SUPPORTING INFORMATION

Designing Homogeneous Copper-Free Sonogashira Reaction through a Prism of Pd-Pd Transmetallation

Bruno Aleksander Martek, Martin Gazvoda, Damijana Urankar, and Janez Košmrlj*

Faculty of Chemistry and Chemical Technology, University of Ljubljana
Večna pot 113, SI-1000 Ljubljana
Slovenia
E-mail: janez.kosmrlj@fkkt.uni-lj.si

TABLE OF CONTENT

1. GENERAL INFORMATION S1
2. EXPERIMANTAL S2
2.1. Preparation of palladium complex Pd-PyMIC S2
2.2. Formation of enyne-like side products in phosphine ligand screening experiments (Table 1, L1-L3) S2
2.3. Solvent and base screening experiments (Supplementary Table S1) S3
2.4. Palladium source screening experiments (Supplementary Table S2) S5
2.5. Synthesis and characterization of products from Table 3 S5
2.6. Synthesis and characterization of palladium oxidative adducts $\mathbf{4}$ S14
2.7. Synthesis and characterization of palladium acetylide $\mathbf{5}$ S16
2.8. Transmetalation reaction between oxidative adducts $\mathbf{4}$ and palladium monoacetylide 5 S17
2.9. Synthesis of methyl 4-(4-hydroxybut-1-yn-1-yl)benzoate (3t) S17
2.10. Multi-gram synthesis of 4-(phenylethynyl)benzaldehyde (3b) S18
3. COPIES OF NMR SPECTRA S20
4. REFERENCES AND NOTES S46

1. GENERAL INFORMATION

Starting materials were used as obtained from the commercial sources (Merck, Fluorochem, abcr). Anhydrous solvents, used in solvent screening experiments (1,4-dioxane, dimethylformamide (DMF), N-methylpyrrolidone (NMP), ethyl acetate (EtOAc), methanol (MeOH), isopropanol $(i-\mathrm{PrOH})$), were used as received. Acetonitrile (MeCN) was freshly distilled from calcium hydride $\left(\mathrm{CaH}_{2}\right)$ under argon atmosphere. Pentane, tetrahydrofuran (THF), and toluene were freshly distilled from sodium wire under argon atmosphere. Palladium oxidative adducts $\mathbf{4 a}$ and $\mathbf{4 b}$ were prepared using standard Schlenk line techniques. Melting points were determined on a Kofler micro hot stage and are uncorrected.

IR spectra were obtained with a Perkin-Elmer Spectrum 100, equipped with a Specac Golden Gate Diamond ATR as a solid sample support.

NMR spectra were recorded with a Bruker Avance III 500 MHz NMR instrument operating at $500 \mathrm{MHz}\left({ }^{1} \mathrm{H}\right), 471 \mathrm{MHz}\left({ }^{19} \mathrm{~F}\right), 202 \mathrm{MHz}\left({ }^{31} \mathrm{P}\right), 160 \mathrm{MHz}\left({ }^{11} \mathrm{~B}\right)$, and $126\left({ }^{13} \mathrm{C}\right) \mathrm{MHz}$ at 296 K . Proton spectra were recorded in CDCl_{3} and DMSO- d_{6} and are referenced to the residual signals of CHCl_{3} (at $\delta 7.26 \mathrm{ppm}$) and DMSO- d_{5} (at $\delta 2.50 \mathrm{ppm}$). Carbon chemical shifts are given against the central line of the solvent signal: CDCl_{3} (at $\delta 77.16 \mathrm{ppm}$), DMSO- d_{6} (at δ $39.52 \mathrm{ppm}) .{ }^{19} \mathrm{~F}$ NMR and ${ }^{11} \mathrm{~B}$ NMR spectra were referenced to $\mathrm{CCl}_{3} \mathrm{~F}$ and $15 \% \mathrm{BF}_{3}$ etherate in CDCl_{3}, respectively, as external standards at $\delta 0 .{ }^{31} \mathrm{P}$ NMR spectra were referenced to external 85% phosphoric acid (at $\delta 0 \mathrm{ppm}$) and were acquired with a Bruker ${ }^{31} \mathrm{P}$ composite pulse decoupling (CPD) program. Chemical shifts are given on δ scale (ppm). Coupling constants (J) are given in Hertz. Multiplicities are indicated as follows: s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), or br (broadened).

An Agilent 6224 time-of-flight (TOF) mass spectrometer equipped with a double orthogonal electrospray source at atmospheric pressure ionization (ESI) coupled to an Agilent 1260 HLPC was used for recording HRMS spectra. Mobile phase composed of two solvents: A was 0.1% formic acid in Milli-Q water, and B was 0.1% formic acid in acetonitrile mixed in the ratio of 1:1. Compounds were prepared by dissolving the samples in acetonitrile. $0.1-10 \mu \mathrm{~L}$ of each sample and injected into the LC-MS. Flow rate was $0.4 \mathrm{~mL} / \mathrm{min}$. Fragmentor voltage was 150 V. Capillary voltage 4000 V. Mass range 100-1700.

Analytical thin-layer chromatography (TLC) was carried out on Fluka Silica Gel TLC cards, visualized with a UV lamp (254 nm and/or 366 nm).

Purification of products was achieved by column chromatography using silica gel 60N.

2. EXPERIMANTAL

2.1. Preparation of palladium complex Pd-PyMIC

Palladium complex Pd-PyMIC was prepared by the previously reported procedure. ${ }^{1,2}$ White solid. ${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}) $\delta 8.82-8.75(\mathrm{~m}, 2 \mathrm{H}), 8.54-8.46(\mathrm{~m}, 2 \mathrm{H}), 8.27-8.19(\mathrm{~m}$, 2H), 7.75-7.69 (m, 2H), 7.54-7.44 (m, 4H), 7.38-7.33 (m, 4H), 4.43 (s, 6H), 2.41 (s, 6H). NMR data are in agreement with those from the literature. ${ }^{1,2}$
2.2. Formation of enyne-like side products in phosphine ligand screening experiments (Table 1, L1-L3)

Procedure: An oven-dried ($130{ }^{\circ} \mathrm{C}$ for 3 hour) 5 mL round-bottom flask, equipped with magnetic stir bar and septum, was charged with acetonitrile $(1 \mathrm{~mL}),(\mathrm{PhCN})_{2} \mathrm{PdCl}_{2}(0.04$ mmol, $2 \mathrm{~mol} \%$) and ligand $\mathbf{L}(0.08 \mathrm{mmol}, 4 \mathrm{~mol} \%)$ under continuous flow of argon. The reaction mixture was stirred for 5 min at room temperature, then Pd-PyMIC $(0.02 \mathrm{mmol}, 1$ $\mathrm{mol} \%$), DABCO ($2.8 \mathrm{mmol}, 1.4$ equiv), 4-bromotoluene ($\mathbf{1 a}, 2 \mathrm{mmol}$) and phenylacetylene ($\mathbf{2 a}, 2.8 \mathrm{mmol}, 1.4$ equiv) were added. The argon flow was removed and the reaction mixture was stirred at room temperature for 24 hours. The conversions were determined by ${ }^{1} \mathrm{H}$ NMR of aliquots $(20 \mu \mathrm{~L})$ of the crude reaction mixture, dissolved in $\mathrm{CDCl}_{3}(0.7 \mathrm{~mL})$. Each experiment was performed at least in duplicate and the results are collected in Table 1 and Supplementary Figure S1.
a)
$\underset{2 a}{ }$
b)
 Me

Supplementary Figure S1. Selected regions of ${ }^{1} \mathrm{H}$ NMR spectra of a) alkyne 2a, b) bromide 1a, c) crude reaction mixture using $\mathbf{L} 1$ as a ligand, d) crude reaction mixture using $\mathbf{L} \mathbf{2}$ as a ligand, e) crude reaction mixture using $\mathbf{L 3}$ as a ligand, and f) tolane $\mathbf{3 a}$ in $\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$.

2.3. Solvent and base screening experiments (Supplementary Table S1)

Procedure: An oven-dried ($130{ }^{\circ} \mathrm{C}$ for 3 hours) 5 mL round-bottom flask, equipped with magnetic stir bar and septum was charged with Solvent $(1 \mathrm{~mL}),\left(\mathrm{PhCN}_{2} \mathrm{PdCl}_{2}(0.04 \mathrm{mmol}, 2\right.$ mol \%) and CataCXium A ($\mathbf{L} 7,0.08 \mathrm{mmol}, 4 \mathrm{~mol} \%$) under continuous flow of argon. The reaction mixture was stirred for 5 min at room temperature, then Pd-PyMIC $(0.02 \mathrm{mmol}, 1$ mol \%), Base ($2.8 \mathrm{mmol}, 1.4$ equiv), 4-bromotoluene ($\mathbf{1 a}, 2 \mathrm{mmol}$) and phenylacetylene ($\mathbf{2 a}$, $2.8 \mathrm{mmol}, 1.4$ equiv) were added. The argon flow was removed and the reaction mixture was stirred at room temperature for 24 hours. The conversions were determined by ${ }^{1} \mathrm{H}$ NMR of
aliquots ($20 \mu \mathrm{~L}$) of the crude reaction mixture, dissolved in $\mathrm{CDCl}_{3}(0.7 \mathrm{~mL})$. Each experiment was performed at least in duplicate and the results are collected in Supplementary Table S1.

Supplementary Table S1. Results from the solvent and base screening experiments.

