: (ATR, neat, cm^{-1}): 3038 (w), 3001 (w), 1669 (m), 1629 (m), 1564 (s), 1531 (w), 1247 (s), 1211 (w), 1196 (w), 1055 (s), 936 (w), 760 (w)
m.p. $=81^{\circ} \mathrm{C}$ (decomp.)

1-chlorooxepino[4,5-c]pyridine (17u):

Following the general procedure (0.5 mmol scale), the title compound was isolated by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexanes:ethyl acetate $=10: 1$ to $\left.2: 1\right)$ as a yellow oil $(60 \mathrm{mg}$, 67\%).
$\mathbf{R}_{\mathbf{f}}=0.5\left(\mathrm{SiO}_{2}\right.$, hexanes: ethyl acetate $\left.=2: 1, \mathrm{UV}\right)$
${ }^{1} \mathbf{H}$ NMR: $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.94(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.50(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.89(\mathrm{~m}, 2 \mathrm{H}), 5.62(\mathrm{~d}, J$ $=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.14(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H})$
${ }^{13}$ C NMR: $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 152.1,149.7,149.4,149.0,146.8,129.4,122.3,111.6,109.9$

HRMS: (ESI-TOF, m/z) calculated for $\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{NOCl}[\mathrm{M}+\mathrm{H}]^{+}, 180.0211$ found: 180.0219
IR: (ATR, neat, cm^{-1}) 3053 (w), 1668 (m), 1631 (m), 1466 (s), 1392 (w), 1288 (w), 1185 (w), 1057 (m), 901 (w), 763 (w)

Oxepino[4,5-d]pyrimidine (17v):

Extraction from 4:1 chloroform:isopropanol (3x15mL)
Following the general procedure (0.5 mmol scale), the title compound was isolated by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexanes:ethyl acetate $=3: 1$ to $1: 2$) as a yellow oil (32 mg , 44\%).
$\mathbf{R}_{\mathbf{f}}=0.24\left(\mathrm{SiO}_{2}\right.$, hexanes:ethyl acetate $\left.=1: 2, \mathrm{UV}\right)$
${ }^{1} H$ NMR: $\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 8.46(\mathrm{~s}, 1 \mathrm{H}), 7.80(\mathrm{~s}, 1 \mathrm{H}), 5.99(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.74(\mathrm{~d}, J=7.7 \mathrm{~Hz}$, $1 \mathrm{H}), 5.05(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.01(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H})$
${ }^{13}$ C NMR: $\left(126 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 165.2,158.2,155.6,154.5,149.9,132.0,112.7,107.6$
HRMS: (ESI-TOF, m/z) calculated for $\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}, 147.0553$ found: 147.0560
IR: (ATR, neat, cm^{-1}) 1672 (m), 1563 (m), 1456 (s), 1391 (w), 1309 (w), 1049 (m), 767 (w)

3-7. Derivatization

4-methyl-1-(4,5,6-trihydroxycyclohex-2-en-1-yl)-1,2,4-triazolidine-3,5-dione (18):

Compound $8 \mathbf{~ a ~}(20 \mathrm{mg}, 0.14 \mathrm{mmol})$ and water $(1.0 \mathrm{~mL}, 0.1 \mathrm{M})$ were added to a 4 mL vial, followed by perchloric acid $(90 \mathrm{mg}, 70 \mathrm{wt} \%, 6.5$ equiv.). The reaction mixture was capped and stirred at $100^{\circ} \mathrm{C}$ until complete consumption of starting material was observed by TLC. The reaction was concentrated under reduced pressure at room temperature, loaded onto celite and isolated by flash chromatography ($\mathrm{MeCN}, \mathrm{SiO}_{2}$, hexanes 100% to ethyl acetate 100% to $7: 3$ ethyl acetate: methanol). The fractions containing product were evaporated under reduced pressure, dissolved in acetonitrile, and filtered (ptfe) to remove any residual silica and evaporated once more. The desired product was obtained as a white solid ($17 \mathrm{mg}, 71 \%$).
$\mathbf{R}_{\mathrm{f}}=0.2\left(\mathrm{SiO}_{2}\right.$, ethyl acetate:methanol $\left.=7: 3, \mathrm{KMnO}_{4}\right)$
${ }^{\mathbf{1}} \mathrm{H}$ NMR: $\left(500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}, \mathrm{MeOD}\right.$ ref.) $\delta 6.09$ (dddd, $\left.J=10.1,4.3,2.1,1.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.75$ (ddt, $J=10.1$, $3.7,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.99(\mathrm{ddt}, J=5.6,3.7,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.45-4.33(\mathrm{~m}, 1 \mathrm{H}), 4.17(\mathrm{dd}, J=9.0,5.6 \mathrm{~Hz}, 1 \mathrm{H})$, 4.05 (dd, $J=9.0,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.05(\mathrm{~s}, 3 \mathrm{H})$
${ }^{13}$ C NMR: (126 MHz, $\mathrm{D}_{2} \mathrm{O}, \mathrm{MeOD}$ ref.) $\delta 156.4,156.3,133.7,125.4,70.8,69.1,66.5,55.7,25.8$
HRMS: (ESI-TOF, m/z) calculated for $\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{~N}_{3} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+}, 244.09280$ found: 244.0926
IR: (ATR, neat, cm^{-1}) 3332 (s, br.), 2924 (w), 1680 (s), 1483 (m), 1399 (m), 1092 (w), 1036 (w), 763 (w), 618 (w)

```
m.p. = 223 ' C (decomp.)
```


1-(4,5-dichloro-6-hydroxycyclohex-2-en-1-yl)-4-methyl-1,2,4-triazolidine-3,5dione (19):

