For

Charge-Separation-Type Ionic Crystals with Mixed Au^I₄Co^{III}₂ and Au^I₄Ni^{II}Co^{III} Hexanuclear Complexes

Rycce S. Pratikha, Tatsuhiro Kojima, Naoto Kuwamura, Nobuto Yoshinari, and Takumi Konno*

Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-

0043, Japan

E-mail: konno@chem.sci.osaka-u.ac.jp

Table S1. Crystal data for $\mathbf{1}_{Li}, \mathbf{1}_{Na}, \mathbf{1}_{K}, \mathbf{1}_{Rb},$ and $\mathbf{1}_{Cs}.$

	1_{Li}	1 _{Na}	$1_{\rm K}$	1 _{Rb}	1 _{Cs}
CCDC No.	1990698	1989961	1989962	1989963	1989964
Formula	C72H84Au4Co1.33	C72H84Au4Co1.33	C72H84Au4Co1.33K0.67	C72H84Au4Co1.33N6	C72H84Au4Co1.33Cs0.67
	$N_6Ni_{0.67}O_{21.67}P_4S_4$	$N_6Ni_{0.67}O_{21.67}P_4S_4$	$N_6Ni_{0.67}O_{21}P_4S_4$	$Ni_{0.67}O_{21}P_4Rb_{0.67}S_4$	$N_6Ni_{0.67}O_{20.67}P_4S_4$
Color, form	Purple, block	Purple, block	Purple, block	Purple, block	Purple, block
λ =Wavelength/ Å	0.4111	0.630	0.630	0.4248	0.630
Crystal system	Cubic	Cubic	Cubic	Cubic	Cubic
Space group	F23	F23	F23	F23	F23
<i>a</i> / Å	37.528(2)	37.862(4)	37.923(4)	37.8088(13)	37.651(4)
b/ Å	37.528(2)	37.862(4)	37.923(4)	37.8088(13)	37.651(4)
<i>c</i> / Å	37.528(2)	37.862(4)	37.923(4)	37.8088(13)	37.651(4)
α /°	90	90	90	90	90
eta /°	90	90	90	90	90
γ /°	90	90	90	90	90
<i>V</i> / Å ³	52852(10)	54276(19)	54539(19)	54048(6)	53374(17)
Ζ	24	24	24	24	24
<i>T</i> / K	100(2)	100(2)	100(2)	100(2)	100(2)
F(000)	29424	29424	29600	29888	30112
ρ calcd / g \cdot cm $^{-3}$	1.914	1.863	1.866	1.905	1.949
$\mu(\lambda)/~{ m mm^{-1}}$	1.745	5.147	4.965	1.948	5.236
Flack parameter	0.058(11)	0.009(4)	0.001(4)	0.004(5)	0.003(4)
Crystal size /mm ³	0.08×0.04×0.04	0.03×0.03×0.03	0.041×0.034×0.031	0.034×0.041×0.031	0.07×0.06×0.03
Limiting indices	$-\!48 \le h \le 48$	$-65 \leq h \leq 65$	$-45 \leq h \leq 46$	$-49 \leq h \leq 48$	$-51 \leq h \leq 51$
	$-\!48 \leq k \leq 47$	$-45 \leq k \leq 46$	$-64 \leq k \leq 65$	$-31 \leq k \leq 39$	$-51 \leq k \leq 51$
	$-47 \leq l \leq 48$	$-44 \leq l \leq 45$	$-45 \leq l \leq 43$	$-44 \leq l \leq 49$	$-60 \leq l \leq 51$
R1 (I>2 σ (I)) ^{a)}	0.0360	0.0554	0.0691	0.0212	0.0384
Rw2 (all data) ^{b)}	0.0891	0.1390	0.1737	0.0537	0.0870
GOF	1.038	1.063	1.109	1.077	0.925

Table S2. Crystal data for 1_{Ca} , 1_{Sr} , and 1_{Ba} .

	1 _{Ca}	1 _{Sr}	1 _{Ba}
CCDC No.	1989965	1989966	1989967
Formula	C72H84Au4Ca0.33Co1.33	C72H84Au4Co1.33N6.67	C72H84Au4Ba0.33Co1.33
	N6.67Ni0.67O22P4S4	$Ni_{0.67}O_{22}P_4S_4Sr_{0.33}$	$N_{6.67}Ni_{0.67}O_{22}P_4S_4$
Color, form	Purple, block	Purple, block	Purple, block
λ =Wavelength/ Å	0.600	0.4248	0.630
Crystal system	Cubic	Cubic	Cubic
Space group	F23	F23	F23
<i>a</i> / Å	37.650(2)	37.749(16)	37.910(4)
b∕ Å	37.650(2)	37.749(16)	37.910(4)
<i>c</i> / Å	37.650(2)	37.749(16)	37.910(4)
α /°	90	90	90
β /°	90	90	90
γ /°	90	90	90
V/ Å ³	53370(9)	53792(67)	54483(19)
Ζ	24	24	24
<i>T</i> / K	100(2)	100(2)	100(2)
F(000)	29760	29904	30048
ρ calcd / g· cm^{-3}	1.916	1.913	1.901
$\mu(\lambda)/ \mathrm{mm}^{-1}$	4.455	1.917	5.048
Flack parameter	0.004(4)	0.009(9)	0.004(3)
Crystal size /mm ³	0.06×0.04×0.04	0.06×0.05×0.04	0.064×0.055×0.045
Limiting indices	$-59 \leq h \leq 57$	$-35 \leq h \leq 45$	$-45 \leq h \leq 44$
	$-59 \leq k \leq 59$	$-47 \leq k \leq 49$	$-64 \leq k \leq 65$
	$-57 \le l \le 55$	$-38 \leq l \leq 49$	$-43 \leq l \leq 44$
R1 (I>2 σ (I)) ^{a)}	0.0372	0.0365	0.0562
Rw2 (all data) ^{b)}	0.0856	0.0834	0.1470
GOF	1.026	1.019	1.105