Entry	Solvent	Base	Yield (\%) ${ }^{\text {a }}$
1	MeCN	DABCO	20
2	NMP	DABCO	13
3	DMF	DABCO	17
4	MeOH	DABCO	15
5	i-PrOH	DABCO	14
6	EtOAc	DABCO	22
7	THF	DABCO	19
8	1,4-Dioxane	DABCO	$35,50^{\text {b }}$
9	Toluene	DABCO	<1
10	1,4-Dioxane	Pyrolidine	<1
11	1,4-Dioxane	t - BuNH_{2}	<1
12	1,4-Dioxane	NEt_{3}	11
13	1,4-Dioxane	$i-\mathrm{Pr}_{2} \mathrm{NEt}$	10
14	1,4-Dioxane	$\mathrm{Cy}_{2} \mathrm{NMM}$	12
15	1,4-Dioxane	DBU	<1
16	1,4-Dioxane	DBN	<1
17	1,4-Dioxane	TMG	<1
18	1,4-Dioxane	$\mathrm{K}_{2} \mathrm{CO}_{3}$	38, $70^{\text {b }}$
19	1,4-Dioxane	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	10
20	1,4-Dioxane	$\mathrm{K}_{3} \mathrm{PO}_{4}$	22
21	1,4-Dioxane	KOAc	9
22	1,4-Dioxane	KOPiv	13
23	1,4-Dioxane	KOH	<1

[^0]
2.4. Palladium source screening experiments (Supplementary Table S2)

Procedure: An oven-dried ($130{ }^{\circ} \mathrm{C}$ for 3 hours) 5 mL round-bottom flask, equipped with magnetic stir bar and septum was charged with 1,4-dioxane (1 mL), Pd source $(0.04 \mathrm{mmol}, 2$ mol \%) and CataCXium A ($\mathbf{L} 7,0.08 \mathrm{mmol}, 4 \mathrm{~mol} \%)$ under continuous flow of argon. The reaction mixture was stirred for 5 min at room temperature, then Pd-PyMIC $(0.02 \mathrm{mmol}, 1$ $\mathrm{mol} \%$), DABCO ($2.8 \mathrm{mmol}, 1.4$ equiv), 4-bromotoluene ($\mathbf{1 a}, 2 \mathrm{mmol}$) and phenylacetylene ($\mathbf{2 a}, 2.8 \mathrm{mmol}, 1.4$ equiv) were added. Argon flow was removed and the reaction mixture was stirred at room temperature for 24 hours. The conversions were determined by ${ }^{1} \mathrm{H}$ NMR of aliquots $(20 \mu \mathrm{~L})$ of the crude reaction mixture, dissolved in $\mathrm{CDCl}_{3}(0.7 \mathrm{~mL})$. Each experiment was performed at least in duplicate and the results are collected in Supplementary Table S2.

Supplementary Table S2. Results from palladium source screening experiments.

Entry	Pd source	Yield (\%)
1	$(\mathrm{PhCN})_{2} \mathrm{PdCl}_{2}$	$38^{\mathbf{b}}$
2	$(\mathrm{MeCN})_{2} \mathrm{PdCl}_{2}$	7
3	$(\mathrm{PhCN})_{2} \mathrm{PdBr}_{2}$	17
4	$\mathrm{Pd}(\mathrm{OAc})_{2}$	22
5	$\mathrm{Pd}(\mathrm{TFA})_{2}$	29
6	$\operatorname{Pd}(\mathrm{dba})_{2}$	10

${ }^{a}$ NMR yield determined from at least two consecutive runs. ${ }^{\text {b }}$ For comparison reasons, the result is taken from Supplementary Table S1.

2.5. Synthesis and characterization of products from Table 3

Conditions A: An oven-dried ($130{ }^{\circ} \mathrm{C}$ for 3 hours) 5 mL round-bottom flask, equipped with magnetic stir bar and septum, was charged with anhydrous 1,4-dioxane (1 mL), $(\mathrm{PhCN})_{2} \mathrm{PdCl}_{2}$
($0.04 \mathrm{mmol}, 2 \mathrm{~mol} \%$) and CataCXium A ($\mathbf{L} 7,0.08 \mathrm{mmol}, 4 \mathrm{~mol} \%$) under continuous flow of argon. The reaction mixture was stirred for 5 min at room temperature, then Pd-PyMIC (0.02 mmol, $1 \mathrm{~mol} \%$), Base ($2.8 \mathrm{mmol}, 1.4$ equiv), bromide $\mathbf{1}(2 \mathrm{mmol})$ and acetylene $\mathbf{2}(2.8 \mathrm{mmol}$, 1.4 equiv) were added. Argon flow was removed and the reaction mixture was stirred at room temperature for the time indicated below and in Table 3, during which milky, yellowish to brownish coloured mixture started forming. After completion the reaction mixture was diluted with ethyl acetate (150 mL) and washed with brine $(2 \times 100 \mathrm{~mL})$. The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated by rotary evaporation to give a crude brown solid/oil. Product $\mathbf{3}$ was additionally purified by SiO_{2} column chromatography.

Conditions B: An oven-dried ($130{ }^{\circ} \mathrm{C}$ for 3 hours) 5 mL round-bottom flask, equipped with magnetic stir bar and septum was charged with anhydrous 1,4 -dioxane $(1 \mathrm{~mL}),(\mathrm{PhCN})_{2} \mathrm{PdCl}_{2}$ ($0.005 \mathrm{mmol}, 0.25 \mathrm{~mol} \%$) and CataCXium A ($\mathbf{L} 7,0.01 \mathrm{mmol}, 0.5 \mathrm{~mol} \%$) under continuous flow of argon. The reaction mixture was stirred for 5 min at room temperature, then PdPyMIC ($0.005 \mathrm{mmol}, 0.25 \mathrm{~mol} \%$), Base ($2.8 \mathrm{mmol}, 1.4$ equiv), bromide $1(2 \mathrm{mmol})$ and acetylene 2 ($2.8 \mathrm{mmol}, 1.4$ equiv) were added. Argon flow was removed and the reaction mixture was stirred at room temperature for the time indicated below and in Table 3, during which milky, yellowish to brownish coloured mixture started forming. After completion the reaction mixture was diluted with ethyl acetate (150 mL) and washed with brine (2×100 $\mathrm{mL})$. The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated by rotary evaporation to give a crude brown solid/oil. Product $\mathbf{3}$ was additionally purified by SiO_{2} column chromatography.

1-Methyl-4-(phenylethynyl)benzene (3a; Table 3)

Prepared according to Conditions A, using $(\mathrm{PhCN})_{2} \mathrm{PdCl}_{2}$ ($15.3 \mathrm{mg}, 0.04 \mathrm{mmol}$), CataCXium A (L7, $28.7 \mathrm{mg}, 0.08 \mathrm{mmol}$), complex Pd-PyMIC ($15.6 \mathrm{mg}, 0.02 \mathrm{mmol}$), $\mathrm{K}_{2} \mathrm{CO}_{3}$ (387 mg , 2.8 mmol), 4-bromotoluene ($\mathbf{1 a}, 342 \mathrm{mg}, 2 \mathrm{mmol}$), phenylacetylene ($\mathbf{2 a}, 286 \mathrm{mg}, 2.8 \mathrm{mmol}$), reaction time 72 h . The title product 3a ($242 \mathrm{mg}, 63 \%$) was obtained after column chromatography purification (petroleum ether, $\mathrm{R}_{f}=0.28$) as a white solid. ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.54-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.45-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.37-7.31(\mathrm{~m}, 3 \mathrm{H}), 7.18-7.13(\mathrm{~m}$, $2 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H})$. NMR data are in agreement with those from the literature. ${ }^{3,4}$

4-(Phenylethynyl)benzaldehyde (3b; Table 3)

Prepared according to Conditions B, using $(\mathrm{PhCN})_{2} \mathrm{PdCl}_{2}(1.9 \mathrm{mg}, 0.005 \mathrm{mmol})$, CataCXium A (L7, $3.6 \mathrm{mg}, 0.01 \mathrm{mmol}$), complex Pd-PyMIC ($3.9 \mathrm{mg}, 0.005 \mathrm{mmol}$), DABCO (314 mg , 2.8 mmol), 4-bromobenzaldehyde ($\mathbf{1 b}, 370 \mathrm{mg}, 2 \mathrm{mmol}$), phenylacetylene ($\mathbf{2 a}, 286 \mathrm{mg}, 2.8$ mmol), reaction time 24 h . The title product 3b ($355 \mathrm{mg}, 86 \%$) was obtained after column chromatography purification (petroleum ether/ethyl acetate $=20: 1, \mathrm{R}_{f}=0.20$) as a white solid. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.02(\mathrm{~s}, 1 \mathrm{H}), 7.89-7.85(\mathrm{~m}, 2 \mathrm{H}), 7.70-7.65(\mathrm{~m}, 2 \mathrm{H})$, 7.57-7.55 (m, 2H), 7.40-7.37 (m, 3H). NMR data are in agreement with those from the literature. ${ }^{5,6}$

1-(4-(Phenylethynyl)phenyl)ethan-1-one (3c; Table 3)