Compound 8a ($30 \mathrm{mg}, 0.14 \mathrm{mmol}$) and concentrated $\mathrm{HCl}(14 \mathrm{~mL}, 0.01 \mathrm{M})$ were added to a 20 mL vial, and stirred at room temperature for 3 hours. Afterwards, the reaction was portioned between water $(14 \mathrm{~mL})$ and ethyl acetate $(14 \mathrm{~mL})$. The organic layer was extracted with ethyl acetate $(3 \times 15 \mathrm{~mL})$. The combined organic layers, were dried with MgSO_{4}, filtered, and concentrated under reduced pressure. The crude reaction mixture was loaded on celite and isolated by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{SiO}_{2}\right.$, hexanes:ethyl acetate $3: 1$ to 100% ethyl acetate) to yield the desired product as a white solid ($23 \mathrm{mg}, 57 \%$).
$\mathbf{R}_{\mathrm{f}}=0.82\left(\mathrm{SiO}_{2}\right.$, ethyl acetate, UV$)$
${ }^{1} H$ NMR: $(500 \mathrm{MHz}, \mathrm{MeOD}) \delta 5.82(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.63(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.81-4.66(\mathrm{~m}, 2 \mathrm{H})$, $4.10(\mathrm{dd}, J=10.9,8.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.00(\mathrm{dd}, J=10.9,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.01(\mathrm{~s}, 3 \mathrm{H})$
${ }^{13}$ C NMR: (126 MHz, MeOD) $\delta 154.2^{*}, 130.7,129.7,72.9,69.4,63.2,58.5,25.5$ ($* 2$ signals assigned by HMBC)

HRMS: (ESI-TOF, m/z) calculated for $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{Cl}_{2}[\mathrm{M}+\mathrm{H}]^{+}, 280.0250$ found: 280.0257
IR (ATR, neat, cm^{-1}): 3331 (s, br.), 2970 (w), 1740 (m), 1677 (s), 1488 (m), 1366(m), 1224 (w), 1121 (w), 857(w), 764 (m), 537 (w).
m.p. $=197-199{ }^{\circ} \mathrm{C}$

(1R,5S,6R)-4-(tert-butyl)-5-hydroxy-7-oxabicyclo[4.1.0]hept-3-en-2-one (20):
To a vial containing finely ground $\mathrm{KOH}(51 \mathrm{mg}, 10.0$ equiv., $90 \mathrm{wt} \%$), and $\mathbf{8 b}$ (30 mg , 5:1 r.r., 0.09 mmol) under nitrogen was added $i-\mathrm{PrOH}(1.1 \mathrm{~mL}, 0.1 \mathrm{M})$ and degassed with sonication and nitrogen for 15 min . The reaction was heated to $40^{\circ} \mathrm{C}$ with vigorous stirring (1000 rpm) for 2 hours. Upon completion, the reaction was cooled in an ice bath and $\mathrm{H}_{2} \mathrm{O}(1.1 \mathrm{~mL})$ was added. AcOH is then carefully added dropwise until pH 5 . The semicarbazide intermediate was then extracted out with ethyl acetate $(3 \times 5 \mathrm{~mL})$. The organic layers were combined, dried with NaHCO_{3} and concentrated under reduced pressure.

The crude residue was then re-dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.1 \mathrm{~mL}, 0.1 \mathrm{M})$, and the resulting solution was sparged with nitrogen for 15 minutes. To this vial, nickel oxide $\left(\mathrm{Ni}_{2} \mathrm{O}_{3}, 30 \%\right.$ active basis, $150 \mathrm{mg}, 3.0$ equiv.) was added as a solid under a stream of nitrogen. The solution was agitated manually for 1 minute and filtered through a celite plug (pipette). To this solution, 5,10,15,20-Tetraphenyl-21H,23H-porphine($1.0 \mathrm{mg}, 0.02$ equiv.) was added and the solution was sparged with oxygen for 20 minutes and cooled to $-40^{\circ} \mathrm{C}$. Upon cooling, an overhead lamp was used to irradiate the reaction mixture for 4 hours at $-40^{\circ} \mathrm{C}$. Afterwards, the overhead lamp was turned off and N, N-diisopropylethylamine ($52.0 \mathrm{mg}, 2.0$ equiv.) was added $-40^{\circ} \mathrm{C}$
and the solution was stirred for 4 hours at $-40^{\circ} \mathrm{C}$. The reaction was worked up by adding $\mathrm{H}_{2} \mathrm{O}(3 \mathrm{~mL})$ and extracting the organic layer $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 3 \mathrm{~mL})$. The organic layer was dried with MgSO_{4} and concentrated under reduced pressure. The resultant crude mixture was loaded onto celite and isolated by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{SiO}_{2}\right.$, hexanes: ethyl acetate $=10: 1$ to $\left.3: 1\right)$ to give the desired compound as a colorless oil ($5.7 \mathrm{mg}, 35 \%$).
$\mathbf{R}_{\mathrm{f}}=0.4\left(\mathrm{SiO}_{2}\right.$, hexanes: ethyl acetate $\left.=1: 1, \mathrm{UV}, \mathrm{KMnO}_{4}\right)$
${ }^{1} \mathbf{H}$ NMR: $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.95(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.86(\mathrm{ddd}, J=9.3,2.0,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{dd}, J$ $=3.8,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.45(\mathrm{ddd}, J=3.8,1.8,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.89-1.72(\mathrm{~m}, 1 \mathrm{H}), 1.22(\mathrm{~s}, 9 \mathrm{H})$
${ }^{13}$ C NMR: $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 195.3,166.0,121.7,63.7,55.9,52.1,36.0,29.5$
IR: (ATR, neat, cm^{-1}) 3401 (w, br.), 2965(m), 1665 (s), 1370 (2), 1248 (w), 1037 (m), 854 (w), 732 (w)
HRMS: (ESI-TOF, m / z) calculated for $\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{O}_{3}[\mathrm{M}+\mathrm{Na}]^{+}, 183.1016$ found: 183.1015