Table S3. Selected bond distances (Å) for 1_{Li} , 1_{Na} , 1_K , 1_{Rb} , and 1_{Cs} .

	1_{Li}	1 _{Na}	1 _K	1 _{Rb}	1 _{Cs}
M-S/ Å	2.329(4)/2.356(3)	2.342(3)/2.356(3)	2.349(4)/2.375(3)	2.358(3)/2.373(3)	2.353(5)/2.360(5)
M-O/ Å	1.946(9)/1.970(8)	1.947(7)/1.967(7)	1.974(10)/1.974(9)	1.944(6)/1.997(6)	1.919(11)/1.998(10)
M-N/ Å	2.000(10)/2.007(11)	1.987(8)/1.995(8)	2.018(12)/2.022(12)	1.990(8)/2.016(8)	1.944(14)/1.991(13)

Table S4. Selected bond distances (Å) for $\mathbf{1}_{Ca},\,\mathbf{1}_{Sr},\,\text{and}\,\mathbf{1}_{Ba}.$

	1 _{Ca}	1 _{Sr}	1 _{Ba}
M-S/ Å	2.327(2)/2.348(2)	2.344(3)/2.366(3)	2.345(3)/2.362(3)
M-O/ Å	1.934(6)/1.963(6)	1.948(8)/1.974(8)	1.954(9)/1.976(7)
M-N/ Å	1.987(8)/1.995(8)	2.004(10)/2.023(10)	1.998(10)/2.019(11)

Preparation of 1Li.

To a colorless solution of $[Au_2(dppe)(D-Hpen)_2] \cdot 8H_2O$ (0.10 g, 0.082 mmol) in methanol (16 mL) was added a pink methanol solution (16 mL) containing Co(OAc)_2 \cdot 4H_2O (0.011 g, 0.046 mmol) and Ni(OAc)_2 \cdot 4H_2O (0.011 g, 0.046 mmol). After stirring at room temperature for 3 h in air, the solution turned brown. Subsequently, a 0.5 M LiNO₃ aqueous solution (1.5 mL) was added to the brown solution. Slow evaporation of the solution at room temperature for 7 days gave a mixture of purple block crystals (1_{Li}) and green needle crystals (2). Purple crystals of 1_{Li} were obtained as a pure product from the mixture by dissolving 2 using a mixture of methanol and H₂O.

Yield for 1_{Li} : 71 mg (66%). Anal. Calc for $(H_3O)_{0.67}[Au_4Ni_{0.67}Co_{1.33}(dppe)_2(D-pen)_4](NO_3)_2 \cdot 10H_2O = C_{72}H_{106.01}Au_4Co_{1.33}N_6Ni_{0.67}O_{24.67}P_4S_4$: C, 33.16; H, 4.10; N, 3.22%. Found: C, 33.20; H, 4.03; N, 3.14%. IR spectrum (cm⁻¹, ATR): 1653/1604 (v_{COO-}), 1105 (v_{P-Ph}), 735-692 (v_{Ph}) and 1350 (v_{NO3-}). The yield of **2** was estimated to be 16% based on the weight loss after dissolving **2**.

X-ray crystallography of 1_{Li}.

The diffraction data for 1_{Li} were recorded at 100 K with a PILATUS3 X CdTe 1M with synchrotron radiation ($\lambda = 0.4111$ Å) at SPring-8 (BL02B1 beamline). The diffraction images were processed by using RAPID-AUTO. The structures were solved by direct methods using SHELXS-2014. The structure refinements were carried out using full-matrix least-squares (SHELXL-2018/3).