Prepared according to Conditions B, using (PhCN$)_{2} \mathrm{PdCl}_{2}(1.9 \mathrm{mg}, 0.005 \mathrm{mmol})$, CataCXium A (L7, $3.6 \mathrm{mg}, 0.01 \mathrm{mmol}$), complex Pd-PyMIC ($3.9 \mathrm{mg}, 0.005 \mathrm{mmol}$), DABCO (314 mg , 2.8 mmol), 4-bromoacetophenone ($\mathbf{1 c}, 398 \mathrm{mg}, 2 \mathrm{mmol}$), phenylacetylene ($\mathbf{2 a}, 286 \mathrm{mg}, 2.8$ mmol), reaction time 72 h . The title product $3 \mathrm{c}(419 \mathrm{mg}, 95 \%$) was obtained after column chromatography purification (petroleum ether/ethyl acetate $=20: 1, \mathrm{R}_{f}=0.26$) as an off-white solid. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.96-7.92(\mathrm{~m}, 2 \mathrm{H}), 7.63-7.59(\mathrm{~m}, 2 \mathrm{H}), 7.57-7.53(\mathrm{~m}$, $2 \mathrm{H}), 7.39-7.35(\mathrm{~m}, 3 \mathrm{H}), 2.61(\mathrm{~s}, 3 \mathrm{H})$. NMR data are in agreement with those from the literature. ${ }^{7,8}$

1-Methoxy-4-(phenylethynyl)benzene (3d; Table 3)

Prepared according to Conditions A, using $(\mathrm{PhCN})_{2} \mathrm{PdCl}_{2}(15.3 \mathrm{mg}, 0.04 \mathrm{mmol})$, CataCXium A (L7, $28.7 \mathrm{mg}, 0.08 \mathrm{mmol}$), complex Pd-PyMIC ($15.6 \mathrm{mg}, 0.02 \mathrm{mmol}$), DABCO (314 mg ,
2.8 mmol), 4-bromoanisole ($\mathbf{1 d}, 374 \mathrm{mg}, 2 \mathrm{mmol}$), phenylacetylene ($\mathbf{2 a}, 286 \mathrm{mg}, 2.8 \mathrm{mmol}$), reaction time 48 h . The title product $\mathbf{3 d}$ ($162 \mathrm{mg}, 39 \%$) was obtained after column chromatography purification (petroleum ether/ethyl acetate $=100: 1, \mathrm{R}_{f}=0.18$) as a light yellow solid. ${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.52-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.49-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.30$ $(\mathrm{m}, 3 \mathrm{H}), 6.90-6.86(\mathrm{~m}, 2 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H})$. NMR data are in agreement with those from the literature. ${ }^{8,9}$

1-Methyl-2-(phenylethynyl)benzene (3e; Table 3)

Prepared according to Conditions A, using $(\mathrm{PhCN})_{2} \mathrm{PdCl}_{2}(15.3 \mathrm{mg}, 0.04 \mathrm{mmol})$, CataCXium A (L7, $28.7 \mathrm{mg}, 0.08 \mathrm{mmol}$), complex Pd-PyMIC ($15.6 \mathrm{mg}, 0.02 \mathrm{mmol}$), DABCO (314 mg , 2.8 mmol), 1-bromo-2-methylbenzene ($\mathbf{1 e}, 342 \mathrm{mg}, 2 \mathrm{mmol}$), phenylacetylene ($\mathbf{2 a}, 286 \mathrm{mg}$, 2.8 mmol), reaction time 72 h . The title product $\mathbf{3 e}(135 \mathrm{mg}, 35 \%)$ was obtained after column chromatography purification (petroleum ether, $\mathrm{R}_{f}=0.36$) as a colorless oil. ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.58-7.54(\mathrm{~m}, 2 \mathrm{H}), 7.53-7.50(\mathrm{~m}, 1 \mathrm{H}), 7.39-7.33(\mathrm{~m}, 3 \mathrm{H}), 7.26-7.23(\mathrm{~m}$, $2 \mathrm{H}), 7.21-7.16(\mathrm{~m}, 1 \mathrm{H}), 2.54(\mathrm{~s}, 3 \mathrm{H})$. NMR data are in agreement with those from the literature. ${ }^{10,11}$

3-Nitro-4-(phenylethynyl)benzaldehyde (3f; Table 3)

Prepared according to Conditions B, using $(\mathrm{PhCN})_{2} \mathrm{PdCl}_{2}(1.9 \mathrm{mg}, 0.005 \mathrm{mmol})$, CataCXium A (L7, $3.6 \mathrm{mg}, 0.01 \mathrm{mmol}$), complex Pd-PyMIC ($3.9 \mathrm{mg}, 0.005 \mathrm{mmol}$), DABCO (314 mg , 2.8 mmol), 4-bromo-3-nitrobenzaldehyde ($\mathbf{1 f}, 460 \mathrm{mg}, 2 \mathrm{mmol}$), phenylacetylene ($\mathbf{2 a}, 286$ $\mathrm{mg}, 2.8 \mathrm{mmol}$), reaction time 24 h . Due to low solubility of starting bromide $\mathbf{1 f}, 2.5 \mathrm{~mL}$ of 1,4-dioxane was used. The title product 3 ($446 \mathrm{mg}, 89 \%$) was obtained after column chromatography purification (petroleum ether/ethyl acetate $=10: 1, \mathrm{R}_{f}=0.25$) as an orange solid. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.08(\mathrm{~s}, 1 \mathrm{H}), 8.59-8.55(\mathrm{~m}, 1 \mathrm{H}), 8.14-8.09(\mathrm{~m}, 1 \mathrm{H})$,
7.90-7.87 (m, 1H), 7.66-7.61 (m, 2H), 7.47-7.39 (m, 3H). NMR data are in agreement with those from the literature. ${ }^{1}$

2-(Phenylethynyl)thiophene (3g; Table 3)

Prepared according to Conditions A, using $(\mathrm{PhCN})_{2} \mathrm{PdCl}_{2}$ ($15.3 \mathrm{mg}, 0.04 \mathrm{mmol}$), CataCXium A (L7, $28.7 \mathrm{mg}, 0.08 \mathrm{mmol}$), complex Pd-PyMIC ($15.6 \mathrm{mg}, 0.02 \mathrm{mmol}$), DABCO (314 mg , 2.8 mmol), 2-bromothiophene ($\mathbf{1 g}, 326 \mathrm{mg}, 2 \mathrm{mmol}$), phenylacetylene ($\mathbf{2 a}, 286 \mathrm{mg}, 2.8$ mmol), reaction time 48 h . The title product $\mathbf{3 g}(148 \mathrm{mg}, 40 \%)$ was obtained after column chromatography purification (petroleum ether, $\mathrm{R}_{f}=0.39$) as an off-white solid. ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.54-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.37-7.32(\mathrm{~m}, 3 \mathrm{H}), 7.31-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.04-6.99(\mathrm{~m}$, $1 \mathrm{H})$. NMR data are in agreement with those from the literature. ${ }^{8,12}$

3-(Phenylethynyl)pyridine (3h; Table 3)

Prepared according to Conditions A, using $(\mathrm{PhCN}){ }_{2} \mathrm{PdCl}_{2}(15.3 \mathrm{mg}, 0.04 \mathrm{mmol})$, CataCXium A (L7, $28.7 \mathrm{mg}, 0.08 \mathrm{mmol}$), complex Pd-PyMIC ($15.6 \mathrm{mg}, 0.02 \mathrm{mmol}$), DABCO (314 mg , 2.8 mmol), 3-bromopyridine ($\mathbf{1 h}, 316 \mathrm{mg}, 2 \mathrm{mmol}$), phenylacetylene ($\mathbf{2 a}, 286 \mathrm{mg}, 2.8 \mathrm{mmol}$), reaction time 48 h . The title product $\mathbf{3 h}(258 \mathrm{mg}, 72 \%)$ was obtained after column chromatography purification (petroleum ether/ethyl acetate $=5: 1, \mathrm{R}_{f}=0.23$) as an off-white solid. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.79-8.76(\mathrm{~m}, 1 \mathrm{H}), 8.57-8.53(\mathrm{~m}, 1 \mathrm{H}), 7.83-7.79(\mathrm{~m}$, $1 \mathrm{H}), 7.57-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.39-7.35(\mathrm{~m}, 3 \mathrm{H}), 7.30-7.27(\mathrm{~m}, 1 \mathrm{H})$. NMR data are in agreement with those from the literature. ${ }^{13,14}$

4-((4-(Trifluoromethyl)phenyl)ethynyl)benzaldehyde (3i; Table 3)

Prepared according to Conditions A, using $(\mathrm{PhCN}){ }_{2} \mathrm{PdCl}_{2}(15.3 \mathrm{mg}, 0.04 \mathrm{mmol})$, CataCXium A (L7, $28.7 \mathrm{mg}, 0.08 \mathrm{mmol}$), complex Pd-PyMIC ($15.6 \mathrm{mg}, 0.02 \mathrm{mmol}$), DABCO (314 mg , 2.8 mmol), 4-bromobenzaldehyde ($\mathbf{1 b}, \quad 370 \mathrm{mg}, 2 \mathrm{mmol}$), 1-ethynyl-4(trifluoromethyl)benzene ($\mathbf{2 b}, 476 \mathrm{mg}, 2.8 \mathrm{mmol}$), reaction time 48 h . The title product $\mathbf{3 i}$ ($466 \mathrm{mg}, 85 \%$) was obtained after column chromatography purification (petroleum ether/ethyl acetate $\left.=20: 1, \mathrm{R}_{f}=0.21\right)$ as an off-white solid. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.04(\mathrm{~s}, 1 \mathrm{H})$, 7.92-7.87 (m, 2H), 7.72-7.68 (m, 2H) 7.67-7.62 (m, 4H). ${ }^{19} \mathrm{~F}$ NMR ($461 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-62.9. NMR data are in agreement with those from the literature. ${ }^{15}$

4-((4-Methoxyphenyl)ethynyl)benzonitrile (3j; Table 3)