(1R,2S,5R,6S)-3-(tert-butyl)-7-oxabicyclo[4.1.0]hept-3-ene-2,5-diol (21):
To a vial containing finely ground $\mathrm{KOH}(51 \mathrm{mg}, 10$ equiv., $90 \mathrm{wt} \%$), and $\mathbf{8 b}$ ($5: 1$ r.r., $0.09 \mathrm{mmol})$ under nitrogen was added $i-\mathrm{PrOH}(1.1 \mathrm{~mL}, 0.1 \mathrm{M})$ and the solution degassed with sonication and nitrogen for 15 min . The reaction was heated to $40^{\circ} \mathrm{C}$ with vigorous stirring (1000 rpm) for 2 hours. Upon completion, the reaction was cooled in an ice bath and $\mathrm{H}_{2} \mathrm{O}(1.1 \mathrm{~mL})$ was added. AcOH was then carefully added dropwise until pH 5 . The aqueous phase was then extracted with ethyl acetate $(3 \times 5 \mathrm{~mL})$. The combined organic layers were dried with MgSO_{4} and concentrated under reduced pressure.

The crude residue was then re-dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.1 \mathrm{~mL}, 0.1 \mathrm{M})$, and the resulting solution was sparged with nitrogen for 15 minutes. To this vial, nickel oxide $\left(\mathrm{Ni}_{2} \mathrm{O}_{3}, 30 \%\right.$ active basis, $150 \mathrm{mg}, 3.0$ equiv.) was added as a solid under a stream of nitrogen. The solution was agitated manually for 1 minute, filtered through a celite plug. To this solution, $5,10,15,20$-tetraphenyl- $21 \mathrm{H}, 23 \mathrm{H}$-porphine ($1.0 \mathrm{mg}, 0.02$ equiv.) was added and the solution was sparged with oxygen for 20 minutes and cooled to $-40^{\circ} \mathrm{C}$. Upon cooling, an overhead lamp was used to irradiate the reaction mixture for 4 hours at $-40^{\circ} \mathrm{C}$. Afterwards, a solution of thiourea ($42 \mathrm{mg}, 6.0$ equiv.) in methanol (1.0 mL) was added and the reaction was warmed to room temperature. The reaction was diluted with $\mathrm{H}_{2} \mathrm{O}(3 \mathrm{~mL})$ and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(3 \times 3 \mathrm{~mL})$. The combined organic layers were dried with MgSO_{4} and concentrated under reduced pressure. The resultant crude mixture was loaded onto celite and isolated by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$, SiO_{2}, hexanes: ethyl acetate $=3: 1$ to $1: 3$) to give the desired compound as a colorless oil ($6.3 \mathrm{mg}, 38 \%$).
$\mathbf{R}_{\mathrm{f}}=0.2\left(\mathrm{SiO}_{2}\right.$, hexanes:ethyl acetate $\left.=1: 2, \mathrm{UV}, \mathrm{KMnO}_{4}\right)$
${ }^{1}$ H NMR: $\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right) \delta 5.61(\mathrm{dd}, J=5.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.36-4.28(\mathrm{~m}$, $1 \mathrm{H}), 3.27(\mathrm{ddd}, J=3.8,2.6,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.21-3.13(\mathrm{~m}, 1 \mathrm{H}), 3.09(\mathrm{~s}, 1 \mathrm{H}), 2.89(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.08$ (s, 9H)
${ }^{13}$ C NMR: $\left(126 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right) \delta 147.8,120.8,64.0,63.5,54.0,51.9,35.7,29.8$

IR: (ATR, neat, $\left.\mathrm{cm}^{-1}\right) 3324$ (m, br.), 2961 (m), 2877 (w), 1665 (w), 1462 (2), 1366 (w), 1251 (w), 1022 (s), 1003 (s), 834 (w), 804 (w)

HRMS: (ESI-TOF, m/z) calculated for $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}, 207.0997$ found: 207.1006

1,2-dihydrobenzo[d]oxepine (22):

Benzoxepine $17 \mathbf{a}(67 \mathrm{mg}, 0.46 \mathrm{mmol})$ and methanol ($2.0 \mathrm{~mL}, 0.2 \mathrm{M}$) were added to a 4 mL vial. The solution was sparged with nitrogen under sonication for 15 minutes, followed by the addition of $\mathrm{Rh} / \mathrm{Al}_{2} \mathrm{O}_{3}(29 \mathrm{mg}, 3 \mathrm{~mol} \%)$. and sparged for an additional 10 minutes. The reaction mixture was sparged with hydrogen for 3 minutes and left to stir (1000 rpm) under a hydrogen atmosphere (1 atm) until full completion of the starting material was observed (ca. 1 hour). The reaction was filtered through celite and concentrating under reduced pressure. The resultant crude mixture was loaded onto celite and isolated by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{SiO}_{2}\right.$, hexanes $\left.100 \%\right)$ to yield the desired compound as a colorless oil ($60 \mathrm{mg}, 88 \%$).
$\mathbf{R}_{\mathbf{f}}=0.6\left(\mathrm{SiO}_{2}\right.$, hexanes: ethyl acetate $\left.=9: 1, \mathrm{UV}\right)$
${ }^{1} \mathbf{H}$ NMR: $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.18-7.10(\mathrm{~m}, 2 \mathrm{H}), 7.08-7.04(\mathrm{~m}, 2 \mathrm{H}), 6.43(\mathrm{dd}, J=8.1,0.7 \mathrm{~Hz}, 1 \mathrm{H})$, $5.40(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.40-4.20(\mathrm{~m}, 2 \mathrm{H}), 3.20-3.04(\mathrm{~m}, 2 \mathrm{H})$
${ }^{13}$ C NMR: $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 145.3,139.2,135.3,129.2,128.6,126.5,125.4,105.2,70.2,38.8$
HRMS: (EI-TOF, m/z) calcd. for $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{O}[\mathrm{M}]^{+}, 146.07262$; found: 146.07319
IR: (ATR, neat, $\left.\mathrm{cm}^{-1}\right)=3045(\mathrm{w}), 2971$ (w), 1632 (s$), 1492(\mathrm{~m}), 1463$ (w), 1414 (w), 1318 (m), 1307 (m), 1208 (w), 1124 (s), 1081 (s), 957 (m), 832 (m)