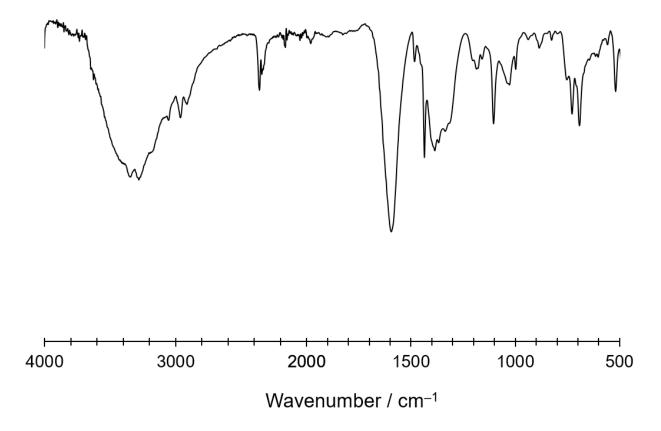


Figure S1. IR spectrum (ATR) of 2.

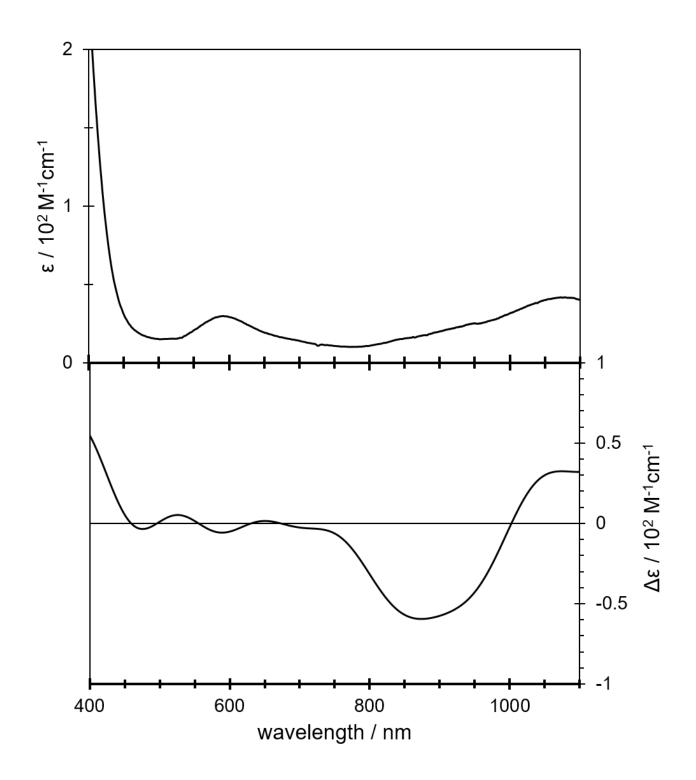


Figure S2. Absorption (top) and CD (bottom) spectra of 2 in methanol.

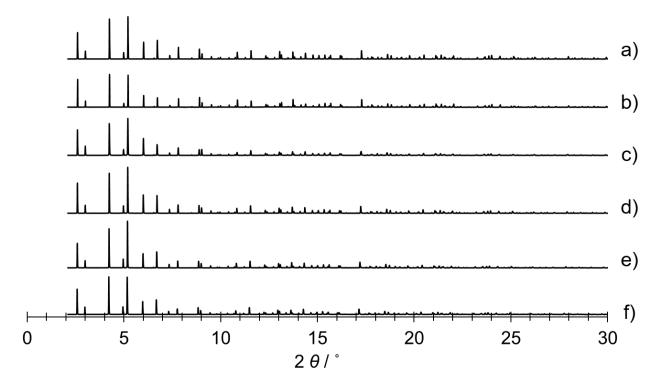
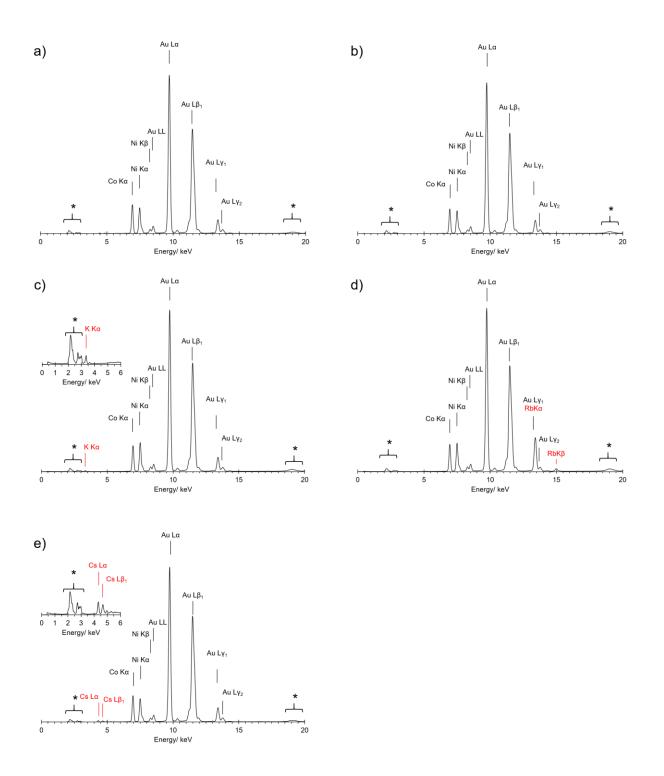



Figure S3. PXRD patterns ($\lambda = 1.000$ Å). a) $[Co^{III}_2(L^{Au})_2](NO_3)_2$, b) 1_{Li} , c) 1_{Na} , d) 1_K , e) 1_{Rb} , and f) 1_{Cs} .

