Supporting Information

1T" Transition-Metal Dichalcogenides: Strong Bulk Photovoltaic Effect for Enhanced Solar-Power Harvesting

Haoqiang Ai,^a Youchao Kong,^b Di Liu,^b Feifei Li,^b Jiazhong Geng,^b Shuangpeng Wang^{b,c}, Kin Ho Lo,*^a and Hui Pan*^{b, c}

^aDepartment of Electromechanical Engineering, Faculty of Science and Technology, University of Macau, Macao SAR, 999078, P. R. China

^b Institute of Applied Physics and Materials Engineering, University of Macau, Macao SAR, 999078, P.

R. China

^cDepartment of Physics and Chemistry, Faculty of Science and Technology, University of Macau, Macao SAR, 999078, P. R. China

*Email: fstkhl@um.edu.mo. (K. H. L.)

*Email: huipan@um.edu.mo; Tel.: 853-88224427; Fax: 853-88222454. (H. P.)

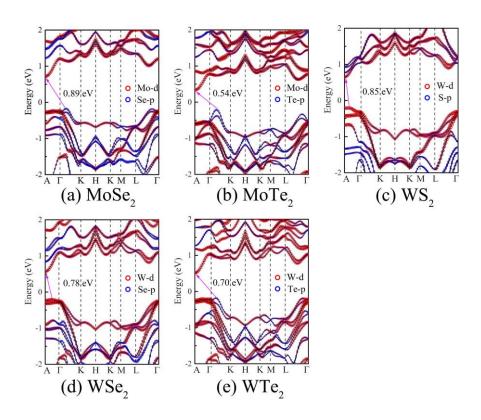


Figure S1. Orbital-resolved band structures based on HSE06 + SOC for 1T bulks: (a) MoSe₂, (b) MoTe₂, (c) WS₂, (d) WSe₂ and (e) WTe₂. The Fermi level is at 0 eV.

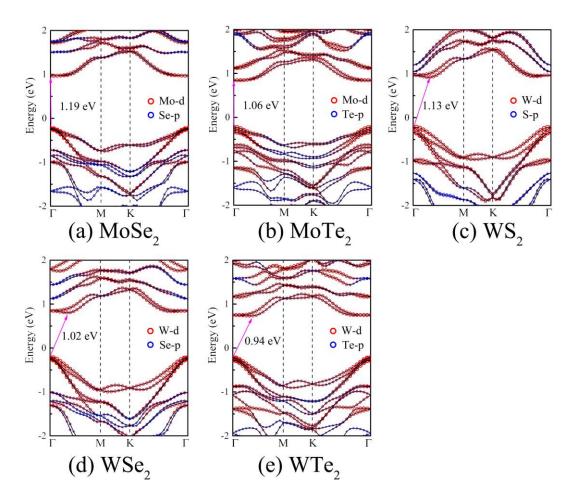


Figure S2. Orbital-resolved band structures based on HSE06 + SOC for 1T" monolayers: (a) MoSe₂, (b) MoTe₂, (c) WS₂, (d) WSe₂ and (e) WTe₂. The Fermi level is at 0 eV.

Figure S3. The shift-current responses (σ^{abc}), the optical absorption coefficients (α) and the Glass coefficient responses (G^{abc}) of the 1T["] bulk (a) MoSe₂, (b) MoTe₂, (c) WS₂, (d) WSe₂ and (e) WTe₂. The visible light region (1.6–3.1 eV) is within the range of the two dashed lines.

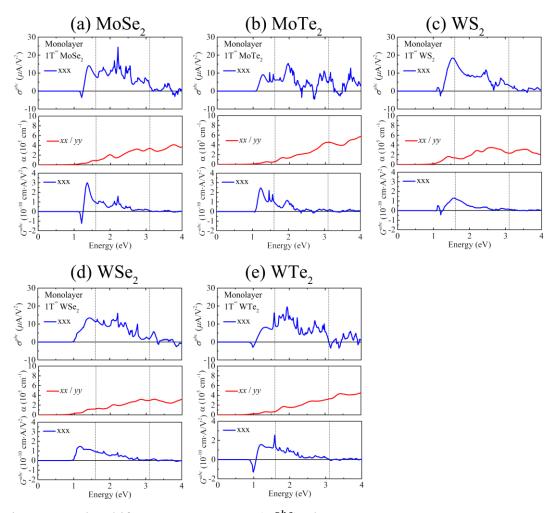


Figure S4. The shift-current responses (σ^{abc}) , the optical absorption coefficients (α) and the Glass coefficient responses (G^{abc}) of the 1T" monolayer (a) MoSe₂, (b) MoTe₂, (c) WS₂, (d) WSe₂ and (e) WTe₂. The visible light region (1.6–3.1 eV) is within the range of the two dashed lines.

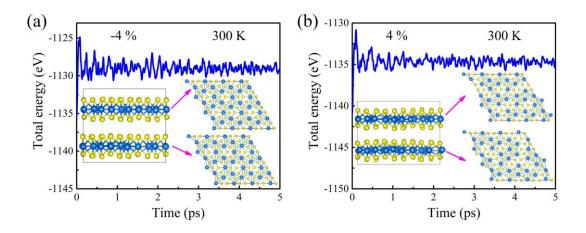


Figure S5. The fluctuation of the total energy of $1T^{'''}$ -MoS₂-b under the in-plane strain of (a) -4% and (b) 4% during the AIMD simulations at a temperature of 300 K. The insets show the structural snapshots of $1T^{'''}$ -MoS₂-b at the equilibrium state under 300 K.