The analytical data were in accordance with previously reported values. ${ }^{10}$

((1-bromo-1,2,4,5-tetrahydrobenzo[d]oxepin-2-yl)ethynyl)trimethylsilane (23):

This procedure was modified from the literature protocol of Watson: ${ }^{12}$
Compound 22 ($38 \mathrm{mg}, 0.26 \mathrm{mmol}$) and N-bromosuccinimide ($60 \mathrm{mg}, 1.3$ equiv.) were added to a 4 mL vial and of $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.0 \mathrm{~mL}, 0.1 \mathrm{M})$ and cooled to $-20^{\circ} \mathrm{C}$. Acetic anhydride ($1.6 \mathrm{mg}, 1.6 \mathrm{uL}, 6 \mathrm{~mol} \%$) . and acetic acid ($160 \mathrm{mg}, 10$ equiv.) were added sequentially, and the reaction was stirred at $-20^{\circ} \mathrm{C}$ overnight. The reaction was quenched with $\mathrm{H}_{2} \mathrm{O}(3 \mathrm{~mL})$ and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 3 \mathrm{~mL})$. The combined organics were dried with MgSO_{4} and concentrated under reduced pressure.

In a nitrogen filled glovebox, $\mathrm{ZnBr}_{2}(5.5 \mathrm{mg}, 10 \mathrm{~mol} \%)$ was added to the crude reaction mixture and the reaction was sealed and removed from the glovebox. $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.4 \mathrm{~mL})$ was added and the reaction mixture was cooled to $0^{\circ} \mathrm{C}$. Hunig's base ($48 \mathrm{mg}, 1.5$ equiv.) and ethynyltrimethylsilane ($32 \mathrm{mg}, 1.3$ equiv.) were added sequentially. $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(70 \mathrm{mg}, 2.0$ equiv.) was added dropwise and the reaction was stirred overnight at $0{ }^{\circ} \mathrm{C}$. Upon completion by TLC, $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ was added and aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$
$(3 \times 5 \mathrm{~mL})$. The combined organic extracts were dried with MgSO_{4}, filtered, concentrated under reduced pressure, loaded onto celite and purified by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{SiO}_{2}\right.$, hexanes:ethyl acetate 1:0 to $5: 1$) to yield the product as a colorless gel ($49 \mathrm{mg}, 62 \%$ over two steps).
$\mathbf{R}_{\mathrm{f}}=0.2\left(\mathrm{SiO}_{2}\right.$, hexanes:ethyl acetate $\left.=9: 1, \mathrm{UV}\right)$
${ }^{1}$ H NMR: $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.24-7.13(\mathrm{~m}, 3 \mathrm{H}), 7.10(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.15(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.90$ $(\mathrm{d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.12(\mathrm{t}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.03(\mathrm{ddd}, J=12.1,4.2,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{ddd}, J=15.3$, $11.5,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.68(\mathrm{dd}, J=15.3,4.1 \mathrm{~Hz}, 1 \mathrm{H}),-0.04(\mathrm{~s}, 9 \mathrm{H})$
${ }^{13}$ C NMR: $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 141.2,137.6,130.61,130.59,129.0,126.3,99.5,97.2,71.3,64.7,59.0$, 38.2, -0.4

HRMS: (ESI-TOF, m / z) calculated for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{OBrSi}[\mathrm{M}+\mathrm{H}]^{+}, 323.0461$ found: 323.0472
IR: (ATR, neat, cm^{-1}): 2958 (w), 2170 (w), 1491 (m), 1308 (w), 1249 (s), 1166 (s), 1116 (w), 1022 (w), 753 (m), 721 (m), 692 (m)

1,2,4,5-tetrahydrobenzo[d]oxepine (24):

Benzoxepin 17a ($20 \mathrm{mg}, 0.14 \mathrm{mmol}$) was charged into a 4 mL vial and methanol (1.4 $\mathrm{mL}, 0.1 \mathrm{M}$) was added. The solution was sparged with nitrogen under sonication for 15 minutes, followed by the addition of $\mathrm{Rh} / \mathrm{Al}_{2} \mathrm{O}_{3}(8 \mathrm{mg}, 3 \mathrm{~mol} \%)$. and sparged for an additional 10 minutes. The reaction mixture was sparged with hydrogen (1 atm) for 3 minutes and left to stir (1000 rpm) overnight. The reaction was filtered through celite and concentrating under reduced pressure to yield the desired compound as a colorless oil ($19.3 \mathrm{mg}, 94 \%$).
$\mathbf{R}_{\mathrm{f}}=0.3\left(\mathrm{SiO}_{2}\right.$, hexanes: ethyl acetate $\left.=9: 1, \mathrm{UV}\right)$
${ }^{1}$ H NMR: $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.17-7.03(\mathrm{~m}, 4 \mathrm{H}), 3.84-3.76(\mathrm{~m}, 4 \mathrm{H}), 3.00(\mathrm{dd}, J=5.8,3.7 \mathrm{~Hz}, 4 \mathrm{H})$
${ }^{13}$ C NMR: $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 141.7,129.5,126.5,70.4,40.1$
HRMS: (EI, m/z) calcd. For $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}$ [M] ${ }^{+}, 148.08882$ found:148.08840
IR: $\left(\right.$ ATR, neat, $\left.\mathrm{cm}^{-1}\right)=3019(\mathrm{~m}), 2926(\mathrm{~m}), 1493(\mathrm{w}), 1454(\mathrm{w}), 1430(\mathrm{w}), 1302(\mathrm{~m}), 1251(\mathrm{~m}), 752(\mathrm{~s})$
The analytical data were in accordance with previously reported values. ${ }^{11}$