Figure S4. X-ray fluorescence spectra of a) 1_{Li} , b) 1_{Na} , c) 1_{K} , d) 1_{Rb} , and e) $1_{\text{Cs.}}$ * represents signals from the X-ray tube. The inset represents the magnified spectrum (0~6 keV).

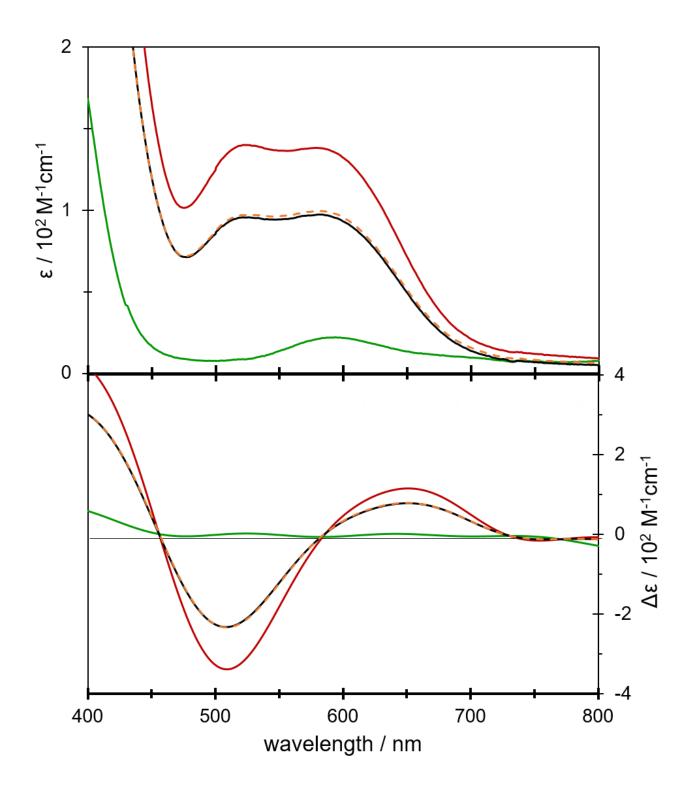
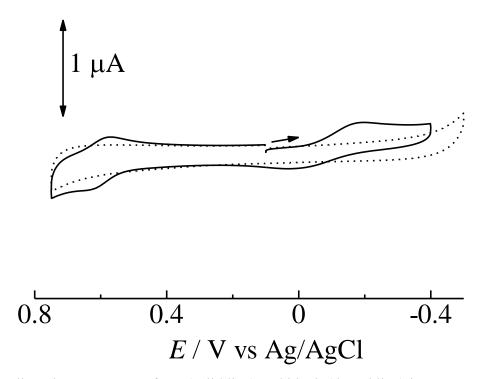
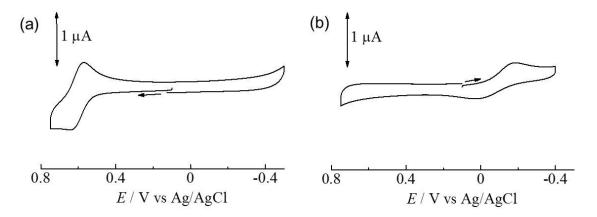
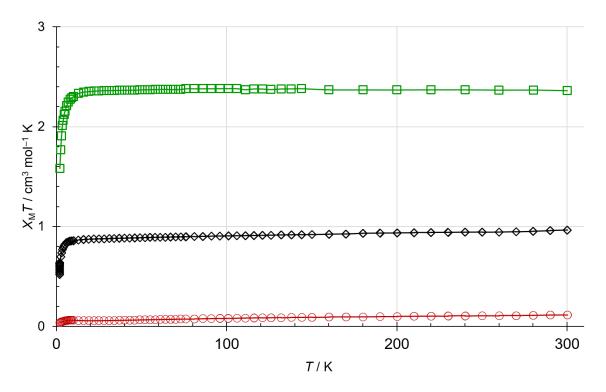
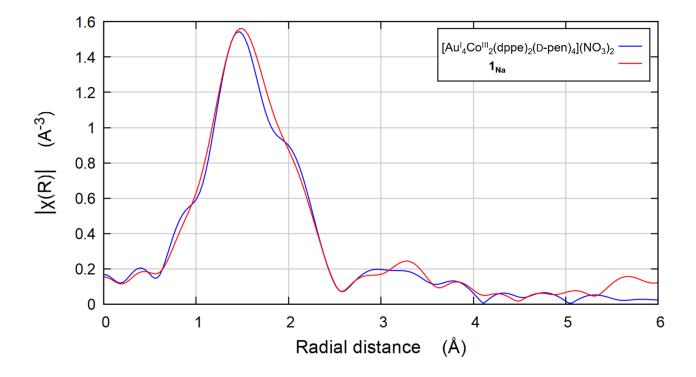