Prepared according to Conditions B, using $(\mathrm{PhCN}){ }_{2} \mathrm{PdCl}_{2}(1.9 \mathrm{mg}, 0.005 \mathrm{mmol})$, CataCXium A (L7, $3.6 \mathrm{mg}, 0.01 \mathrm{mmol}$), complex Pd-PyMIC ($3.9 \mathrm{mg}, 0.005 \mathrm{mmol}$), DABCO (314 mg , 2.8 mmol), 4-bromobenzonitrile ($\mathbf{1 i}, 364 \mathrm{mg}, 2 \mathrm{mmol}$), 1-ethynyl-4-methoxybenzene ($\mathbf{2 c}, 370$ $\mathrm{mg}, 2.8 \mathrm{mmol}$), reaction time 24 h . The title product $\mathbf{3 j}$ ($438 \mathrm{mg}, 94 \%$) was obtained after column chromatography purification (petroleum ether/ethyl acetate $=10: 1, \mathrm{R}_{f}=0.22$) as an off-white solid. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.64-7.60(\mathrm{~m}, 2 \mathrm{H}), 7.59-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.50-$ $7.45(\mathrm{~m}, 2 \mathrm{H}), 6.93-6.88(\mathrm{~m}, 2 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H})$. NMR data are in agreement with those from the literature. ${ }^{16,17}$

4-((4-Methoxyphenyl)ethynyl)-N,N-dimethylaniline (3k; Table 3)

Prepared according to Conditions A, using $(\mathrm{PhCN})_{2} \mathrm{PdCl}_{2}(15.3 \mathrm{mg}, 0.04 \mathrm{mmol})$, CataCXium A (L7, $28.7 \mathrm{mg}, 0.08 \mathrm{mmol}$), complex Pd-PyMIC ($15.6 \mathrm{mg}, 0.02 \mathrm{mmol}$), DABCO (314 mg , 2.8 mmol), 4-bromoanisole ($\mathbf{1 d}, 374 \mathrm{mg}, 2 \mathrm{mmol}$), 4-ethynyl- N, N-dimethylaniline ($\mathbf{2 d}, 407$ $\mathrm{mg}, 2.8 \mathrm{mmol}$), reaction time 48 h . The title product $\mathbf{3 k}(271 \mathrm{mg}, 54 \%)$ was obtained after column chromatography purification (petroleum ether/ethyl acetate $=20: 1, \mathrm{R}_{f}=0.22$) as an off-white solid. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.46-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.37(\mathrm{~m}, 2 \mathrm{H}), 6.88-$
$6.83(\mathrm{~m}, 2 \mathrm{H}), 6.68-6.63(\mathrm{~m}, 2 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 2.98(\mathrm{~s}, 3 \mathrm{H})$. NMR data are in agreement with those from the literature. ${ }^{17,18}$

2-((4-Methoxyphenyl)ethynyl)-1,3-dimethylbenzene (31; Table 3)

Prepared according to Conditions A, using $(\mathrm{PhCN}){ }_{2} \mathrm{PdCl}_{2}$ ($15.3 \mathrm{mg}, 0.04 \mathrm{mmol}$), CataCXium A (L7, $28.7 \mathrm{mg}, 0.08 \mathrm{mmol}$), complex Pd-PyMIC ($15.6 \mathrm{mg}, 0.02 \mathrm{mmol}$), DABCO (314 mg , $2.8 \mathrm{mmol})$, 2-bromo-1,3-dimethylbenzene ($\mathbf{1} \mathbf{j}, \quad 370 \mathrm{mg}, \quad 2 \mathrm{mmol}$), 1-ethynyl-4methoxybenzene ($\mathbf{2 c}, 370 \mathrm{mg}, 2.8 \mathrm{mmol}$), reaction time 48 h . The title product $\mathbf{3 1}$ (151 mg , 32%) was obtained after column chromatography purification (petroleum ether/ethyl acetate $=$ $100: 1, \mathrm{R}_{f}=0.21$) as a white solid. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.52-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.14-$ $7.09(\mathrm{~m}, 1 \mathrm{H}), 7.09-7.05(\mathrm{~m}, 2 \mathrm{H}), 6.92-6.87(\mathrm{~m}, 2 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 2.52(\mathrm{~s}, 6 \mathrm{H})$. NMR data are in agreement with those from the literature. ${ }^{19}$

1-(Cyclohexylethynyl)-4-(trifluoromethyl)benzene (3m; Table 3)

Prepared according to Conditions A, using $(\mathrm{PhCN}){ }_{2} \mathrm{PdCl}_{2}(15.3 \mathrm{mg}, 0.04 \mathrm{mmol})$, CataCXium A (L7, $28.7 \mathrm{mg}, 0.08 \mathrm{mmol}$), complex Pd-PyMIC ($15.6 \mathrm{mg}, 0.02 \mathrm{mmol}$), DABCO (314 mg , 2.8 mmol), 1-bromo-4-(trifluoromethyl)benzene ($\mathbf{1 k}, 450 \mathrm{mg}, 2 \mathrm{mmol}$), ethynylcyclohexane ($\mathbf{2 e}, 303 \mathrm{mg}, 2.8 \mathrm{mmol}$), reaction time 72 h . The title product $\mathbf{3 m}(257 \mathrm{mg}, 51 \%)$ was obtained after column chromatography purification (petroleum ether, $\mathrm{R}_{f}=0.23$) as an off-white solid. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.54-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.50-7.46(\mathrm{~m}, 2 \mathrm{H}), 2.65-2.56(\mathrm{~m}, 1 \mathrm{H})$, $1.93-1.85(\mathrm{~m}, 2 \mathrm{H}), 1.81-1.71(\mathrm{~m}, 2 \mathrm{H}), 1.60-1.50(\mathrm{~m}, 3 \mathrm{H}), 1.40-1.30(\mathrm{~m}, 3 \mathrm{H})$. NMR data are in agreement with those from the literature. ${ }^{20}$

Trimethyl((4-(trifluoromethyl)phenyl)ethynyl)silane (3n; Table 3)

Prepared according to Conditions A, using $(\mathrm{PhCN}){ }_{2} \mathrm{PdCl}_{2}(15.3 \mathrm{mg}, 0.04 \mathrm{mmol})$, CataCXium A (L7, $28.7 \mathrm{mg}, 0.08 \mathrm{mmol}$), complex Pd-PyMIC ($15.6 \mathrm{mg}, 0.02 \mathrm{mmol}$), DABCO (314 mg , 2.8 mmol), 1-bromo-4-(trifluoromethyl)benzene ($\mathbf{1 k}, \quad 450 \quad \mathrm{mg}, \quad 2 \mathrm{mmol}$), ethynyltrimethylsilane ($\mathbf{2 f}, 275 \mathrm{mg}, 2.8 \mathrm{mmol}$), reaction time 72 h . The title product $\mathbf{3 n}$ (388 $\mathrm{mg}, 80 \%$) was obtained after column chromatography purification (petroleum ether, $\mathrm{R}_{f}=$ 0.23) as a colorless liquid. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.57-7.54(\mathrm{~m}, 4 \mathrm{H}), 0.26(\mathrm{~s}, 9 \mathrm{H})$. NMR data are in agreement with those from the literature. ${ }^{21,22}$

4-(6-Chlorohex-1-yn-1-yl)benzaldehyde (30; Table 3)

Prepared according to Conditions A, using $(\mathrm{PhCN})_{2} \mathrm{PdCl}_{2}(15.3 \mathrm{mg}, 0.04 \mathrm{mmol})$, CataCXium A (L7, $28.7 \mathrm{mg}, 0.08 \mathrm{mmol}$), complex Pd-PyMIC ($15.6 \mathrm{mg}, 0.02 \mathrm{mmol}$), DABCO (314 mg , 2.8 mmol), 4-bromobenzaldehyde ($\mathbf{1 b}, 370 \mathrm{mg}, 2 \mathrm{mmol}$), 6 -chlorohex-1-yne ($\mathbf{2 g}, 326 \mathrm{mg}, 2.8$ mmol), reaction time 48 h . The title product $\mathbf{3 o}(309 \mathrm{mg}, 70 \%)$ was obtained after column chromatography purification (petroleum ether/ethyl acetate $=40: 1, \mathrm{R}_{f}=0.17$) as a yellow solid. Mp 39.1-41.0 ${ }^{\circ} \mathrm{C}$. IR (cm^{-1}): 2954, 1684, 1603, 1425, 1316, 1281, 1208, 933, 859, 831, 768, 650. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.98(\mathrm{~s}, 1 \mathrm{H}), 7.82-7.77(\mathrm{~m}, 2 \mathrm{H}), 7.55-7.50(\mathrm{~m}, 2 \mathrm{H})$, $3.60(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.50(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.00-1.92(\mathrm{~m}, 2 \mathrm{H}), 1.82-1.75(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 191.6,135.2,132.2,130.3,129.6,94.1,80.8,44.6,31.7,25.8$, 19.0. HRMS-ESI $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{ClO}$, 221.0728; found, 221.0727 .