(3aR*, 10b R^{*})-1-bromo-3a,10b-dihydrobenzo[4,5]oxepino[3,2d]isoxazole) (25):

This procedure was modified from the literature protocol of Baran. ${ }^{9}$
A 4 mL vial was charged with benzoxepine $\mathbf{1 7 a}(40 \mathrm{mg}, 0.28 \mathrm{mmol}$,
1.0 equiv.), hydroxycarbonimidic dibromide ($84.4 \mathrm{mg}, 1.5$ equiv., 0.42 mmol), potassium carbonate ($115 \mathrm{mg}, 3.0$ equiv., 0.8 mmol), and acetonitrile (2.8 mL). The reaction mixture was left to stir at room temperature overnight. Upon completion, the reaction was partitioned with $\mathrm{H}_{2} \mathrm{O}(3 \mathrm{~mL})$ and ethyl acetate (3 mL). The aqueous phase was extracted with ethyl acetate $(3 \times 3 \mathrm{~mL})$, dried
with MgSO_{4}, and concentrated under reduced pressure. The resultant crude mixture was loaded onto celite and isolated by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{SiO}_{2}\right.$, hexanes: ethyl acetate $=1: 0$ to $\left.5: 1\right)$ to give the desired compound as a colorless oil ($61 \mathrm{mg}, 7: 1$ r.r., inseparable mixture, 83%).
$\mathbf{R}_{\mathrm{f}}=0.2\left(\mathrm{SiO}_{2}\right.$, hexanes:ethyl acetate $\left.=9: 1, \mathrm{UV}\right)$
Major Constitutional Isomer ${ }^{1} \mathbf{H}$ NMR: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.45-7.42(\mathrm{~m}, 1 \mathrm{H}), 7.39-7.31$ $(\mathrm{m}, 2 \mathrm{H}), 7.26-7.22(\mathrm{~m}, 1 \mathrm{H}), 6.70(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.46(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.12(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H})$, $4.59(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H})$

Major Constitutional Isomer ${ }^{13} \mathbf{C}$ NMR: $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 145.6,141.0,135.3,132.0,130.8,129.5$, 129.3, 128.0, 117.7, 115.2, 61.9

Visible Minor Constitutional Isomer ${ }^{1} \mathbf{H}$ NMR: ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.21-7.19(\mathrm{~m}, 1 \mathrm{H}), 6.54(\mathrm{~d}, J=$ $6.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.14(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.65(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.29(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H})(*$ two protons are obscured by major constitutional isomer)

Minor Constitutional Isomer ${ }^{13} \mathbf{C}$ NMR: $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 144.9,138.5,135.3,135.3,131.8,130.1$, 130.0, 127.6, 120.7, 96.5, 87.3

HRMS: (ESI-TOF, m / z) calculated for $\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{NO}_{2} \mathrm{Br}[\mathrm{M}+\mathrm{H}]^{+}, 265.9811$ found: 265.9826
IR: (ATR, neat, cm^{-1}): 2970 (w), 1738 (m), 1639 (w), 1451 (w), 1366 (w), 1126 (s), 1093 (s), 754 (s), 553 (w)

4-phenyloxepino[4,5-b]pyridine (26):

Compound $17 \mathbf{1 7}$ ($40 \mathrm{mg}, 0.18 \mathrm{mmol}$), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(21 \mathrm{mg}, 10 \mathrm{~mol} \%$), phenylboronic acid ($65 \mathrm{mg}, 3.0$ equiv.), and cesium carbonate ($116 \mathrm{mg}, 2.0$ equiv.) were added to a 4 mL vial inside a glovebox. The vial was capped and removed from the glovebox, and MeCN (1.8 $\mathrm{mL}, 0.1 \mathrm{M}$) was added and the reaction was heated to $80{ }^{\circ} \mathrm{C}$ and stirred (1000 rpm) overnight. After 24 h , the reaction was portioned between water (5 mL) and ethyl acetate (5 mL). The organic layer was extracted with ethyl acetate ($3 \times 10 \mathrm{~mL}$), dried over MgSO_{4} and concentrated under reduced pressure. The material was loaded onto celite and isolated by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{SiO}_{2}\right.$, hexanes:ethyl acetate $1: 0$ to $1: 1$) to yield the product as a yellow oil ($25.3 \mathrm{mg}, 64 \%$).
$\mathbf{R}_{\mathrm{f}}=0.6\left(\mathrm{SiO}_{2}\right.$, hexanes:ethyl acetate $\left.=1: 1, \mathrm{UV}\right)$
${ }^{1} \mathbf{H}$ NMR: $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.20(\mathrm{dd}, J=5.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.46-7.35(\mathrm{~m}, 3 \mathrm{H}), 7.31-7.27(\mathrm{~m}, 2 \mathrm{H})$, $6.83(\mathrm{dd}, J=5.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.07(\mathrm{dd}, J=7.3,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.82(\mathrm{dd}, J=7.3,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.62(\mathrm{dd}, J=$ $7.3,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.17(\mathrm{dd}, J=7.3,1.0 \mathrm{~Hz}, 1 \mathrm{H})$
${ }^{13}$ C NMR: $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 156.1,150.3,147.8,147.4,147.2,138.1,129.8,129.1,128.5,128.3,122.7$, 116.2, 110.5

HRMS: (ESI-TOF, m / z) calculated for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}, 222.0913$ found: 222.0914
IR: (ATR, neat, cm ${ }^{-1}$) 3055 (w), 1737 (s), 1669 (m), 1577 (w), 1537 (w), 1494 (m), 1195 (w), 1048 (w), 1026 (w), 701 (w), 586 (w)

3-8. Large-scale procedures

Gram-scale synthesis of 16a:

A solution of N-methyl-1,2,4-triazoline-3,5-dione (7, MTAD, $800 \mathrm{mg}, 7.1 \mathrm{mmol}, 1.0$ equiv.) and naphthalene ($\mathbf{1 5 a}, 1.5 \mathrm{~g}, 10.6 \mathrm{mmol}, 1.5$ equiv.) in propionitrile ($71 \mathrm{~mL}, 0.1 \mathrm{M}$) was irradiated with LED lights at $-78^{\circ} \mathrm{C}$ under a nitrogen atmosphere (see Section 2-3.). Upon decolorization, the reaction vessel was transferred to a $-20^{\circ} \mathrm{C}$ bath under moderate stirring (300 rpm). A suspension of $\mathrm{Mn}\left(\mathrm{ClO}_{4}\right) \cdot\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}(77$ $\mathrm{mg}, 0.21 \mathrm{mmol}, 0.03$ equiv.) and picolinic acid ($131 \mathrm{mg}, 1.1 \mathrm{mmol}, 0.15$ equiv.) in acetonitrile (60 mL , sonicated for 5 minutes), was added over the course of 10 seconds, being careful to ensure proper mixing to prevent cycloreversion. To this solution, peracetic acid ($32 \mathrm{wt} \%$ in dilute acetic acid, $6.0 \mathrm{~mL}, 4.0$ equiv.) was added in 0.25 mL portions. Overall, the addition of peracetic acid took 5 minutes. The reaction was then left to stir for 2 hours at $-20^{\circ} \mathrm{C}$. Afterwards, a 10% sodium thiosulfate solution (80 mL) was added and the phases were separated. The aqueous phase was extracted with ethyl acetate ($3 \times 100 \mathrm{~mL}$), then the organic extracts were combined, dried over MgSO_{4}, and concentrated under reduced pressure. The title compound was immediately isolated by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexanes:ethyl acetate $=5: 1$ to $\left.1: 1\right)$ to yield a brown solid that was analytically pure by ${ }^{1} \mathrm{H}-\mathrm{NMR}$. The solid was triturated with methanol (30 mL) to yield the title compound 16a as an off-white solid (1.51g, 1.7:1 d.r., 83\%).

Gram-scale synthesis of 17a:

To a vial containing finely ground $\mathrm{KOH}(1.8 \mathrm{~g}, 7.0$ equiv., $90 \mathrm{wt} \%$), and $\mathbf{1 6 a}(1.08 \mathrm{~g}, 4.20 \mathrm{mmol}, 1.0$ equiv.) under nitrogen was added i - $\mathrm{PrOH}(42 \mathrm{~mL}, 0.1 \mathrm{M}$) and degassed with sonication and nitrogen for 20 min . The reaction was heated to $40^{\circ} \mathrm{C}$ with vigorous stirring (700 rpm) and progress was monitored by TLC in 30 min intervals. After 2 hours, the reaction was cooled in an ice bath and $\mathrm{H}_{2} \mathrm{O}(42 \mathrm{~mL})$ were added. AcOH was then carefully added dropwise until $\mathrm{pH}=5$. Then $\mathrm{CuCl}_{2} \cdot\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}(39 \mathrm{mg}, 0.2 \mathrm{mmol}, 0.05 \mathrm{~mol} \%)$ was added as a solid, followed by sparging with oxygen, and the reaction was stirred overnight under an atmosphere of oxygen. Upon completion, diethyl ether $(40 \mathrm{~mL})$ and saturated brine $(40 \mathrm{~mL})$ were added to the reaction mixture and the organic layer was extracted with ether ($3 \times 30 \mathrm{~mL}$), until the organic phase was no longer yellow. The combined organics were washed with brine (30 mL), dried over MgSO_{4}, filtered, and concentrated under vacuum. The title compound was isolated by flash chromatography (SiO_{2}, hexanes:ethyl acetate $=1: 0$ to 10:1) to afford 17a as a bright yellow solid ($520 \mathrm{mg}, 86 \%$).

Gram-scale synthesis of $\mathbf{1 6 f}$:

A solution of N-methyl-1,2,4-triazoline-3,5-dione (7, MTAD, $600 \mathrm{mg}, 5.31 \mathrm{mmol}, 1.0$ equiv.) in propionitrile ($71 \mathrm{~mL}, 0.1 \mathrm{M}$) was placed in a bath pre-cooled to $-78^{\circ} \mathrm{C}$ using a chiller. After cooling for 10 minutes, 1 -chloronaphthalene ($\mathbf{1 5 f}, 1.29 \mathrm{~g}, 8.0 \mathrm{mmol}, 1.5$ equiv.) was added slowly, after which the solution was irradiated with LED lights at $-78{ }^{\circ} \mathrm{C}$ until the solution had become colorless (see Section 2-3.). Upon decolorization, the reaction was then transferred to a bath at $-78{ }^{\circ} \mathrm{C}$ under moderate stirring (400 rpm). A suspension of $\mathrm{Mn}\left(\mathrm{ClO}_{4}\right)_{2} \cdot\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}(375 \mathrm{mg}, 1.06 \mathrm{mmol}, 0.20$ equiv.) and picolinic acid ($653 \mathrm{mg}, 5.31 \mathrm{mmol}$, 1.0 equiv.) in acetonitrile (31 mL , sonicated for 30 seconds -1 minute), was added over the course of 10 seconds, being careful to ensure proper mixing such that the dearomatized product does not cyclorevert. To this solution, peracetic acid ($32 \mathrm{wt} \%$ in dilute acetic acid, $6.9 \mathrm{~mL}, 6.0$ equiv.), was added over the course of 1 hour in 6 evenly spaced portions and left to stir for another hour at $-78^{\circ} \mathrm{C}$. Afterward, the reaction was warmed to room temperature and a 10% sodium thiosulfate solution (60 mL) and the organic phase was separated. The aqueous phase was extracted with ethyl acetate $(3 \times 40 \mathrm{~mL})$. The organic extracts were combined, passed through a silica plug, and flushed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})$. The organic phase was then dried over MgSO_{4} and concentrated under reduced pressure. The title compound was isolated by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexanes:ethyl acetate $=5: 1$ to 1:1) to afford $\mathbf{1 6 f}$ as an off-white solid ($1.15 \mathrm{~g},>20: 1$ d.r., 75\%).