Figure S5. Absorption (top) and CD (bottom) spectra in methanol: black line; 1_{Na} , red line; $[Co^{III}_2(L^{Au})_2](NO_3)_2$, green line; $[Ni^{II}_2(L^{Au})_2]$, orange broken line; a mixture of $[Ni^{II}_2(L^{Au})_2]$ and $[Co^{III}_2(L^{Au})_2](NO_3)_2$ in a 1:2 ratio.


Figure S6. Cyclic voltammograms of 1_{Na} (solid line) and blank (dotted line) in MeOH containing 0.1 M NaBF₄ with a scan rate of 30 mV/sec.

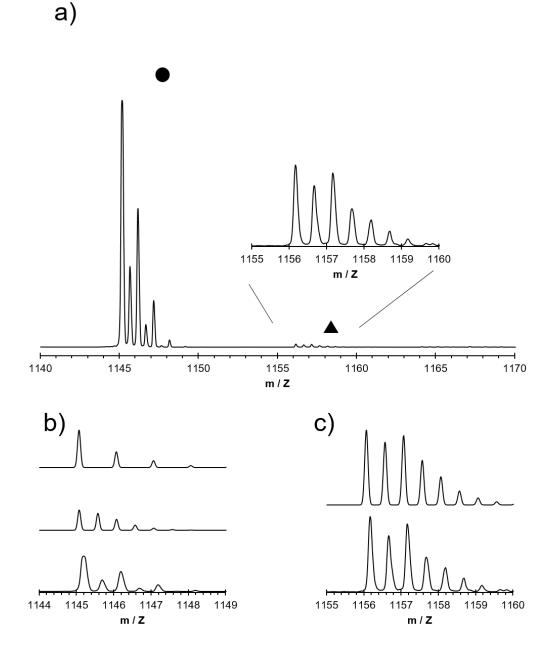

Figure S7. Cyclic voltammograms of $[Ni^{II}_2(L^{Au})_2]$ (a) and $[Co^{III}_2(L^{Au})_2](NO_3)_2$ (b) in MeOH containing 0.1 M NaBF₄ with a scan rate of 30 mV/sec.

Figure S8. The $\chi_M T$ vs T plots for $\mathbf{1}_{Na}$ (black), $[Ni^{II}_2(L^{Au})_2]$ (green), and $[Co^{III}_2(L^{Au})_2](NO_3)_2$ (red).

Figure S9. Fourier transforms of the Co K-edge EXAFS of 1_{Na} (red line) and $[Co^{III}_2(L^{Au})_2](NO_3)_2$ (blue line).

Figure S10. a) ESI mass spectrum of $\mathbf{1}_{Na}$ in MeOH (positive mode). b) The observed (bottom) and simulated isotope patterns for $[Au_2^{I}Co^{III}(dppe)(D-pen)_2]^+$ (top) and $[Au_4^{I}Co^{III}_2(dppe)_2(D-pen)_4]^{2+}$ (middle) at m/Z = 1145.2 (•). c) The observed (bottom) and simulated (top) isotope patterns for $\{[Au_4^{I}Ni^{II}Co^{III}(dppe)_2(D-pen)_4] + Na\}^{2+}$ at m/Z = 1156.2 (•).

The observed pattern at m/Z = 1145.2 (•) for $\mathbf{1}_{Na}$ matches well with the simulated pattern of a 2:1 mixture of the trinuclear $[Au^{I}_{2}Co^{III}(dppe)(D-pen)_{2}]^{+}$ and the hexanuclear $[Au^{I}_{4}Co^{III}_{2}(dppe)_{2}(D-pen)_{4}]^{2+}$, indicative of the equilibrium between the trinuclear and the hexanuclear structures in solution for $[Au^{I}_{4}Co^{III}_{2}(dppe)_{2}(D-pen)_{4}]^{2+}$.

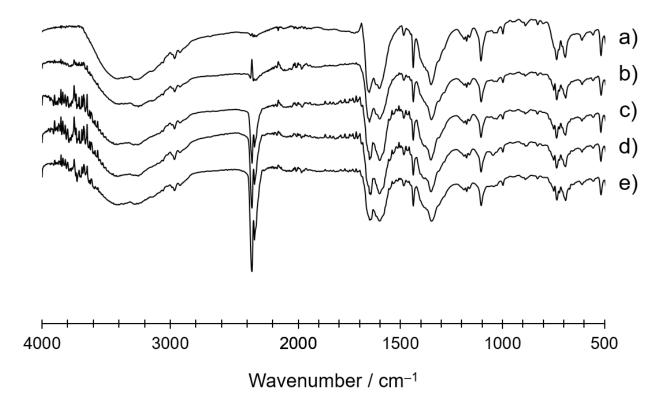


Figure S11. IR spectra (ATR): a) 1_{Li}, b) 1_{Na}, c) 1_K, d) 1_{Rb}, and e) 1_{Cs}.