4-(Tetradec-1-yn-1-yl)benzonitrile (3p; Table 3)

Prepared according to Conditions A, using $(\mathrm{PhCN}){ }_{2} \mathrm{PdCl}_{2}(15.3 \mathrm{mg}, 0.04 \mathrm{mmol})$, CataCXium A (L7, $28.7 \mathrm{mg}, 0.08 \mathrm{mmol}$), complex Pd-PyMIC ($15.6 \mathrm{mg}, 0.02 \mathrm{mmol}$), DABCO (314 mg , 2.8 mmol), 4-bromobenzonitrile ($\mathbf{1 i}, 364 \mathrm{mg}, 2 \mathrm{mmol}$), 1-tetradecyne ($\mathbf{2 h}, 544 \mathrm{mg}, 2.8 \mathrm{mmol}$),
reaction time 24 h . The title product $\mathbf{3 p}$ ($547 \mathrm{mg}, 93 \%$) was obtained after column chromatography purification (petroleum ether/ethyl acetate $=100: 1, \mathrm{R}_{f}=0.23$) as a white solid. Mp 45.7-47.0 ${ }^{\circ} \mathrm{C}$. IR (cm^{-1}): 2957, 2914, 2846, 2225, 1676, 1605, 1502, 1460, 1272, $1181,837,722 .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.58-7.54(\mathrm{~m}, 2 \mathrm{H}), 7.47-7.43(\mathrm{~m}, 2 \mathrm{H}), 2.42(\mathrm{t}$, $J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.64-1.57(\mathrm{~m}, 2 \mathrm{H}), 1.47-1.40(\mathrm{~m}, 2 \mathrm{H}), 1.35-1.20(\mathrm{~m}, 16 \mathrm{H}), 0.90-0.85(\mathrm{~m}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 132.2,132.0,129.3,118.8,110.9,95.9,79.5,32.0,29.79$, 29.77, 29.74, 29.6, 29.5, 29.2, 29.0, 28.6, 22.8, 19.6, 14.2. HRMS-ESI $(\mathrm{m} / z):[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{21} \mathrm{H}_{30} \mathrm{~N}, 296.2373$; found, 296.2369.

2-Nitro-4-(tetradec-1-yn-1-yl)benzaldehyde (3r; Table 3)

Prepared according to Conditions A, using (PhCN$)_{2} \mathrm{PdCl}_{2}(15.3 \mathrm{mg}, 0.04 \mathrm{mmol}$), CataCXium A (L7, $28.7 \mathrm{mg}, 0.08 \mathrm{mmol}$), complex Pd-PyMIC ($15.6 \mathrm{mg}, 0.02 \mathrm{mmol}$), DABCO (314 mg , 2.8 mmol), 4-bromo-2-nitrobenzaldehyde (11, $460 \mathrm{mg}, 2 \mathrm{mmol}$), 1-tetradecyne ($\mathbf{2 h}, 544 \mathrm{mg}$, 2.8 mmol), reaction time 72 h . Due to low solubility of starting bromide $\mathbf{1 1}, 2.5 \mathrm{~mL}$ of $1,4-$ dioxane was used. The title product $\mathbf{3 r}(275 \mathrm{mg}, 40 \%$) was obtained after column chromatography purification (petroleum ether/ethyl acetate $=20: 1, \mathrm{R}_{f}=0.33$) as a yellow solid. Mp 39.1-40.3 ${ }^{\circ} \mathrm{C}$. IR (cm^{-1}): 2953, 2915, 2849, 2224, 1690, 1611, 1526, 1470, 1344, $1191,906,851,826,745,716 .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.38-10.37(\mathrm{~m}, 1 \mathrm{H}), 8.06-$ $8.02(\mathrm{~m}, 1 \mathrm{H}), 7.90-7.86(\mathrm{~m}, 1 \mathrm{H}), 7.73-7.69(\mathrm{~m}, 1 \mathrm{H}), 2.45(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.66-1.59(\mathrm{~m}$, $2 \mathrm{H}), 1.48-1.40(\mathrm{~m}, 2 \mathrm{H}), 1.36-1.22(\mathrm{~m}, 16 \mathrm{H}), 0.90-0.86(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , CDCl_{3}) $\delta 187.6,149.8,136.5,130.8,129.6,129.3,127.3,98.3,78.4,32.0,29.79,29.77$, 29.75, 29.6, 29.5, 29.2, 29.1, 28.4, 22.8, 19.7, 14.3. HRMS-ESI $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{21} \mathrm{H}_{30} \mathrm{NO}_{3}, 344.2220$; found, 344.2219 .

1,2-bis(4-(Trifluoromethyl)phenyl)ethyne (3s; Table 3)

Prepared according to Conditions A, using (PhCN$)_{2} \mathrm{PdCl}_{2}$ ($15.3 \mathrm{mg}, 0.04 \mathrm{mmol}$), CataCXium A (L7, $28.7 \mathrm{mg}, 0.08 \mathrm{mmol}$), complex Pd-PyMIC ($15.6 \mathrm{mg}, 0.02 \mathrm{mmol}$), DABCO (314 mg ,
2.8 mmol), 1-bromo-4-(trifluoromethyl)benzene ($\mathbf{1 k}, 450 \mathrm{mg}, 2 \mathrm{mmol}$), 1-ethynyl-4(trifluoromethyl)benzene ($\mathbf{2 b}, 476 \mathrm{mg}, 2.8 \mathrm{mmol}$), reaction time 96 h . The title product $\mathbf{3 s}$ $(289 \mathrm{mg}, 46 \%)$ was obtained after column chromatography purification (petroleum ether, $\mathrm{R}_{f}=$ 0.43) as a white solid. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.68-7.60(\mathrm{~m}, 8 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR (461 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta-62.9$. NMR data are in agreement with those from the literature. ${ }^{23,24}$

2.6. Synthesis and characterization of palladium oxidative adducts 4

Compounds $\mathbf{4 a}$ and $\mathbf{4 b}$ were prepared by a modified literature procedure. ${ }^{25}$
General procedure: To a flame dried Schlenk flask CataCXium A (L7, $64.5 \mathrm{mg}, 0.18 \mathrm{mmol}$), anhydrous pentane $(5.0 \mathrm{~mL})$ and aryl bromide $\mathbf{1}(0.24 \mathrm{mmol})$ were added under argon atmosphere, followed by addition of $(\operatorname{cod}) \mathrm{Pd}\left(\mathrm{CH}_{2} \mathbf{T M S}\right)_{2}(70.0 \mathrm{mg}, 0.18 \mathrm{mmol})$. The reaction mixture was stirred for 24 hours at room temperature. During the reaction an off-white precipitate was formed. The precipitate was collected by filtration, and washed with cold $\mathrm{Et}_{2} \mathrm{O}$ $(3 \times 20 \mathrm{~mL})$ and dried in vacuum to obtain desired products 4 .

(\mathbf{p} - $\left.\mathrm{CF}_{3} \mathrm{Ph}\right)(\mathrm{Br}) \mathbf{P d}($ CataCXium A) (4a)

Prepared according to General procedure, using CataCXium A (L7, $64.5 \mathrm{mg}, 0.18 \mathrm{mmol}), 1$ -bromo-4-(trifluoromethyl)benzene ($\mathbf{1 k}, 54.0 \mathrm{mg}, 0.24 \mathrm{mmol})$, ($\mathbf{c o d}) \operatorname{Pd}\left(\mathrm{CH}_{2} \mathrm{TMS}\right)_{2}(70.0 \mathrm{mg}$,
0.18 mmol), reaction time 24 h . The titled product $\mathbf{4 a}(74 \mathrm{mg}, 60 \%)$ was obtained as a white solid. The product was found to be unstable at ambient atmosphere and temperature $\left(22{ }^{\circ} \mathrm{C}\right)$ for a prolonged time. $\mathrm{Mp} 201.5-202.1^{\circ} \mathrm{C}$ (with decomposition). IR (cm^{-1}): 2954, 2902, 2851, 1587, 1450, 1326, 1302, 1155, 1111, 1097, 1069, 1008, 816, 726. ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.58-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.19-7.07(\mathrm{~m}, 2 \mathrm{H}), 2.40-2.25(\mathrm{~m}, 12 \mathrm{H}), 2.06-1.98(\mathrm{~m}, 6 \mathrm{H})$, $1.82-1.68(\mathrm{~m}, 12 \mathrm{H}), 1.42-1.28(\mathrm{~m}, 2 \mathrm{H}), 1.16-1.00(\mathrm{~m}, 2 \mathrm{H}), 0.67-0.47(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 137.2(\mathrm{~m}), 126.0,123.9,125.3(\mathrm{q}, J=32.1 \mathrm{~Hz}), 122.8,42.9(\mathrm{~d}, J=14.4$ $\mathrm{Hz}), 40.8,36.7,29.0(\mathrm{~d}, J=8.6 \mathrm{~Hz}), 28.2,25.6(\mathrm{~d}, J=11.8 \mathrm{~Hz}), 20.1(\mathrm{~d}, J=22.3 \mathrm{~Hz}), 13.6$. Quartet resonance for CF_{3} carbon atom could not be found in the ${ }^{13} \mathrm{C}$ NMR spectrum. ${ }^{19} \mathrm{~F}$ NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-61.9 .{ }^{31} \mathrm{P}$ NMR ($202 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 47.5$. $\mathrm{HRMS}-\mathrm{ESI}(\mathrm{m} / \mathrm{z})$: [M $-\mathrm{Br}+\mathrm{MeCN}]^{+}$calcd for $\mathrm{C}_{33} \mathrm{H}_{46} \mathrm{~F}_{3} \mathrm{NPPd}$, 650.2355; found, 650.2356.