4. Crystallographic studies

X-ray diffraction experiments were carried out on single crystals mounted on Cryo-loops using Paratone-N or Krytox oils. The data was collected on Bruker D8 Venture / Photon II or on a Bruker APEX II diffractometers in George L. Clark X-ray Facility at UIUC. Multi-scan absorption correction was applied. The space group was determined in XPREP (Bruker AXS). The solutions were obtained using Intrinsic Phasing method, as implemented in SHELXT, ${ }^{13}$ and refined using full-matrix least squares against F^{2}, as implemented in SHELXL, ${ }^{14}$ using OLEX2 ${ }^{15}$ as the graphical user interface.

Crystallographic Data for compound 8a

Table S5. Crystal data and structure refinement.

CCDC
Empirical formula
Formula weight
Temperature/K
Crystal system
Space group
a/Å
b/Å
c/Å
$\alpha /{ }^{\circ}$
$\beta /{ }^{\circ}$
$\gamma /{ }^{\circ}$
Volume/ \AA^{3}
Z
$\rho_{\text {calc }} g / \mathrm{cm}^{3}$
μ / mm^{-1}
$\mathrm{F}(000)$
Crystal size $/ \mathrm{mm}^{3}$
Radiation

1988277
$\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{~N}_{3} \mathrm{O}_{3}$
207.19
296.15
monoclinic
P2 $1_{1} / n$
7.5594(7)
15.3365(14)
7.7117(7)

90
98.206(2)

90
884.90(14)

4
1.555
0.120
432.0
$0.532 \times 0.453 \times 0.302$
$\operatorname{MoK} \alpha(\lambda=0.71073)$
2Θ range for data collection $/{ }^{\circ} 7.546$ to 61.076
Index ranges
Reflections collected
Independent reflections $2701\left[\mathrm{R}_{\text {int }}=0.0190, \mathrm{R}_{\text {sigma }}=0.0151\right]$
Data/restraints/parameters 2701/0/137
Goodness-of-fit on F^{2}
1.036

Final R indexes $[I>=2 \sigma(I)] \quad R_{1}=0.0418, \mathrm{wR}_{2}=0.1241$
Final R indexes [all data] $\quad \mathrm{R}_{1}=0.0469, \mathrm{wR}_{2}=0.1304$
Largest diff. peak/hole / e $\AA^{-3} 0.32 /-0.30$

Crystallographic Data for compound 16f

Table S6. Crystal data and structure refinement
CCDC
1988278
Empirical formula
Formula weight
$\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{ClN}_{3} \mathrm{O}_{3}$
291.69

Temperature/K
100.01

Crystal system
Space group
a/Å
b/Å
c/Å
$\alpha /{ }^{\circ}$
$\beta /{ }^{\circ}$
$\gamma /{ }^{\circ} 90$
Volume $/$ Å $^{3} \quad 2350.50(11)$
Z
$\rho_{\text {calc }} g / \mathrm{cm}^{3}$
8
μ / mm^{-1}
1.649

F(000)
Crystal size $/ \mathrm{mm}^{3}$
0.337
1200.0

Radiation $\quad \operatorname{MoK} \alpha(\lambda=0.71073)$
2Θ range for data collection/ ${ }^{\circ} 5.236$ to 56.64

Index ranges
Reflections collected
Independent reflections
Data/restraints/parameters
Goodness-of-fit on F^{2}
Final R indexes $[\mathrm{I}>=2 \sigma(\mathrm{I})] \quad \mathrm{R}_{1}=0.0335, \mathrm{wR}_{2}=0.0788$
Final R indexes [all data] $\quad \mathrm{R}_{1}=0.0418, \mathrm{wR}_{2}=0.0826$
Largest diff. peak/hole / e $\AA^{-3} 0.32 /-0.25$

Crystallographic Data for compound 17a

Table S7. Crystal data and structure refinement. CCDC
Empirical formula
Formula weight
Temperature/K
Crystal system
Space group
a/Å
b/Å
c/Å
$\alpha /{ }^{\circ}$
$\beta /{ }^{\circ}$
$\gamma /{ }^{\circ} 90$
Volume/ ${ }^{3}$
Z
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$
μ / mm^{-1}
F(000)
Crystal size/mm ${ }^{3}$
Radiation
2Θ range for data collection $/{ }^{\circ} 8.578$ to 56.54
Index ranges
$-10 \leq \mathrm{h} \leq 10,-8 \leq \mathrm{k} \leq 8,-11 \leq 1 \leq 11$
Reflections collected
Independent reflections $\quad 901\left[\mathrm{R}_{\text {int }}=0.0175, \mathrm{R}_{\text {sigma }}=0.0113\right]$
Data/restraints/parameters 901/86/88
Goodness-of-fit on F^{2}
1.166

Final R indexes $[\mathrm{I}>=2 \sigma(\mathrm{I})] \quad \mathrm{R}_{1}=0.0421, \mathrm{wR}_{2}=0.1120$
Final R indexes [all data] $\quad \mathrm{R}_{1}=0.0430, \mathrm{wR}_{2}=0.1126$
Largest diff. peak/hole / e $\AA^{-3} 0.19 /-0.16$

Crystallographic data for compound $\mathbf{1 6 q}$

Table S8. Crystal data and structure refinement.