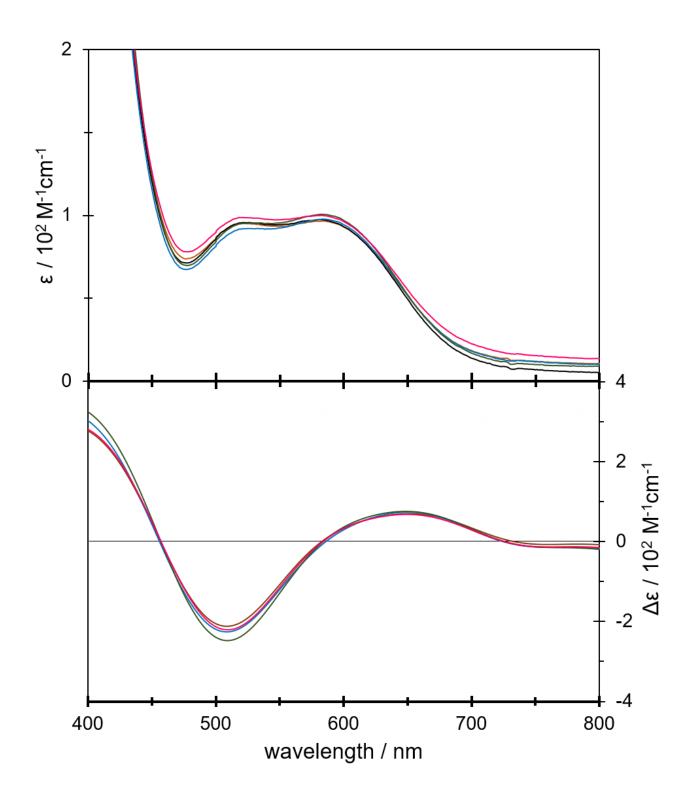


Figure S12. Absorption (top) and CD (bottom) spectra in methanol: brown; 1_{Li} , black; 1_{Na} , blue; 1_K , green; 1_{Rb} , pink; 1_{Cs} .

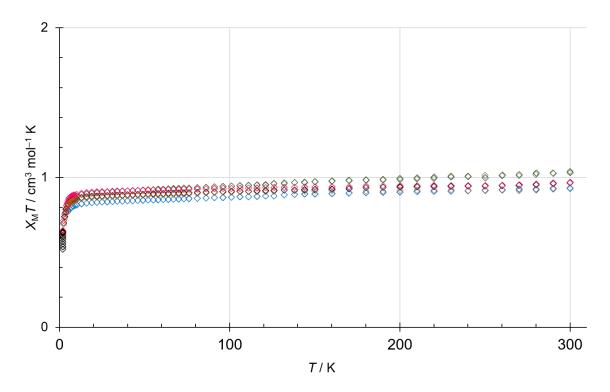


Figure S13. The $\chi_M T$ vs T plots: brown; 1_{Li} , black; 1_{Na} , blue; 1_K , green; 1_{Rb} , pink; 1_{Cs} .

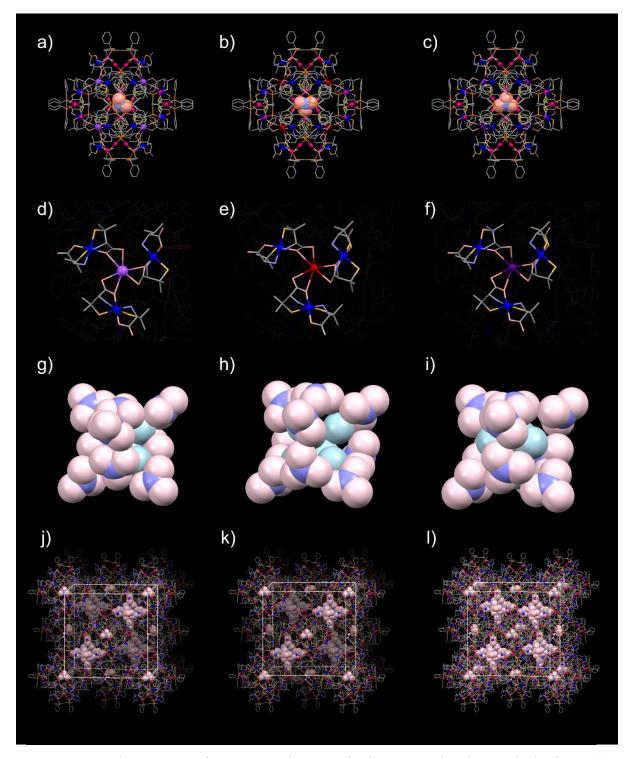


Figure S14. Crystal structures of 1_{K} , 1_{Rb} , and 1_{Cs} . Cationic supramolecular octahedra in 1_{K} (a), 1_{Rb} (b) and 1_{Cs} (c). M¹ ion surrounded by D-pen carboxylate groups in 1_{K} (d), 1_{Rb} (e) and 1_{Cs} (f). Adamantane-like nitrate cluster in 1_{K} (g), 1_{Rb} (h) and 1_{Cs} (i). Packing structure of 1_{K} (j), 1_{Rb} (k) and 1_{Cs} (l). Nitrate anions are represented by a space-filling model. Color codes: red, Au; blue, Co/Ni; orange, P; yellow, S; pink/light pink, O; pale blue, N; gray, C; purple, K; brown, Rb; violet, Cs.

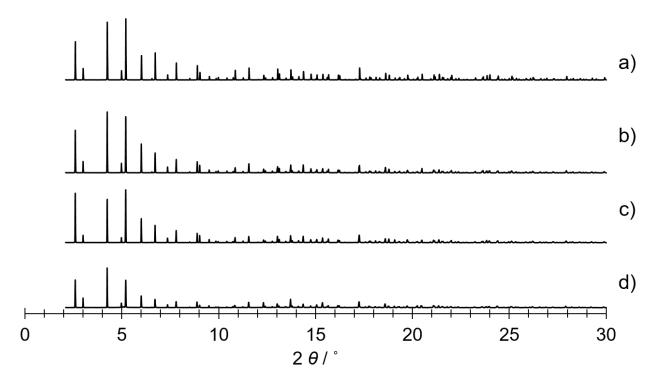


Figure S15. PXRD patterns ($\lambda = 1.000$ Å). a) [Co^{III}₂(L^{Au})₂](NO₃)₂, b) 1_{Ca}, c) 1_{Sr}, and d) 1_{Ba}.

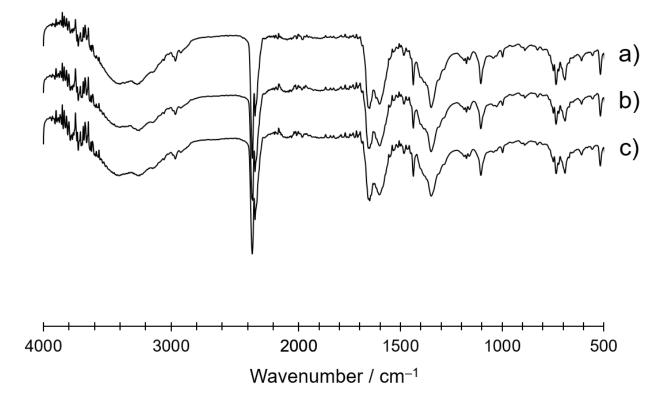


Figure S16. IR spectra (ATR): a) 1_{Ca}, b) 1_{Sr}, and c) 1_{Ba}.

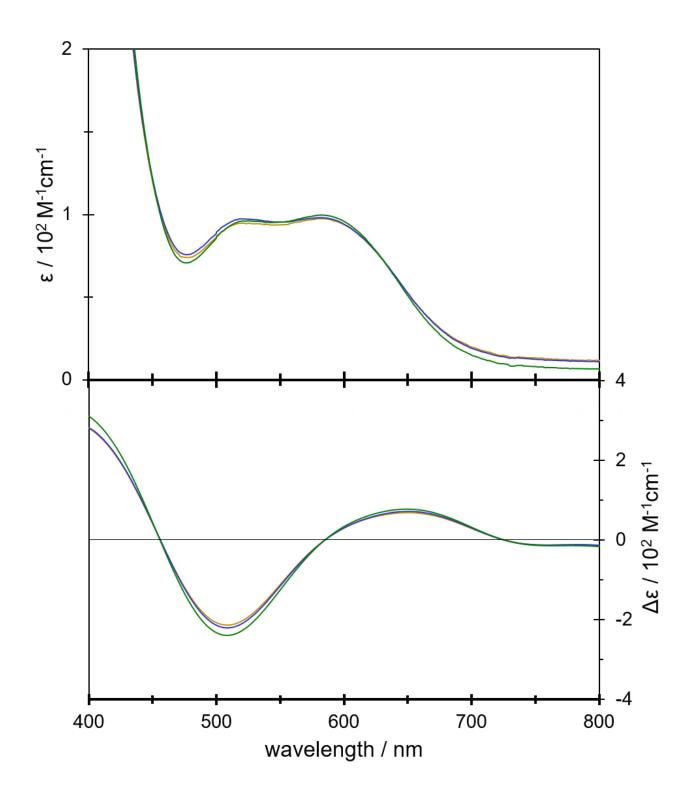
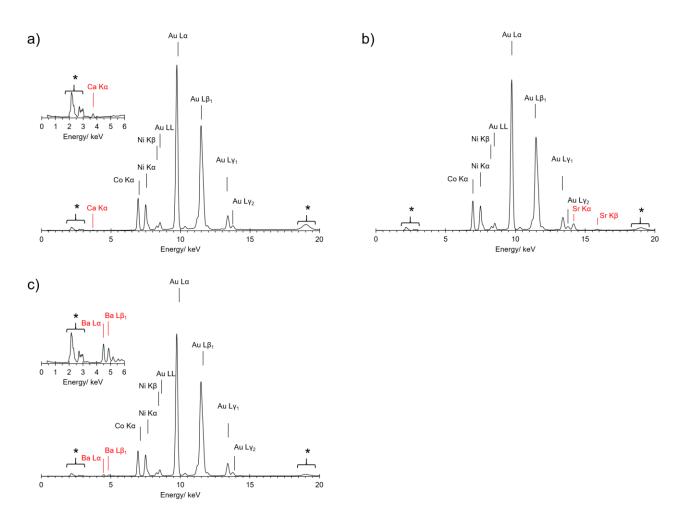



Figure S17. Absorption (top) and CD (bottom) spectra in methanol: yellow; 1_{Ca} , blue; 1_{Sr} , and green; 1_{Ba} .

Figure S18. X-ray fluorescence spectra of a) 1_{Ca} , b) 1_{Sr} , and c) 1_{Ba} . * represents signals from the X-ray tube. The inset represents the magnified spectrum (0~6 keV).

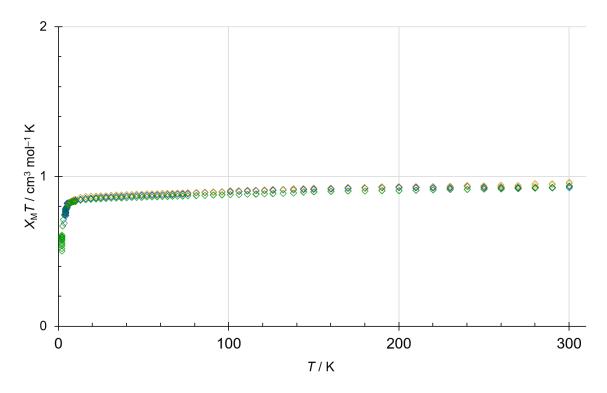


Figure S19. The $\chi_M T$ vs T plots: yellow; 1_{Ca} , blue; 1_{Sr} , and green; 1_{Ba} .

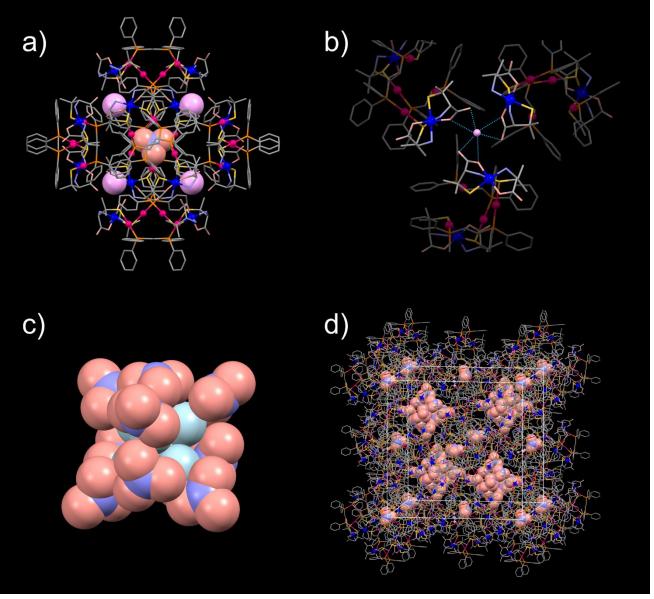



Figure S20. Crystal structures of 1_{Ca} , 1_{Sr} , and 1_{Ba} . Cationic supramolecular octahedra in 1_{Ca} (a), 1_{Sr} (b), and 1_{Ba} (c). H_3O^+ ions are surrounded by D-pen carboxylate groups in 1_{Ca} (d), 1_{Sr} (e), and 1_{Ba} (f). Rhombic dodecahedron-like nitrate cluster in 1_{Ca} (g), 1_{Sr} (h), and 1_{Ba} (i). Packing structure of 1_{Ca} (j), 1_{Sr} (k), and 1_{Ba} (l). Nitrate anions are represented by a space-filling model. Color codes: red, Au; blue, Co/Ni; orange, P; yellow, S; pink/light orange, O; pale blue, N; gray, C; green, Ca/Sr/Ba.

Figure S21. Crystal structure of $\mathbf{1}_{Li}$. (a) Cationic supramolecular octahedron. (b) H_3O^+ ion surrounded by D-pen carboxylate groups. (c) Adamantane-like nitrate cluster. (d) Packing structure. Nitrate anions are represented by a space-filling model. Color codes: red, Au; blue, Co/Ni; orange, P; yellow, S; pink/light blue, O; pale blue, N; gray, C; light pink, H_3O^+ .