(p - $\mathbf{C H O P h})(\mathrm{Br}) \mathrm{Pd}($ CataCXium A) (4b)

4b

Prepared according to General procedure, using CataCXium A (L7, $64.5 \mathrm{mg}, 0.18 \mathrm{mmol}$), 4bromobenzaldehyde ($\mathbf{1 b}, 44.4 \mathrm{mg}, 0.24 \mathrm{mmol})$, (cod) $\mathrm{Pd}\left(\mathrm{CH}_{2} \mathrm{TMS}\right)_{2}(70.0 \mathrm{mg}, 0.18 \mathrm{mmol})$, reaction time 24 h . The titled product $\mathbf{4 b}(82 \mathrm{mg}, 70 \%)$ was obtained as a white solid. The product was found to be unstable at ambient atmosphere and temperature $\left(22{ }^{\circ} \mathrm{C}\right)$ for a prolonged time. Mp $190.0-192.1^{\circ} \mathrm{C}$ (with decomposition). IR (cm^{-1}): 2954, 2903, 2849, 1701, 1572, 1552, 1453, 1343, 1299, 1213, 1167, 1043, 1006, 967, 814, 706. ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.82($ brs, 1 H$), 7.71-7.63(\mathrm{~m}, 2 \mathrm{H}), 7.43-7.33(\mathrm{~m}, 2 \mathrm{H}), 2.42-2.24(\mathrm{~m}, 12 \mathrm{H})$, 2.08-1.98 (m, 6H), 1.83-1.68 (m, 12H), 1.43-1.31 (m, 2H), 1.20-1.05 (m, 2H), 0.62-0.51 (m, $5 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 192.8,137.8,132.3,127.2,43.0(\mathrm{~d}, J=14.1 \mathrm{~Hz}), 40.9$, 36.7, $29.0\left(\mathrm{~d}, J=8.9 \mathrm{~Hz}\right.$), 28.2, $25.5(\mathrm{~d}, J=11.9 \mathrm{~Hz}), 20.4,13.6 .{ }^{31} \mathrm{P}$ NMR (161.9 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta$ 47.8. HRMS-ESI $(\mathrm{m} / \mathrm{z}):[\mathrm{M}-\mathrm{Br}+\mathrm{MeCN}]^{+}$calcd for $\mathrm{C}_{33} \mathrm{H}_{47} \mathrm{NOPPd}$, 610.2430; found, 610.2435 .

2.7. Synthesis and characterization of palladium acetylide 5

To a 100 mL round-bottom flask, equipped with a magnetic stir bar and septum anhydrous MeCN (40 mL), DABCO ($53.8 \mathrm{mg}, 0.48 \mathrm{mmol}$), 1-ethynyl-4-(trifluoromethyl)benzene ($\mathbf{2 b}$, $61.2 \mathrm{mg}, 0.36 \mathrm{mmol}$) and palladium complex Pd-PyMIC ($93.7 \mathrm{mg}, 0.12 \mathrm{mmol}$) were added under continuous flow of argon. The reaction mixture was stirred for 1 hour under argon atmosphere at room temperature. Then, the reaction mixture was filtered through a pad of Celite. The solvent from the filtrate was removed under reduced pressure and the residue was subjected to column chromatography ($\mathrm{DCM} / \mathrm{MeCN}=5: 1$, with the addition of 1 vol $\%$ of $\mathrm{Et}_{3} \mathrm{~N} ; \mathrm{R}_{f}=0.32$) to afford title product $5(74 \mathrm{mg}, 71 \%)$ as an off-white solid. Product 5 was not stable under prolonged time if exposed to ambient atmosphere and temperature $\left(22{ }^{\circ} \mathrm{C}\right)$. Mp 105.3-107.0 ${ }^{\circ} \mathrm{C}$ (with decomposition). IR $\left(\mathrm{cm}^{-1}\right): 3374,2925,2104,1611,1512,1453$, $1320,1160,1102,1061,1013,823,791,747,700 .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.54-9.49$ $(\mathrm{m}, 1 \mathrm{H}), 9.35-9.30(\mathrm{~m}, 1 \mathrm{H}), 8.73-8.67(\mathrm{~m}, 1 \mathrm{H}), 8.32-8.24(\mathrm{~m}, 2 \mathrm{H}), 8.05-8.00(\mathrm{~m}, 2 \mathrm{H}), 7.94-$ 7.89 (m, 1H), 7.54-7.49 (m, 1H), 7.44-7.36 (m, 3H), 7.33-7.27 (m, 4H), 7.16-7.11 (m, 2H), 6.81-6.76 (m, 2H), $4.57(\mathrm{~s}, 3 \mathrm{H}), 4.36(\mathrm{~s}, 3 \mathrm{H}), 2.49(\mathrm{~s}, 3 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 165.03,154.5,149.7,149.0,148.4,148.1,147.0,142.0,141.5,140.9,140.7,137.6$, $136.6,134.9,131.4,130.9,130.0,129.3,127.6(\mathrm{q}, J=32.3 \mathrm{~Hz}), 125.9,125.7,125.0(\mathrm{q}, J=$ $3.6 \mathrm{~Hz}), 124.7,124.4,123.7,122.2,115.2,105.5,40.4,39.6,21.5,21.4$. Quartet resonance for CF_{3} carbon atom could not be located in the ${ }^{13} \mathrm{C}$ NMR spectrum. ${ }^{19} \mathrm{~F}$ NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-62.4,-153.1(\mathrm{~d}, J=24.7 \mathrm{~Hz}) .{ }^{11} \mathrm{~B}$ NMR ($160 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-1.05$. HRMS-ESI (m / z): $[\mathrm{M}]^{+}$calcd for $\mathrm{C}_{39} \mathrm{H}_{32} \mathrm{~F}_{3} \mathrm{~N}_{8} \mathrm{Pd}$, 775.1731; found, 775.1737.
2.8. Transmetalation reaction between oxidative adducts 4 and palladium monoacetylide

5

An oven-dried ($130{ }^{\circ} \mathrm{C}$ for 30 minutes) NMR tube was cooled in continuous flow of argon and charged with palladium oxidative adduct $\mathbf{4 a}(3.2 \mathrm{mg}, 4.6 \mu \mathrm{~mol})$ and palladium monoacetylide ($\mathbf{5}, 4.0 \mathrm{mg}, 4.6 \mu \mathrm{~mol}$), followed by the addition of 0.7 mL of CDCl_{3}. NMR tube was sealed with parafilm and left at room temperature $\left(22{ }^{\circ} \mathrm{C}\right)$ for 20 minutes before ${ }^{1} \mathrm{H}$ and ${ }^{19} \mathrm{~F}\{\mathrm{H}\}$ NMR spectrum were recorded. ${ }^{1} \mathrm{H}$ and ${ }^{19} \mathrm{~F}\{\mathrm{H}\}$ NMR spectra showed the formation of the cross-coupled product 3s (Figure 1 and Supplementary Figures S37 and S38).

Reaction was repeated under the same reaction conditions as above, using palladium oxidative adduct $\mathbf{4 b}(3.0 \mathrm{mg}, 4.6 \mu \mathrm{~mol})$ and palladium monoacetylide ($\mathbf{5}, 4.0 \mathrm{mg}, 4.6 \mu \mathrm{~mol}$) in CDCl_{3} $(0.7 \mathrm{~mL})$. After standing at room temperature $\left(22{ }^{\circ} \mathrm{C}\right)$ for 20 minutes ${ }^{1} \mathrm{H}$ and ${ }^{19} \mathrm{~F}\{\mathrm{H}\}$ NMR spectra were measured, showing the formation of the cross-coupled product $\mathbf{3 i}$ (Supplementary Figures S39 and S40).

2.9. Synthesis of methyl 4-(4-hydroxybut-1-yn-1-yl)benzoate (3t)

An oven-dried ($130^{\circ} \mathrm{C}$ for 3 hours) 5 mL round-bottom flask, equipped with magnetic stir bar and septum was charged with anhydrous 1,4-dioxane (1 mL), $\left(\mathrm{PhCN}_{2}\right)_{2 d C l}^{2}$ ($3.8 \mathrm{mg}, 0.01$ mmol) and CataCXium A ($\mathbf{L} 7,7.2 \mathrm{mg}, 0.02 \mathrm{mmol}$) under continuous flow of argon. The
reaction mixture was stirred for 5 min at room temperature, then Pd-PyMIC ($7.8 \mathrm{mg}, 0.01$ mmol), DABCO ($314 \mathrm{mg}, 2.8 \mathrm{mmol}$), methyl 4-bromobenzoate ($\mathbf{1 m}, 430 \mathrm{mg}, 2 \mathrm{mmol}$) and but-3-yn-1-ol ($\mathbf{2 i}, 196 \mathrm{mg}, 2.8 \mathrm{mmol}$) were added. Argon flow was removed and the reaction mixture was stirred at room temperature for 48 hours, during which milky mixture started forming. The reaction mixture was then diluted with ethyl acetate $(150 \mathrm{~mL})$ and washed with brine $(2 \times 100 \mathrm{~mL})$. The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure to give a brown solid. The title product $3 \mathbf{t}$ (367 mg , 90%) was obtained after column chromatography purification (petroleum ether/ethyl acetate $=$ $2: 1, \mathrm{R}_{f}=0.22$) as a white solid. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.99-7.94(\mathrm{~m}, 2 \mathrm{H}), 7.49-7.44$ $(\mathrm{m}, 2 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 3.84(\mathrm{q}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.72(\mathrm{t}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.81(\mathrm{t}, J=6.2 \mathrm{~Hz}$, $1 \mathrm{H})$. NMR data are in agreement with those from the literature. ${ }^{26,27}$

2.10. Multi-gram synthesis of 4-(phenylethynyl)benzaldehyde (3b)

An oven-dried ($130{ }^{\circ} \mathrm{C}$ for 3 hours) 25 mL round-bottom flask, equipped with magnetic stir bar and septum was charged with anhydrous 1,4 -dioxane $(12.5 \mathrm{~mL}),\left(\mathrm{PhCN}_{2} \mathrm{PdCl}_{2}(6.0 \mathrm{mg}\right.$, $15.6 \mu \mathrm{~mol})$ and CataCXium A ($\mathbf{L} 7,11.2 \mathrm{mg}, 31.2 \mu \mathrm{~mol}$) under continuous flow of argon. The reaction mixture was stirred for 5 min at room temperature, then Pd-PyMIC ($12.2 \mathrm{mg}, 15.6$ $\mu \mathrm{mol})$, DABCO ($3.926 \mathrm{~g}, 35 \mathrm{mmol}$), 4-bromobenzaldehyde ($\mathbf{1 b}, 4.626 \mathrm{~g}, 25 \mathrm{mmol}$) and phenylacetylene ($\mathbf{2 a}, 3.575 \mathrm{~g}, 35 \mathrm{mmol}$) were added. Argon flow was removed and the reaction mixture was stirred at room temperature for 24 hours. The reaction the mixture was filtered and the filtered solids were additionally washed with ethyl acetate (300 mL) and the combined organic layer was washed with brine $(2 \times 200 \mathrm{~mL})$. Anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}(70 \mathrm{~g})$ and silica gel (30 g) were added to this organic solution and the resulting slurry mixture was stirred for 30 minutes at room temperature. The mixture was filtered and the filter cake was washed with ethyl acetate (200 mL). The filtrate was concentrated under reduced pressure to give crude solid material that was dissolved in hot methanol (200 mL) and filtered. To the hot filtrate water (800 mL) was added under vigorous stirring, causing crystallization of the
product. The mixture was placed in the refrigerator ($4^{\circ} \mathrm{C}$) overnight. The crystals were filtered, thoroughly washed with cold water and dried under high vacuum to afford the desired 4-(phenylethynyl)benzaldehyde (3b, $4.692 \mathrm{~g}, 91 \%$) as a white solid. ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 10.02(\mathrm{~s}, 1 \mathrm{H}), 7.89-7.85(\mathrm{~m}, 2 \mathrm{H}), 7.70-7.65(\mathrm{~m}, 2 \mathrm{H}), 7.57-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.37$ $(\mathrm{m}, 3 \mathrm{H})$. NMR data are in agreement with those from the literature. ${ }^{5,6}$

3. COPIES OF NMR SPECTRA

Supplementary Figure S2. ${ }^{1} \mathrm{H}$ NMR spectrum of compound Pd-PyMIC in DMSO- d_{6}, 500 MHz .

3a
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

Supplementary Figure S3. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 3a in $\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$.

3b
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

Supplementary Figure S4. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3 b}$ in $\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$.

Supplementary Figure S5. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3 c}$ in $\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$.

Supplementary Figure S6. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3 d}$ in $\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$.

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

Supplementary Figure S7. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3 e}$ in $\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$.

Supplementary Figure S8. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3 f}$ in $\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$.

3 g
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

Supplementary Figure S9. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3 g}$ in $\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$.

Supplementary Figure S10. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3 h}$ in $\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$.

$3 i$
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

Supplementary Figure S11. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3 i}$ in $\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$.

$3 i$
${ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{CDCl}_{3}, 471 \mathrm{MHz}\right)$

Supplementary Figure S12. ${ }^{19} \mathrm{~F}$ NMR spectrum of compound $\mathbf{3 i}$ in $\mathrm{CDCl}_{3}, 471 \mathrm{MHz}$.

3j
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

Supplementary Figure S13. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3 j}$ in $\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$.

Supplementary Figure S14. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3 k}$ in $\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$.

Supplementary Figure S15. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3 1}$ in $\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$.

Supplementary Figure S16. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3 m}$ in $\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$.

3n
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

Supplementary Figure S17. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3 n}$ in $\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$.

30
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

Supplementary Figure S18. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3 o}$ in $\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$.

${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right)$

200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	ppm

Supplementary Figure S19. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{3 o}$ in $\mathrm{CDCl}_{3}, 126 \mathrm{MHz}$.

3p

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

Supplementary Figure S20. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3 p}$ in $\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$.

Supplementary Figure S21. ${ }^{13}$ C NMR spectrum of compound 3p in $\mathrm{CDCl}_{3}, 126 \mathrm{MHz}$.

Supplementary Figure S22. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3 r}$ in $\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$.

3r
${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right)$

Supplementary Figure S23. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{3 r}$ in $\mathrm{CDCl}_{3}, 126 \mathrm{MHz}$.

Supplementary Figure S24. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3 s}$ in $\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$.

3s
${ }^{19} \mathrm{~F} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 471 \mathrm{MHz}\right)$

Supplementary Figure $\mathbf{S 2 5} .{ }^{19} \mathrm{~F}$ NMR spectrum of compound $\mathbf{3 s}$ in $\mathrm{CDCl}_{3}, 471 \mathrm{MHz}$.

Supplementary Figure S26. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{4 a}$ in $\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$.

Supplementary Figure S27. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{4 a}$ in $\mathrm{CDCl}_{3}, 126 \mathrm{MHz}$ with number of scans $(\mathrm{NS})=16384$. Due to $\mathrm{C}-\mathrm{F}$ and $\mathrm{C}-\mathrm{P}$ coupling and low solubility of compound $\mathbf{4 a}$ in CDCl_{3}, higher quality of spectra could not be obtained.

4a
${ }^{19} \mathrm{~F} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 471 \mathrm{MHz}\right)$

Supplementary Figure S28. ${ }^{19} \mathrm{~F}$ NMR spectrum of compound $\mathbf{4 a}$ in $\mathrm{CDCl}_{3}, 471 \mathrm{MHz}$.

4a
${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}, 202 \mathrm{MHz}\right)$

Supplementary Figure S29. ${ }^{31} \mathrm{P}$ NMR spectrum of compound 4a in $\mathrm{CDCl}_{3}, 202 \mathrm{MHz}$.

Supplementary Figure S30. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{4 b}$ in $\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$. *Pentane residual resonances.

4b
${ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right)$

Supplementary Figure S31. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{4 b}$ in $\mathrm{CDCl}_{3}, 126 \mathrm{MHz}$ with number of scans $(N S)=9216$. Due to $\mathrm{C}-\mathrm{P}$ coupling and low solubility of compound $\mathbf{4 b}$ in CDCl_{3}, higher quality of spectra could not be obtained. *Pentane residual resonances.

4b
${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}, 202 \mathrm{MHz}\right)$

Supplementary Figure S32. ${ }^{31} \mathrm{P}$ NMR spectrum of compound $\mathbf{4 b}$ in $\mathrm{CDCl}_{3}, 202 \mathrm{MHz}$.

Supplementary Figure S33. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5}$ in $\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$. *Resonance at $\delta 7.63 \mathrm{ppm}$ is due to unidentified impurity, which correlates with the resonance at $\delta 132.9 \mathrm{ppm}$ in ${ }^{13} \mathrm{C}$ NMR spectrum (based on ${ }^{1} \mathrm{H}^{13} \mathrm{C} g s$-HSQC and ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C} g s$-HMBC spectrum) shown in Supplementary Figure S 34 .

Supplementary Figure S34. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 5 in $\mathrm{CDCl}_{3}, 126 \mathrm{MHz}$. *Resonance at $\delta 132.9$ ppm is due to unidentified impurity, which correlates with peak at $\delta 7.63 \mathrm{ppm}$ in ${ }^{1} \mathrm{H}$ NMR spectrum (based on ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C} g s$-HSQC and ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C} g s$-HMBC spectrum) shown in Supplementary Figure S33.

Supplementary Figure S35. ${ }^{19} \mathrm{~F}$ NMR spectrum of compound $\mathbf{5}$ in $\mathrm{CDCl}_{3}, 471 \mathrm{MHz}$.

Supplementary Figure S36. ${ }^{11} \mathrm{~B}$ NMR spectrum of compound $\mathbf{5}$ in $\mathrm{CDCl}_{3}, 160 \mathrm{MHz}$.

Supplementary Figure S37. Aromatic regions of ${ }^{1} \mathrm{H}$ NMR spectra of a) compound 4a, b) compound 5, c) product $\mathbf{3 s}$, and d) crude reaction mixture after 20 minutes, in $\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$.
a)

Supplementary Figure S38. $-\mathrm{CF}_{3}$ (left) and $\mathrm{BF}_{4}{ }^{-}$(right) regions of ${ }^{19} \mathrm{~F}\{\mathrm{H}\}$ NMR spectra of a) compound $\mathbf{4 a}$, b) compound $\mathbf{5}$, c) product $\mathbf{3 s}$, and d) crude reaction mixture after 20 minutes, in $\mathrm{CDCl}_{3}, 471 \mathrm{MHz}$.

Supplementary Figure S39. Aromatic regions of ${ }^{1} \mathrm{H}$ NMR spectra of a) compound 4b, b) compound 5, c) product $\mathbf{3 i}$, and d) crude reaction mixture after 20 minutes, in $\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$.

Supplementary Figure S40. $-\mathrm{CF}_{3}$ (left) and $\mathrm{BF}_{4}{ }^{-}$(right) regions of ${ }^{19} \mathrm{~F}\{\mathrm{H}\}$ NMR spectra of a) compound 5, b) product $\mathbf{3 i}$, and c) crude reaction mixture after 20 minutes, in $\mathrm{CDCl}_{3}, 471 \mathrm{MHz}$. The spectrum of compound $\mathbf{4 b}$ is not shown as it does not contain fluorine atoms.

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

Supplementary Figure $\mathbf{S 4 1} .{ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3 t}$ in $\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$.

3b
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

Supplementary Figure S42. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3 b}$ (multi-gram synthesis) in $\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$.