CCDC
Empirical formula
Formula weight
Temperature/K
Crystal system
Space group
a/Å
b/Å
c/Å
$\alpha{ }^{\circ}$
$\beta /{ }^{\circ}$
$\gamma /{ }^{\circ}$
Volume/Å ${ }^{3}$
Z
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$
μ / mm^{-1}
F(000)
Crystal size/mm ${ }^{3}$
Radiation
$\mathrm{MoK} \alpha(\lambda=0.7$
2Θ range for data collection $/{ }^{\circ} 6.26$ to 56.674
Index ranges
Reflections collected
Independent reflections
Data/restraints/parameters

1988279
$\mathrm{C}_{13.5} \mathrm{H}_{9} \mathrm{Cl}_{2} \mathrm{~F}_{3} \mathrm{~N}_{4} \mathrm{O}_{3}$
403.15
99.99
monoclinic
C2/c
24.6871(11)
6.8296(3)
21.0493(9)

90
119.6990(10)

90
3082.8(2)

8
1.737
0.479
1624.0
$0.709 \times 0.614 \times 0.567$
$\operatorname{MoK} \alpha(\lambda=0.71073)$
$-32 \leq \mathrm{h} \leq 32,-9 \leq \mathrm{k} \leq 9,-28 \leq 1 \leq 28$
100114
$3825\left[\mathrm{R}_{\text {int }}=0.0364, \mathrm{R}_{\text {sigma }}=0.0129\right]$
3825/13/246

Goodness-of-fit on $\mathrm{F}^{2} \quad 1.038$
Final R indexes $[\mathrm{I}>=2 \sigma(\mathrm{I})] \quad \mathrm{R}_{1}=0.0283, \mathrm{wR}_{2}=0.0730$
Final R indexes [all data] $\quad \mathrm{R}_{1}=0.0294, \mathrm{wR}_{2}=0.0740$
Largest diff. peak/hole / e $\AA^{-3} 0.41 /-0.35$

5. References:

1) Breton, G. W.; Turlington, M. Tetrahedron Lett. 2014, 55, 4661.
2) Nakagawa, K.; Konaka, R.; Nakata, T. J. Org. Chem. 1962, $27,1597$.
3) Murphy, A.; Stack, T.D.P. J. Mol. Catal. A 2006, 251, 78.
4) Vyas, D.M.; Chiang, Y.; Doyle, T.W. Tetrahedron Lett. 1984, 25, 487.
5) Zarate, C.; Martin, R. J. Am. Chem. Soc. 2014, 136, 2236-2239.
6) Moretti, R. A.; Du Bois, J.; Stack, T. D. P. Org. Lett. 2016, 18, 2528.
7) Gillard, J. R.; Newlands, M. J.; Bridson, J. N.; Burnell, D. J. Can. J. Chem. 1991, 69, 1337.
8) Kreiter, C. G.; Özkar, S. J. Organomet. Chem. 1977, 129, C14.
9) Maimone, T. J.; Shi, J.; Ashida, S.; Baran, P. S. J. Am. Chem. Soc. 2009, 131, 17066.
10) Varela-Fernandez, A.; García-Yebra, C.; Varela, J. A.;' Esteruelas, M. A.; Saa, C. Angew. Chem., Int. Ed. 2010, 49, 4278.
11) G. Ahmed, A. Bohnstedt, H. J. Breslin, J. Burke, M. A. Curry, J. L. Diebold, B. Dorsey, B. J. Dugan, D. Feng, D. E. Gingrich, T. Guo, K.-K. Ho, K. S. Learn, J. G. Lisko, R.-Q. Liu, E. F. Mesaros, K. Milkiewicz, G. R. Ott, J. Parrish, J. P. Theroff, T. V. Thieu, R. Tripathy, T. L. Underiner, J. C. Wagner, L. Weinberg, G. J. Wells, M. You, C. A. Zificsak, PCT Int. Appl. WO 2008051547 February 5, 2008.
12) Haidzinskaya, T.; Kerchner, H. A.; Liu, J.; Watson, M. P. Org. Lett. 2015, 17, 3857.
13) Sheldrick, G. M. Acta Cryst. 2015, A71, 3-8.
14) Sheldrick, G. M. Acta Cryst. 2008, A64, 112-122.
15) Dolomanov, O.V.; Bourhis, L. J.; Gildea, R.J; Howard, J. A. K.; Puschmann, H. J. Appl. Cryst. 2009, 42, 339-341

30	220	210	200	190	180								100									
							160	10	140	130	f1		100	90	80	70	60	50	40	30	20	10

3	220	210	200	190	18	170	160	150	,					90	80							
30	220	210	200	190	180	170	160	150	140	130	$\begin{array}{r} 120 \\ \text { f1 } \end{array}$	$\begin{aligned} & 110 \\ & \mathrm{~m}) \end{aligned}$	100	90	80	70	60	50	40	30	20	10

	,	1	1	1	1	1	1	1	1	1	1	110	1	1			1		1		1	
30	220	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10

$\underset{i}{\infty}$

30	220	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10

230	220	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10
												f1 (ppm)												

 $\underbrace{\text { imgine }}$ $\stackrel{\rightharpoonup}{\stackrel{\rightharpoonup}{*}}$

> 16 c ${ }^{13} \mathrm{CNM} \mathrm{NMR}$ 126 MHz CDCl_{3}

30	220	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10

30	220	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10

$\underset{\mid}{1}$

[^1]

$\underbrace{\overrightarrow{0} \mathrm{~min}}$

[^2]

[^3]

 17e ${ }^{1} \mathrm{H}$ NMR 500 MHz CDCl_{3}

[^4]

		1	1			170		150	1		1				1			50	10	30		
30	220	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10

30	220	110	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	10	20	10

		,		1		1	1	1	1	1	1	1	1	1	I	1	1	1	1	1	1	1
30	220	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10

30	220	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10

			1			1						11			80	70	1			1		
30	220	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10

	$\stackrel{1}{ }$	1	1	1	18	170	$\stackrel{1}{1}$	15	1	130	12	110										
30	220	210	200	190	180	170	160	150	140	130	$\begin{array}{r} 120 \\ \mathrm{f} \end{array}$	110	100	90	80	70	60	50	40	30	20	10

[^0]:

[^1]:

[^2]:

[^3]:

[^4]:

