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The following Table S1 provides a list of the symbols used throughout the derivation of the FF-CGF mathematical model 

that can be used as a reference for Sections 1, 2, and 3:

Table S1: Summary of Mathematical Symbols

x Position in the x-direction.

y Position in the y-direction.

z Position in the x-direction.

𝐿 Length of the separation chamber.

2𝑏 Breadth of the separation chamber.

2ℎ Height of the separation chamber.

𝑉 Volumetric flow rate through an arbitrary segment of the separation chamber.

∆𝑥 Width of abritrary segment in the separation chamber that is much smaller than the breadth, .2𝑏

∆𝑧 Length of abritrary segment in the separation chamber that is much smaller than the length, .𝐿

〈𝑢〉 Area-averaged x-velocity of the fluid flow.

〈𝑤〉 Area-averaged z-velocity of the fluid flow.

𝑢0 Area-averaged x-velocity of the fluid flow at the left sidewall of the FFE chamber ( ).𝑥 =  ― 𝑏

𝑢1 Area-averaged x-velocity of the fluid flow at the right sidewall of the FFE chamber ( ).𝑥 =  𝑏

〈𝑤〉0 Area-averaged z-velocity of the fluid flow at the beginning of the chamber ( ).𝑧 =  0

∇〈𝑢〉 The slope of the counterflow velocity gradient in a symmetric gradient ( .∇〈𝑢〉 =  𝑢0/𝑏)

𝑢EP Electrophoretic velocity of an analyte.

μEP Electrophoretic mobility of an analyte.

E Electric field applied across the FFE chamber.

𝑢T Total analyte velocity in the x-direction.

𝑡 The amount of time for a given analyte in the FFE chamber.

〈𝑥〉𝑓 Area-averaged focal point for a given analyte in the x-velocity.

𝑢 The x-velocity of the fluid flow.

𝑤 The z-velocity of the fluid flow.

𝑥𝑓 The shifted focal point for a given analyte in the x-direction.
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Section 1: Counterflow Gradient
A simplified 2D mathematical model of the velocity field within the FF-CGF chamber can be derived using a 

method similar to Ref. [S1]. This model will solve for the area-averaged x-velocity  and area-averaged z-velocity . 〈𝑢〉 〈𝑤〉

For this model, consider a chamber where the length  and breadth  are much greater than the height  (see Fig. S1a). 𝐿 2𝑏 2ℎ

By assuming incompressible flow, the net volumetric flow rate  through an arbitrary segment of the chamber with a width 𝑉

of  and a length of  is equal to zero (see Fig. S1b):∆𝑥 ∆𝑧

𝑉 =  2ℎ∆𝑧(〈𝑢〉𝑥 ― 〈𝑢〉𝑥 + ∆𝑥) + 2ℎ∆𝑥(〈𝑤〉𝑧 ― 〈𝑤〉𝑧 + ∆𝑧) = 0 (S1)

If the segment being analyzed is much smaller than the length and the breadth of the chamber, then the following expressions 

can be written:

〈𝑢〉𝑥 + ∆𝑥 ― 〈𝑢〉𝑥 =  
𝑑〈𝑢〉
𝑑𝑥 ∆𝑥 (S2)

〈𝑤〉𝑧 + ∆𝑧 ―  〈𝑤〉𝑧 =  
𝑑〈𝑤〉

𝑑𝑧 ∆𝑧
(S3)

By substituting these equations back into Eq. (S1), the following expression can be obtained:

𝑑〈𝑢〉
𝑑𝑥 +  

𝑑〈𝑤〉
𝑑𝑧  = 0 (S4)

If the inflow through the sidewalls is assumed to be constant along the z-direction and described by mean velocities  and 𝑢0

, then Eq. (S4) can be simplified by setting  of the segment equal to breadth of the chamber :𝑢1 ∆𝑥 2𝑏

𝑑〈𝑤〉
𝑑𝑧  =  

𝑢0 ―  𝑢1

2𝑏
(S5)

Solving for  in Eq. (S5) gives the following expression:〈𝑤〉

〈𝑤〉 =  (𝑢0 ―  𝑢1

2𝑏 )𝑧 +  〈𝑤〉0 (S6)

Additionally, substituting Eq. (S5) back into Eq. (S4) gives the following expression:
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𝑑〈𝑢〉
𝑑𝑥  =  ― (𝑢0 ―  𝑢1

2𝑏 ) (S7)

Solving for  in Eq. (S7) gives the following expression:〈𝑢〉

〈𝑢〉 =  ― (𝑢0 ―  𝑢1

2𝑏 )𝑥 +  〈𝑢〉0 (S8)

By applying the boundary conditions of  at  and  at , the final expression for  is:〈𝑢〉 =  𝑢0 𝑥 =  ― 𝑏 〈𝑢〉 =  𝑢1 𝑥 =  𝑏 〈𝑢〉

〈𝑢〉 =  (𝑢0 +  𝑢1

2 ) ― (𝑢0 ―  𝑢1

2𝑏 )𝑥 (S9)

For the scenario where , the expressions for  and  are:𝑢0 =  ― 𝑢1 〈𝑢〉 〈𝑤〉

〈𝑢〉 =  ―
𝑢0

𝑏 𝑥 =  ― ∇〈𝑢〉 𝑥 (S10)

〈𝑤〉 =  
𝑢0

𝑏 𝑧 +  〈𝑤〉0 =  ∇〈𝑢〉 𝑧 +  〈𝑤〉0 (S11)

Figure S1. (a) A 2D FF-CGF chamber used for the mathematical model. (b) An enlarged segment of the chamber.
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Section 2: Position and Residence Time
The average-area velocity field within the chamber can be used to track the position of the analyte at time . Substituting 𝑡

Eq. (S10) into Eq. (2), the x-velocity of a mass particle with a constant  can be determined from the following expression:𝑢EP

∂〈𝑥〉
∂𝑡  =  𝑢EP ―  ∇〈𝑢〉 𝑥 (S12)

Assuming  at , this differential equation can be used to find the mean x-position of the analytes as a function of 𝑥 =  0 𝑡 =  0

:𝑡

〈𝑥〉 =  
𝑢EP

∇〈𝑢〉  
(1 ―  𝑒 ―∇〈𝑢〉 𝑡) (S13)

Now, rewriting Eq. (S11) to consider the z-velocity of a mass particle:

∂〈𝑧〉
∂𝑡  =  ∇〈𝑢〉 𝑧 +  〈𝑤〉0 (S14)

Assuming  at , this differential equation can be used to find the mean z-position of the analytes as a function of 𝑧 =  0 𝑡 =  0

:𝑡

〈𝑧〉 =  
〈𝑤〉0

∇〈𝑢〉  
(𝑒∇〈𝑢〉 𝑡 ― 1) (S15)

Rearranging this equation to solve for  gives:𝑡

𝑡 =  
1

∇〈𝑢〉𝑙𝑛(1 +  
∇〈𝑢〉 
〈𝑤〉0

〈𝑧〉) (S16)

Setting  into this equation will give the residence time of the analyte in the separation chamber. Substituting this 〈𝑧〉 = 𝐿

expression back into Eq. (S13) gives the mean x-position of an analyte with a constant  as a function of :𝑢EP 〈𝑧〉

〈𝑥〉 =  
𝑢EP

∇〈𝑢〉 (1 ―  (1 +  
∇〈𝑢〉 
〈𝑤〉0

〈𝑧〉) ―1) (S17)

A graphical representation of Eq. (S17) in Fig. S2 shows the mean x-position of different analytes in a 2D chamber with a 

given x-velocity gradient.



S5

Section 3: Focal Point
The mean focal point for an analyte with a constant  can also be found using the average-area velocity field in the 𝑢EP

chamber. Substituting Eq. (S10) into Eq. (2) gives the following expression:

𝑢T =  𝑢EP ―  ∇〈𝑢〉 𝑥 (S18)

Analytes will migrate towards its focal point (where  crosses the x-axis), regardless of its initial x-position. Therefore, at 𝑢T

, the mean focal point is:𝑢T = 0

〈𝑥〉𝑓 =  
𝑢EP

∇〈𝑢〉 
(S19)

When considering the overall focal point  of an analyte, it is also important to consider velocity profile of the fluid flow 𝑥𝑓

in the height direction of the chamber (y-direction). If it is assumed that the x-velocity  and the z-velocity  of the (𝑢) (𝑤)

fluid within the chamber are constrained to a parabolic profile in the y-direction:

𝑢(𝑦) =  
3
2〈𝑢〉(1 ―

𝑦2

ℎ2) (S20)

Figure S2. (a) Tracking the x-position of analytes with different mobilities as they move along the z-direction.
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𝑤(𝑦) =
3
2〈𝑤〉(1 ―

𝑦2

ℎ2) (S21)

Substituting Eq. (S10) and Eq. (S11) into Eq. (S20) and Eq. (S21), respectively, then the overall velocity profiles are given 

as:

𝑢(𝑥,𝑦) =  ―
3
2∇〈𝑢〉 𝑥(1 ―

𝑦2

ℎ2) (S22)

𝑤(𝑦,𝑧) =
3
2

(∇〈𝑢〉 𝑧 +  〈𝑤〉0)(1 ―
𝑦2

ℎ2) (S23)

From Eq. (S22), if  at the focal point, and a shifted co-ordinate of  is applied, then the focal 𝑢EP =  ― 𝑢(𝑥,𝑦) 𝑥 = 〈𝑥〉𝑓 + 𝑥𝑓

point is given by:

𝑥𝑓 =  
𝑢EP

∇〈𝑢〉 (2
3(1 ―

𝑦2

ℎ2)
―1

― 1) (S24)

Section 4: Numerical Simulations
To demonstrate the FF-CGF principle,  a simplified 2D simulation for the proposed FFE chamber seen in Fig. 1a (COMSOL 

v5.3). The model used for this study is similar to a previously developed FF-IEF model [S2]. The fluid dynamics were 

calculated using the continuity equation and a simplified Navier-Stokes equation that neglected the inertial terms and the 

electrokinetic body forces:

 ∇ ∙ 𝐮 = 0 (S25)

        ― ∇𝑝 +  𝜇∇2𝐮 ―12
𝜇𝐮
𝑑2

𝑦
= 0 (S26)

where  is the velocity of the fluid,  is the hydrostatic pressure, and  is the dynamic viscosity. Also note that the final 𝐮 𝑝 𝜇

term in Eq. (S26) is due to the shallow channel height approximation, with dy being the chamber height. The electrostatics 

were computed simultaneously using the following equation:

𝐸 =  ― ∇𝑉 (S27)
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where  is the electric field and  is the electric potential. The chamber dimensions are 15 mm x 35 mm x 0.1 mm. There 𝐸 𝑉

is a 0.5 mm wide sample inlet centered at the top of the chamber. The outlet is located at the bottom of the chamber with an 

exit pressure of 0 Pa. The fluid velocity within the chamber when the input velocity is 1 mm/s at both sidewalls and at the 

sample inlet. 