4. REFERENCES AND NOTES

(1) For the preparation and spectroscopic data of Pd-PyMIC, reported synthesis and spectroscopic data of 3f, see: Gazvoda, M.; Virant, M.; Pevec, A.; Urankar, D.; Bolje, A.; Kočevar, M.; Košmrlj, J. A mesoionic bis(Py-tzNHC) palladium(II) complex catalyses "green" Sonogashira reaction through an unprecedented mechanism. Chem. Соттип. 2016, 52, 1571-1574.
(2) For the preparation of Pd-PyMIC, see: Virant, M.; Mihelač, M.; Gazvoda, M.; Cotman, A. E.; Frantar, A.; Pinter, B.; Košmrlj, J. Pyridine Wingtip in $\left[\mathrm{Pd}(\mathrm{Py}-t \mathrm{zNHC})_{2}\right]^{2+}$ Complex Is a Proton Shuttle in the Catalytic Hydroamination of Alkynes. Org. Lett. 2020, 22, 2157-2161.
(3) For the reported synthesis of 3a, see: Cassar, L. Synthesis of aryl- and vinyl-substituted acetylene derivatives by the use of nickel and palladium complexes. J. Organomet. Chem. 1975, 93, 253-257.
(4) For the spectroscopic data of 3a, see: Pena, M. A.; Sestelo, J. P.; Sarandeses, L. A. New Synthetic Applications of Indium Organometallics in Cross-Coupling Reactions. Synthesis 2005, 485-492.
(5) For the reported synthesis of 3b, see: De La Rosa, M. A.; Velarde, E.; Guzmán, A. Cross-Coupling Reactions of Monosubstituted Acetylenes and Aryl Halides Catalyzed by Palladium on Charcoal. Synthetic Commun. 1990, 20, 2059-2064.
(6) For the spectroscopic data of 3b, see: Halper, S. R.; Cohen, S. M. Synthesis, Structure, and Spectroscopy of Phenylacetylenylene Rods Incorporating meso-Substituted Dipyrrin Ligands. Chem. Eur. J. 2003, 9, 4661-4669.
(7) For the reported synthesis of $\mathbf{3 c}$, see: Herrmann, W. A.; Reisinger, C. -P.; Öfele, K.; Broßmer, C.; Beller, M.; Fischer, H. Facile catalytic coupling of aryl bromides with terminal alkynes by phospha-palladacycles. J. Mol. Catal. A-Chem. 1996, 108, 51-56.
(8) For the spectroscopic data of 3c, 3d, 3g, see: Park, S. B.; Alper, H. Recyclable Sonogashira coupling reactions in an ionic liquid, effected in the absence of both a copper salt and a phosphine. Chem. Commun. 2004, 1306-1307.
(9) For the reported synthesis of 3d, see: Stephens, R. D.; Castro, C. E. The Substitution of Aryl Iodides with Cuprous Acetylides. A Synthesis of Tolanes and Heterocyclics. J. Org. Chem. 1963, 28, 3313-3315.
(10) For the reported synthesis of $\mathbf{3 e}$, see: Tamaru, Y.; Ochiai, H.; Yoshida, Z. -I. Enone Synthesis via Palladium Catalyzed Reductive Carbonylation of Terminal Acetylenes. Tetrahedron Lett. 1984, 25, 3861-3864.
(11) For the spectroscopic data of 3e, see: Kakusawa, N.; Yamaguchi, K.; Kurita, J. Palladium-catalyzed cross-coupling reaction of ethynylstibanes with organic halides. J. Organomet. Chem. 2005, 690, 2956-2966.
(12) For the reported synthesis of 3g, see: Brown, D.; Cymerman Craig, J.; Dyson, N. H.; Westley, J. W. Synthesis of 5-(but-3-en-1-ynyl)-2,2'-bithienyl and related compounds by Grignard coupling. J. Chem. Soc. C. 1966, 89-91.
(13) For the reported synthesis of $\mathbf{3 h}$, see: Walsh, C. J.; Mandal, B. K. Improved Synthesis of Unsymmetrical, Heteroaromatic 1,2-Diketones and the Synthesis of Carbazole Ring Substituted Tetraaryl Cyclopentadieneones. J. Org. Chem. 1999, 64, 6102-6105.
(14) For the spectroscopic data of $\mathbf{3 h}$, see: Rahimi, A.; Schmidt, A. Tandem Suzuki-Miyaura Cross-Coupling/Dehydrobromination of 1,1-Dibromoalkenes to Alkynes with a Cyclobutene-1,2-diylbis(imidazolium) Salt as Catalyst Precursor. Synthesis 2010, 26212625.
(15) For the reported synthesis and spectroscopic data of 3i, see: Katsuyama, I.; Couthaiwale, P. V.; Cui, H. -L.; Ito, Y.; Sando, A.; Tokiwa, H.; Tanaka, F. Substituentdependent reactivity in aldehyde transformations: 4-(phenylethynyl)benzaldehydes versus simple benzaldehydes. Tetrahedron 2013, 69, 4098-4104.
(16) For the reported synthesis of $\mathbf{3 j}$, see: Yasushi, N.; Kazutaka, I.; Atsunori, M.; Tamejiro, H. $\mathrm{Cu}(\mathrm{I}) / \mathrm{Pd}(0)$-Catalyzed Cross-Coupling Reaction of Alkynylsilanes with Aryl or Alkenyl Triflates: "Sila"-Sonogashira-Hagihara Coupling. Chem. Lett. 1997, 26, 12331234.
(17) For the spectroscopic data of 3j, 3k, see: Rao, M. L. N.; Jadhav, D. N.; Dasgupta, P. PdCatalyzed Domino Synthesis of Internal Alkynes Using Triarylbismuths as Multicoupling Organometallic Nucleophiles. Org. Lett. 2010, 12, 2048-2051.
(18) For the reported synthesis of $\mathbf{3 k}$, see: Beletskaya, I. P.; Latyshev, G. V.; Tsvetkov, A. V.; Lukashev, N. V. The nickel-catalyzed Sonogashira-Hagihara reaction. Tetrahedron Lett. 2003, 44, 5011-5013.
(19) For the reported synthesis and spectroscopic data of 31, see: Maji, M. S.; Murarka, S.; Studer, A. Transition-Metal-Free Sonogashira-Type Coupling of ortho-Substituted Aryl and Alkynyl Grignard Reagents by Using 2,2,6,6-Tetramethylpiperidine- N-oxyl Radical as an Oxidant. Org. Lett. 2010, 12, 3878-3881.
(20) For the reported synthesis and spectroscopic data of $\mathbf{3 m}$, see: Melzig, L.; Metzger, A.; Knochel, P. Pd- and Ni-Catalyzed Cross-Coupling Reactions of Functionalized Organozinc Reagents with Unsaturated Thioethers. Chem. Eur. J. 2011, 17, 2948-2956.
(21) For the reported synthesis 3n, see: Erdélyi, M.; Gogoll, A. Rapid Homogeneous-Phase Sonogashira Coupling Reactions Using Controlled Microwave Heating. J. Org. Chem. 2001, 66, 4165-4169.
(22) For the spectroscopic data of $\mathbf{3 n}$, see: Torborg, C.; Zapf, A.; Beller, M. Palladium Catalysts for Highly Selective Sonogashira Reactions of Aryl and Heteroaryl Bromides. ChemSusChem 2008, 1, 91-96.
(23) For the reported synthesis of 3s, see: Pschirer, N. G.; Bunz, U. H. F. Alkyne metathesis with simple catalyst systems: High yield dimerization of propynylated aromatics; scope and limitations. Tetrahedron Lett. 1999, 40, 2481-2484.
(24) For the spectroscopic data of 3s, see: Busacca, C. A.; Faber, E.; De Young, J.; Campbell, S.; Gonnella, N. C.; Grinberg, N.; Haddad, N.; Lee, H.; Ma, S.; Reeves, D.; Shen, S.; Senanayake, C. H. Ambient Temperature Hydrophosphination of Internal, Unactivated Alkynes and Allenyl Phosphineoxides with Phosphine Borane Complexes. Org. Lett. 2009, 11, 5594-5597.
(25) Anderson, T. L.; Friis, S. D.; Audrain, H.; Nordeman, P.; Antoni, G.; Skrydstrup, T. Efficient ${ }^{11}$ C-Carbonylation of Isolated Aryl Palladium Complexes for PET: Application to Challenging Radiopharmaceutical Synthesis J. Am. Chem. Soc. 2015, 137, 1548-1555.
(26) For the reported synthesis of 3t, see: Taylor, E. C.; Harrington, P. M. A convergent synthesis of 5,10-dideaza-5,6,7,8-tetrahydrofolic acid and 5,10-dideaza-5,6,7,8tetrahydrohomofolic acid. An effective principle for carbonyl group activation. J. Org. Chem. 1990, 55, 3222-3227.
(27) For the spectroscopic data of 3t, see: Radeke, H.; Hanson, K.; Yalamanchili, P.; Hayes, M.; Zhang, Z. -Q.; Azure, M.; Yu, M.; Guaraldi, M.; Kagan, M.; Robinson, S.; Casebier, D. Synthesis and Biological Evaluation of the Mitochondrial Complex 1 Inhibitor 2-[4-(4-Fluorobutyl)benzylsulfanyl]-3-methylchromene-4-one as a Potential Cardiac Positron Emission Tomography Tracer. J. Med. Chem. 2007, 50, 4304-4315.

[^0]: ${ }^{\text {a }}$ NMR yield determined from at least two consecutive runs. ${ }^{\text {b }}$ Reaction time was 72 h .