The steady-state analyte transport through the chamber was then calculated using the convection-diffusion equation 

and the molar flux (  ) equation:𝑁𝑖

∇ ∙ ( ― 𝐷𝑖∇𝑐𝑖 +  μEP𝑐𝑖𝐸) + 𝐮 ∙ ∇𝑐𝑖 = 0 (S28)

― 𝐷𝑖∇𝑐𝑖 + (𝐮 +  μEP𝐸)𝑐𝑖 =  𝑁𝑖 (S29)

where 𝐷𝑖 is the diffusion coefficient of the ith analyte and 𝑐𝑖 is the molar concentration of that analyte. The diffusive term 

that helps determine the width of the focused band only accounts for molecular diffusion in this model. Three analytes are 

injected at the sample inlet, each with a concentration of 1 mol/m3. The COMSOL inputs for the diffusion coefficients for 

all three analytes was 10-10 m2/s, while their mobilities were 0, 1x10-13, and 2x10-13 s·mol/kg.

Section 5: Device Design
To reduce the concept of FF-CGF to practice a design of the FFE chamber was critical to replicate the hydrodynamic and 

electric field distribution in the simplified simulation. Our approach was to have parallel microchannels that connect to the 

sidewalls and span the entire length of the separation chamber (see Fig. S3a). At the other end of the microchannels, we 

placed additional side chambers that included access holes for buffer inflow and electrodes. There were also outlet channels 

placed between the end of the separation chamber and the outlets to ensure that the outlets did not affect the sample 

streamlines. For a uniform velocity gradient and electric field across the separation chamber, there must be an equal buffer 

flow rate (Q) and electrical current (I) through all of the microchannels. For this to be the case, the hydrodynamic resistance 

(RH) and electrical resistance (RE) of the microchannels (R1) must be significantly greater than that of the side chambers (R2) 

and the separation chamber (R3). 

To better understand this concept, the microfluidic network of the FFE device can be approximated as a circuit (see 

Fig. S3b). Different regions of the microfluidic network are considered to be resistors, where the pressure drop (ΔP) and the 

voltage drop (ΔV) across these resistors are defined as ΔP = QRH and ΔV = IRE, respectively [S3]. A simplified version of 

this circuit is shown in Fig. 6b that divides the device into upper, middle, and lower sections. For the fluid mechanics, 

using the Kirchhoff’s law analogy [S3], if R1 ≃ R2 ≃ R3, ΔP from the side chamber to the outlet will be different for all 

three sections, and therefore Q through the microchannels will be inconsistent. However, if R1 >> R2 ≃ R3, ΔP from the 

side chamber to the outlet will be comparable for all three sections, and therefore Q will be approximately uniform 

through all microchannels. The same assumption can be made for ΔV through the microfluidic network, except the 

position of the electrodes is considered instead of the inlets and outlets.
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Decreasing the height (h) of the microchannels relative to the chambers can increase their RH and RE due to the 

following equations:

𝑅𝐻 =  
12𝜇𝐿
𝑏ℎ3  [1 ―  

ℎ
𝑏(192

𝜋2  
∞

∑
𝑛 = 1,3,5

1
𝑛5tanh(𝑛𝜋𝑏

2ℎ ))]
―1

(S30)

𝑅𝐸 =  
𝐿

𝜎𝑏ℎ (S31)

where  is the length of the channel,  is the width of the channel, and  is the conductivity of the fluid [S3]. This is the 𝐿 𝑏 𝜎

most effective method for increasing RH because the h term is cubed in the denominator. The main issue with this strategy 

is that the microchannels must not be too small, or else the voltage drop across the actual separation chamber will be small. 

Figure S3. (a) A drawing of a FF-CGF device that includes microchannels that connect side chambers to the separation chamber. There are also 

outlet channels that connect the separation chamber to the outlets. (b) The FF-CGF device is divided into an upper (i), middle (ii), and lower (iii) 

section. The approximate resistors for the microchannels (1), side chambers (2), and separation chamber (3) are drawn in each section. (c) A side 

view of a microchannel with a height ( ) that is 10 times smaller than that of the connected chambers ( ).ℎ2 ℎ1
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This problem has been well documented in miniaturized FFE devices that have used microchannels to connect to electrodes 

[S4]. Therefore, the height ratio between the chambers and the connecting microchannels was limited to 10:1 (see Fig. S3c).
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